A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments
Abstract
:1. Introduction
- (1)
- Workers spend a large amount of time indoors, with about 1720 h per year spent at work for a full-time employee;
- (2)
- (3)
- Many people are often concentrated in small spaces in workplaces, which increases their exposure;
- (4)
2. Bibliometric Method
- Identification of the papers using the keywords.
- Screening and abstract control.
- Eligibility by applying content criteria.
- Full-text assessment.
- Articles that analyze schools, means of transport, restaurants, and spaces used for sports activities.
- Use of biological methods for the analysis of pollutants, such as blood, saliva, urine analysis, etc.
- Review articles containing no information on pollutants or relevant results.
3. Results
3.1. Pollutants
3.2. Indoor Working Environments
3.2.1. Office
3.2.2. E-Waste
3.2.3. Mines
3.2.4. Food
3.2.5. Textile
3.3. Authors
3.4. Journals
3.5. Country of Origin of the Authors and States Analyzed
3.6. Keywords
3.7. Measuring Instruments
4. Conclusions
- ✓
- The working environment under consideration.
- ✓
- The pollutants detected.
- ✓
- The instruments and the types of measurements used.
- ✓
- The country in which the study took place.
- ✓
- Paper’s attributes: author’s name, the journal of publication, the year of publication, and the author’s country of origin.
- ⮚
- We collected and analyzed a considerable number of works related to IAQ in the working environment, 409, and among them, 50% were conducted in the last 12 years, confirming the increasing interest in the theme.
- ⮚
- We identified a huge number of different working environments analyzed, namely, 263. However, except for the five macro-categories studied here in depth (Offices, E-Waste, Mines, Food, Textile), the other working environments have been investigated at most 12 times, even for highly potentially polluted ones such as a Petroleum Refinery (only 12 studies), Printing Industry, or Waste water Treatment Plant (only 6 studies). Thus, there is a clear need for in-depth studies of IAQ in the working environments identified here.
- ⮚
- As can be noticed in Table 12 and Table 13, the top five countries in which studies took place are the same as the top five states of origin of the authors. In addition, in both rankings, there is a scarcity of low-income countries. As visible in Table 14, for example, no studies were conducted in Bangladesh, even if air pollution there is a problem not only in the working environment but also in the household [144], indicating how the literature on IAQ in working environments in low-income countries needs to be improved.
- ⮚
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization Declares Global Emergency: A Review of the 2019 Novel Coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19): The Epidemic and the Challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Wang, H.W.; Cai, W.J.; He, H.D.; Ni, A.N.; Peng, Z.R. Impact of the COVID-19 Lockdown on Roadside Traffic-Related Air Pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Lepore, A.; Ubaldi, V.; Brini, S. Inquinamento Indoor: Aspetti Generali e Casi Studio in Italia; ISPRA: Roma, Italy, 2010; p. 117. ISBN 978-88448-0451-0.
- IHME GBD Results Tool|GHDx. Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/27a7644e8ad28e739382d31e77589dd7%0A (accessed on 10 June 2022).
- WHO Household Air Pollution and Health. Available online: https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 13 September 2021).
- Janke, K. Air Pollution, Avoidance Behaviour and Children’s Respiratory Health: Evidence from England. J. Health Econ. 2014, 38, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Ebenstein, A.; Fan, M.; Greenstone, M.; He, G.; Zhou, M. New Evidence on the Impact of Sustained Exposure to Air Pollution on Life Expectancy from China’s Huai River Policy. Proc. Natl. Acad. Sci. USA 2017, 114, 10384–10389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Zhang, X. The Impact of Exposure to Air Pollution on Cognitive Performance. Proc. Natl. Acad. Sci. USA 2018, 115, 9193–9197. [Google Scholar] [CrossRef] [PubMed]
- Stoner, O.; Gavin, G.; Economou, T.; Gumy, S.; Lewis, J.; Lucio, I.; Ruggeri, G.; Adair-Rohani, H. Global Household Energy Model: A Multivariate Hierarchical Approach to Estimating Trends in the Use of Polluting and Clean Fuels for Cooking. J. R. Stat. Soc. Ser. C Appl. Stat. 2020, 69, 815–839. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Indoor Air Pollution. Our World Data 2013. Available online: https://ourworldindata.org/indoor-air-pollution (accessed on 10 June 2022).
- Borowski, P.F. Environmental Pollution as a Threats to the Ecology and Development in Guinea Conakry. Environ. Prot. Nat. Resour. Ochr. Sr. I Zasobów Nat. 2017, 28, 27–32. [Google Scholar] [CrossRef]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor Air Pollution in Developing Countries: A Major Environmental and Public Health Challenge TT-Pollution Atmosphérique à l’intérieur Des Locaux: Un Problème Majeur Pour l’environnement et La Santé Publique TT-Contaminación Del Aire de Locales Ce. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, G.; Bayeux, T.; Mandin, C.; Kirchner, S.; Vergriette, B.; Pernelet-Joly, V.; Kopp, P. Socio-Economic Costs of Indoor Air Pollution: A Tentative Estimation for Some Pollutants of Health Interest in France. Environ. Int. 2017, 104, 14–24. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, P.; Pegues, J.; Satish, U.; Santanam, S.; Spengler, J.; Allen, J. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings. Int. J. Environ. Res. Public Health 2015, 12, 14709–14722. [Google Scholar] [CrossRef] [PubMed]
- Fung, C.-C.; Yang, P.; Zhu, Y.; Infiltration of Diesel Exhaust into a Mechanically Ventilated Building. Indoor Air. 2014. Available online: https://www.researchgate.net/publication/286809739_Infiltration_of_diesel_exhaust_into_a_mechanically_ventilated_building (accessed on 10 June 2022).
- Meadow, J.F.; Altrichter, A.E.; Kembel, S.W.; Kline, J.; Mhuireach, G.; Moriyama, M.; Northcutt, D.; O’Connor, T.K.; Womack, A.M.; Brown, G.Z.; et al. Indoor Airborne Bacterial Communities Are Influenced by Ventilation, Occupancy, and Outdoor Air Source. Indoor Air 2014, 24, 41–48. [Google Scholar] [CrossRef]
- Kuo, H.W.; Shen, H.Y. Indoor and Outdoor PM2.5 and PM10 Concentrations in the Air during a Dust Storm. Build. Environ. 2010, 3, 610–614. [Google Scholar] [CrossRef]
- Jones, N.C.; Thornton, C.A.; Mark, D.; Harrison, R.M. Indoor/Outdoor Relationships of Particulate Matter in Domestic Homes with Roadside, Urban and Rural Locations. Atmos. Environ. 2000, 34, 2603–2612. [Google Scholar] [CrossRef]
- Baek, S.O.; Kim, Y.S.; Perry, R. Indoor Air Quality in Homes, Offices and Restaurants in Korean Urban Areas—Indoor/Outdoor Relationships. Atmos. Environ. 1997, 31, 529–544. [Google Scholar] [CrossRef]
- Pease, L.F.; Wang, N.; Salsbury, T.I.; Underhill, R.M.; Flaherty, J.E.; Vlachokostas, A.; Kulkarni, G.; James, D.P. Investigation of Potential Aerosol Transmission and Infectivity of SARS-CoV-2 through Central Ventilation Systems. Build. Environ. 2021, 197, 107633. [Google Scholar] [CrossRef]
- Shen, J.; Kong, M.; Dong, B.; Birnkrant, M.J.; Zhang, J. A Systematic Approach to Estimating the Effectiveness of Multi-Scale IAQ Strategies for Reducing the Risk of Airborne Infection of SARS-CoV-2. Build. Environ. 2021, 200, 107926. [Google Scholar] [CrossRef]
- Vlachokostas, A.; Burns, C.A.; Salsbury, T.I.; Daniel, R.C.; James, D.P.; Flaherty, J.E.; Wang, N.; Underhill, R.M.; Kulkarni, G.; Pease, L.F. Experimental Evaluation of Respiratory Droplet Spread to Rooms Connected by a Central Ventilation System. Indoor Air 2022, 32, e12940. [Google Scholar] [CrossRef] [PubMed]
- Pease, L.F.; Salsbury, T.I.; Anderson, K.; Underhill, R.M.; Flaherty, J.E.; Vlachokostas, A.; Burns, C.A.; Wang, N.; Kulkarni, G.; James, D.P. Size Dependent Infectivity of SARS-CoV-2 via Respiratory Droplets Spread through Central Ventilation Systems. Int. Commun. Heat Mass Transf. 2022, 132, 105748. [Google Scholar] [CrossRef]
- Ilieş, D.C.; Marcu, F.; Caciora, T.; Indrie, L.; Ilieş, A.; Albu, A.; Costea, M.; Burtă, L.; Baias, Ş.; Ilieş, M.; et al. Investigations of Museum Indoor Microclimate and Air Quality. Case Study from Romania. Atmosphere 2021, 12, 286. [Google Scholar] [CrossRef]
- Andrade, A.; Dominski, F.H.; Coimbra, D.R. Scientific Production on Indoor Air Quality of Environments Used for Physical Exercise and Sports Practice: Bibliometric Analysis. J. Environ. Manag. 2017, 196, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Dominski, F.H.; Vilarino, G.T. Outdoor Air Quality of Environments Used for Exercise and Sports Practice: An Analysis of Scientific Production through Bibliometric Analysis. Appl. Sci. 2021, 11, 4540. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Ruello, M.L. Indoor Air Quality: A Bibliometric Study. Sustainability 2018, 10, 3830. [Google Scholar] [CrossRef]
- NVivo. NVivo Qualitative Data Analysis Software. 2021. Available online: https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home (accessed on 20 September 2021).
- Broadus, R.N. Toward a Definition of “Bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Verbeek, A.; Debackere, K.; Luwel, M.; Zimmermann, E. Measuring Progress and Evolution in Science and Technology-I: The Multiple Uses of Bibliometric Indicators. Int. J. Manag. Rev. 2002, 4, 179–211. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical Bibliography or Bibliometrics. J. Doc. 1969, 25, 348. [Google Scholar]
- Merigó, J.M.; Pedrycz, W.; Weber, R.; de la Sotta, C. Fifty Years of Information Sciences: A Bibliometric Overview. Inf. Sci. 2018, 432, 245–268. [Google Scholar] [CrossRef]
- Jiménez-Garza, O.; Márquez-Gamiño, S.; Albores, A.; Caudillo-Cisneros, C.; Carrieri, M.; Bartolucci, G.B.; Manno, M. CYP2E1 Phenotype in Mexican Workers Occupationally Exposed to Low Levels of Toluene. Toxicol. Lett. 2012, 210, 254–263. [Google Scholar] [CrossRef]
- Moorman, W.J.; Reutman, S.S.; Shaw, P.B.; Blade, L.M.; Marlow, D.; Vesper, H.; Clark, J.C.; Schrader, S.M. Occupational Exposure to Acrylamide in Closed System Production Plants: Air Levels and Biomonitoring. J. Toxicol. Environ. Health Part A Curr. Issues 2012, 75, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Mohammadbeigi, A.; Soltanzadeh, A.; Darabi, M.; Asadi-Ghalhari, M. Respiratory Effects of Occupational Exposure to Low Concentration of Hydrochloric Acid among Exposed Workers: A Case Study in Steel Industry. Med. Gas. Res. 2019, 9, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Hovland, K.H.; Skogstad, M.; Bakke, B.; Skare, Ø.; Skyberg, K. Longitudinal Decline in Pulmonary Diffusing Capacity among Nitrate Fertilizer Workers. Occup. Med. 2014, 64, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.J.; Olsen, R.; Thomassen, Y.; Molander, P. Comparison of Air Samplers for Determination of Isocyanic Acid and Applicability for Work Environment Exposure Assessment. Environ. Sci. Process. Impacts 2017, 19, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Jeżewska, A.; Kowalska, J. Determination of Triglycidyl Isocyanurate in Workplace Air. Int. J. Environ. Res. Public Health 2019, 16, 4455. [Google Scholar] [CrossRef] [PubMed]
- Azari, M.R.; Tayefeh-Rahimian, R.; Jafari, M.J.; Souri, H.; Shokoohi, Y.; Tavakol, A.; Yazdanbakhsh, Z. Exploring a New Method for the Biological Monitoring of Plastic Workers Exposed to the Vinyl Chloride Monomer. Toxicol. Ind. Health 2016, 32, 1921–1926. [Google Scholar] [CrossRef]
- Nurul, A.H.; Shamsul, B.M.T.; Noor Hassim, I. Assessment of Dust Exposure in a Steel Plant in the Eastern Coast of Peninsular Malaysia. Work 2016, 55, 655–662. [Google Scholar] [CrossRef]
- Acgih. Guide to Occupational Exposure Value 2009; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2009; p. 232. [Google Scholar]
- Alabdulhadi, A.; Ramadan, A.; Devey, P.; Boggess, M.; Guest, M. Inhalation Exposure to Volatile Organic Compounds in the Printing Industry. J. Air Waste Manag. Assoc. 2019, 69, 1142–1169. [Google Scholar] [CrossRef]
- Lucialli, P.; Marinello, S.; Pollini, E.; Scaringi, M.; Sajani, S.Z.; Marchesi, S.; Cori, L. Indoor and Outdoor Concentrations of Benzene, Toluene, Ethylbenzene and Xylene in Some Italian Schools Evaluation of Areas with Different Air Pollution. Atmos. Pollut. Res. 2020, 11, 1998–2010. [Google Scholar] [CrossRef]
- Daae, H.L.; Heldal, K.K.; Madsen, A.M.; Olsen, R.; Skaugset, N.P.; Graff, P. Occupational Exposure during Treatment of Offshore Drilling Waste and Characterization of Microbiological Diversity. Sci. Total Environ. 2019, 681, 533–540. [Google Scholar] [CrossRef]
- Cavallo, D.; Tranfo, G.; Ursini, C.L.; Fresegna, A.M.; Ciervo, A.; Maiello, R.; Paci, E.; Pigini, D.; Gherardi, M.; Gatto, M.P.; et al. Biomarkers of Early Genotoxicity and Oxidative Stress for Occupational Risk Assessment of Exposure to Styrene in the Fibreglass Reinforced Plastic Industry. Toxicol. Lett. 2018, 298, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Costa-Amaral, I.C.; Carvalho, L.V.B.; Santos, M.V.C.; Valente, D.; Pereira, A.C.; Figueiredo, V.O.; De Souza, J.M.; Castro, V.S.; De Fátima Trancoso, M.; Fonseca, A.S.A.; et al. Environmental Assessment and Evaluation of Oxidative Stress and Genotoxicity Biomarkers Related to Chronic Occupational Exposure to Benzene. Int. J. Environ. Res. Public Health 2019, 16, 2240. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Christiani, D.C.; Wang, X.; Ren, J. The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2014, 11, 11822. [Google Scholar] [CrossRef] [PubMed]
- Perrino, C.; Gilardoni, S.; Landi, T.; Abita, A.; Ferrara, I.; Oliverio, S.; Busetto, M.; Calzolari, F.; Catrambone, M.; Cristofanelli, P.; et al. Air Quality Characterization at Three Industrial Areas in Southern Italy. Front. Environ. Sci. 2020, 7, 196. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T.; Yee, C.Z.; Norshariffudin, L.K.; Azhari, A.; Halim, N.D.A.; Alias, A.; Sofwan, N.M.; Hamid, H.H.A.; Matsumi, Y. PM2.5 and Ozone in Office Environments and Their Potential Impact on Human Health. Ecotoxicol. Environ. Saf. 2020, 194, 110432. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Ou, D. A Comparative Field Study of Indoor Environmental Quality in Two Types of Open-Plan Offices: Open-Plan Administrative Offices and Open-Plan Research Offices. Build. Environ. 2019, 148, 394–404. [Google Scholar] [CrossRef]
- EN 15251:2007; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. Comite’Europe’en de Normalisation (CEN): Brussels, Belgium, 2007.
- ANSI/ASHRAE Standard 62.1-2013; Ventilation for Acceptable Indoor Air Quality. ASHRAE: Peachtree Corners, GA, USA, 2013.
- Laskaris, Z.; Milando, C.; Batterman, S.; Mukherjee, B.; Basu, N.; O’Neill, M.S.; Robins, T.G.; Fobil, J.N. Derivation of Time-Activity Data Using Wearable Cameras and Measures of Personal Inhalation Exposure among Workers at an Informal Electronic-Waste Recovery Site in Ghana. Ann. Work Expo. Health 2019, 63, 829–841. [Google Scholar] [CrossRef]
- Calvert, G.M.; Rice, F.L.; Boiano, J.M.; Sheehy, J.W. Occupational Silica Exposure and Risk of Various Diseases: An Analysis Using Death Certificates from 27 States of the United States. Occup. Environ. Med. 2003, 60, 122–129. [Google Scholar] [CrossRef]
- Maciejewska, A. Occupational Exposure Assessment for Crystalline Silica Dust: Approach in Poland and Worldwide. Int. J. Occup. Med. Environ. Health 2008, 21, 1–23. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, M.; Liu, Y.; Ma, J.; Yang, M.; Shi, T.; Chen, W. Comparison of Risk of Silicosis in Metal Mines and Pottery Factories: A 44-Year Cohort Study. Chest 2020, 158, 1050–1059. [Google Scholar] [CrossRef]
- Mankar, P.; Mandal, B.B.; Chatterjee, D. Monitoring and Assessment of Airborne Respirable Limestone Dust and Free Silica Content in an Indian Mine. J. Health Pollut. 2019, 9, 190904. [Google Scholar] [CrossRef] [PubMed]
- Sayler, S.K.; Long, R.N.; Nambunmee, K.; Neitzel, R.L. Respirable Silica and Noise Exposures among Stone Processing Workers in Northern Thailand. J. Occup. Environ. Hyg. 2018, 15, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, Y.; Wang, H.; Hnizdo, E.; Sun, Y.; Su, L.; Zhang, X.; Weng, S.; Bochmann, F.; Hearl, F.J.; et al. Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study. PLoS Med. 2012, 9, e1001206. [Google Scholar] [CrossRef] [PubMed]
- Pavilonis, B.; Grassman, J.; Johnson, G.; Diaz, Y.; Caravanos, J. Characterization and Risk of Exposure to Elements from Artisanal Gold Mining Operations in the Bolivian Andes. Environ. Res. 2017, 154, 1–9. [Google Scholar] [CrossRef]
- Anwar Mallongi, I.; Rantetampang, A.L. Assessing the Mercury Hazard Risks among Communities and Gold Miners in Artisanal Buladu Gold Mine, Indonesia. Asian J. Sci. Res. 2017, 10, 316–322. [Google Scholar] [CrossRef]
- Santonen, T.; Alimonti, A.; Bocca, B.; Duca, R.C.; Galea, K.S.; Godderis, L.; Göen, T.; Gomes, B.; Hanser, O.; Iavicoli, I.; et al. Setting up a Collaborative European Human Biological Monitoring Study on Occupational Exposure to Hexavalent Chromium. Environ. Res. 2019, 177, 108583. [Google Scholar] [CrossRef]
- Jumpponen, M.; Rönkkömäki, H.; Pasanen, P.; Laitinen, J. Occupational Exposure to Solid Chemical Agents in Biomass-Fired Power Plants and Associated Health Effects. Chemosphere 2014, 104, 25–31. [Google Scholar] [CrossRef]
- Lader, D.; Short, S.; Gershuny, J. The Time Use Survey, 2005 How We Spend Our Time; Office for National Statistics: London, UK, 2006; ISBN 1857746317.
- Spengler, J.D.; Ken, S. Indoor Air Pollution: A Public Health Perspective. Science 1983, 221, 9–17. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P.; Sundell, J.; Clausen, G.; Fanger, P.O. The Effects of Outdoor Air Supply Rate in an Office on Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity. Indoor Air 2000, 10, 222–236. [Google Scholar] [CrossRef]
- Mendell, M.J. Indices for IEQ and Building-Related Symptoms. Indoor Air 2003, 13, 364–368. [Google Scholar] [CrossRef]
- Weschler, C.J. Changes in Indoor Pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Geng, Y.; Ji, W.; Lin, B.; Zhu, Y. The Impact of Thermal Environment on Occupant IEQ Perception and Productivity. Build. Environ. 2017, 121, 158–167. [Google Scholar] [CrossRef]
- Pan, Y.; Yin, R.; Huang, Z. Energy Modeling of Two Office Buildings with Data Center for Green Building Design. Energy Build. 2008, 40, 1145–1152. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.Y. Green Building Research-Current Status and Future Agenda: A Review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant Productivity and Office Indoor Environment Quality: A Review of the Literature Title Occupant Productivity and Office Indoor Environment Quality: A Review of the Literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef]
- Horr, Y.A.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of Indoor Environmental Quality on Occupant Well-Being and Comfort: A Review of the Literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Newsham, G.; Brand, J.; Donnelly, C.; Veitch, J.; Aries, M.; Charles, K. Linking Indoor Environment Conditions to Job Satisfaction: A Field Study. Build. Res. Inf. 2009, 37, 129–147. [Google Scholar] [CrossRef]
- Pei, Z.; Lin, B.; Liu, Y.; Zhu, Y. Comparative Study on the Indoor Environment Quality of Green Office Buildings in China with a Long-Term Field Measurement and Investigation. Build. Environ. 2015, 84, 80–88. [Google Scholar] [CrossRef]
- Sediso, B.G.; Lee, M.S. Indoor Environmental Quality in Korean Green Building Certification Criteria—Certified Office Buildings—Occupant Satisfaction and Performance. Sci. Technol. Built Environ. 2016, 22, 606–618. [Google Scholar] [CrossRef]
- Tham, K.W.; Wargocki, P.; Tan, Y.F. Indoor Environmental Quality, Occupant Perception, Prevalence of Sick Building Syndrome Symptoms, and Sick Leave in a Green Mark Platinum-Rated versus a Non-Green Mark-Rated Building: A Case Study. Sci. Technol. Built Environ. 2015, 21, 35–44. [Google Scholar] [CrossRef]
- Ravindu, S.; Rameezdeen, R.; Zuo, J.; Zhou, Z.; Chandratilake, R. Indoor Environment Quality of Green Buildings: Case Study of an LEED Platinum Certified Factory in a Warm Humid Tropical Climate. Build. Environ. 2015, 84, 105–113. [Google Scholar] [CrossRef]
- Schiavon, S.; Altomonte, S. Occupant Satisfaction in LEED and Non-LEED Certified Buildings. Build. Environ. 2013, 68, 66–76. [Google Scholar]
- Fostervold, K.; Nersveen, J. Proportions of Direct and Indirect Indoor Lighting-The Effect on Health, Well-Being and Cognitive Performance of Office Workers. Lighting Res. Technol. 2008, 40, 175–197. [Google Scholar] [CrossRef]
- Veitch, J.A.; Charles, K.E.; Farley, K.M.J.; Newsham, G.R. A Model of Satisfaction with Open-Plan Office Conditions: COPE Field Findings. J. Environ. Psychol. 2007, 27, 177–189. [Google Scholar] [CrossRef]
- World Green Building Council. Building the Business Case: Health, Wellbeing and Productivity in Green Offices; World Green Building Council: London, UK, 2016. [Google Scholar]
- Yudelson, J.; Meyer, U. The World’s Greenest Buildings: Promise versus Performance in Sustainable Design; Routledge: New York, NY, USA, 2013; p. 258. [Google Scholar]
- Leaman, A.; Bordass, B. Are Users More Tolerant of “green” Buildings? Build. Res. Inf. 2007, 35, 662–673. [Google Scholar] [CrossRef]
- Brown, Z.; Cole, R.J. Influence of Occupants’ Knowledge on Comfort Expectations and Behaviour. Build. Res. Inf. 2009, 37, 227–245. [Google Scholar] [CrossRef]
- Armitage, L.; Murugan, A.; Kato, H. Green Offices in Australia: A User Perception Survey. J. Corp. Real Estate 2011, 13, 169–180. [Google Scholar] [CrossRef]
- Davies, M.; Oreszczyn, T. The Unintended Consequences of Decarbonising the Built Environment: A UK Case Study. Energy Build. 2012, 46, 80–85. [Google Scholar] [CrossRef]
- Collinge, W.O.; Landis, A.E.; Jones, A.K.; Schaefer, L.A.; Bilec, M.M. Productivity Metrics in Dynamic LCA for Whole Buildings: Using a Post-Occupancy Evaluation of Energy and Indoor Environmental Quality Tradeoffs. Build. Environ. 2014, 82, 339–348. [Google Scholar] [CrossRef]
- Lu, T.; Knuutila, A.; Viljanen, M.; Lu, X. A Novel Methodology for Estimating Space Air Change Rates and Occupant CO2 Generation Rates from Measurements in Mechanically-Ventilated Buildings. Build. Environ. 2010, 45, 1161–1172. [Google Scholar] [CrossRef]
- Ma, N.; Aviv, D.; Guo, H.; Braham, W.W. Measuring the Right Factors: A Review of Variables and Models for Thermal Comfort and Indoor Air Quality. Renew. Sustain. Energy Rev. 2021, 135, 110436. [Google Scholar] [CrossRef]
- Lundgren, K. The Global Impact of E-Waste: Addressing the Challenge; International Labour Office: Geneva, Switzerland, 2012; p. 71. [Google Scholar]
- Andersson, M.; Knutson Wedel, M.; Forsgren, C.; Christéen, J. Microwave Assisted Pyrolysis of Residual Fractions of Waste Electrical and Electronics Equipment. Miner. Eng. 2012, 29, 105–111. [Google Scholar] [CrossRef]
- Duan, H.; Hou, K.; Li, J.; Zhu, X. Examining the Technology Acceptance for Dismantling of Waste Printed Circuit Boards in Light of Recycling and Environmental Concerns. J. Environ. Manag. 2011, 92, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, W.; Liu, Z.; Ma, C. Recycling of Waste Printed Circuit Boards by Microwave-Induced Pyrolysis and Featured Mechanical Processing. Ind. Eng. Chem. Res. 2011, 50, 11763–11769. [Google Scholar] [CrossRef]
- Man, M.; Naidu, R.; Wong, M.H. Persistent Toxic Substances Released from Uncontrolled E-Waste Recycling and Actions for the Future. Sci. Total Environ. 2013, 463, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Alston, S.M.; Arnold, J.C. Environmental Impact of Pyrolysis of Mixed WEEE Plastics Part 2: Life Cycle Assessment. Environ. Sci. Technol. 2011, 45, 9386–9392. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, A.; Wang, T.; Qu, G.; Shao, J.; Yuan, B.; Wang, Y.; Jiang, G. Influence of E-Waste Dismantling and Its Regulations: Temporal Trend, Spatial Distribution of Heavy Metals in Rice Grains, and Its Potential Health Risk. Environ. Sci. Technol. 2013, 47, 7437–7445. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Huang, Y.; Li, G.; He, Z.; Chen, J.; Zhang, C. Pollution Profiles and Health Risk Assessment of VOCs Emitted during E-Waste Dismantling Processes Associated with Different Dismantling Methods. Environ. Int. 2014, 73, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Rusibamayila, M.; Meshi, E.; Mamuya, S. Respiratory Impairment and Personal Respirable Dust Exposure among the Underground and Open Cast Gold Miners in Tanzania. Ann. Glob. Health 2018, 84, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Rushton, L. Mortality in the UK Industrial Silica Sand Industry: 2. A Retrospective Cohort Study. Occup. Environ. Med. 2005, 62, 446. [Google Scholar] [CrossRef]
- Rees, D.; Murray, J. Silica, Silicosis and Tuberculosis. Int. J. Tuberc. Lung Dis. 2007, 11, 474–484. [Google Scholar] [PubMed]
- Kachuri, L.; Villeneuve, P.J.; Parent, M.-É.; Johnson, K.C.; Group, C.C.R.E.; Harris, S.A. Occupational Exposure to Crystalline Silica and the Risk of Lung Cancer in Canadian Men. Int. J. Cancer 2014, 135, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Rylander, R. Endotoxin in the Environment--Exposure and Effects. J. Endotoxin Res. 2002, 8, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Lundin, J.I.; Checkoway, H. Endotoxin and Cancer. Environ. Health Perspect. 2009, 117, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Zock, J.-P.; Heederik, D.; Kromhout, H. Exposure to Dust, Endotoxin and Micro-Organisms in the Potato Processing Industry. Ann. Occup. Hyg. 1995, 39, 841–854. [Google Scholar] [CrossRef]
- Ingalls, S.R. An Endotoxin Exposure in the Food Industry. Appl. Occup. Environ. Hyg. 2003, 18, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Krysińska-Traczyk, E.; Skórska, C.; Cholewa, G.; Sitkowska, J. Exposure to Airborne Microorganisms and Endotoxin in a Potato Processing Plant-PubMed. Ann. Agric. Environ. Med. 2002, 9, 225–235. [Google Scholar] [PubMed]
- Keane, J.; Te Velde, D.W. The Role of Textile and Clothing Industries in Growth and Development Strategies Final Draft; Overseas Development Institute: London, UK, 2008. [Google Scholar]
- Rovira, J.; Domingo, J.L. Human Health Risks Due to Exposure to Inorganic and Organic Chemicals from Textiles: A Review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef]
- Liang, J.; Ning, X.-A.; Kong, M.; Liu, D.; Wang, G.; Cai, H.; Sun, J.; Zhang, Y.; Lu, X.; Yuan, Y. Elimination and Ecotoxicity Evaluation of Phthalic Acid Esters from Textile-Dyeing Wastewater. Environ. Pollut. 2017, 231, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Wang, J.; Li, R.; Wen, W.; Chen, C.; Wang, Y.; Yang, Z.; Liu, J. Fate of Volatile Aromatic Hydrocarbons in the Wastewater from Six Textile Dyeing Wastewater Treatment Plants. Chemosphere 2015, 136, 50–55. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, J.; Chen, J.; Chen, Z.; Li, G.; Sun, G.; An, T. Treatment of Organic Waste Gas in a Paint Plant by Combined Technique of Biotrickling Filtration with Photocatalytic Oxidation. Chem. Eng. J. 2012, 200–202, 645–653. [Google Scholar] [CrossRef]
- Mayan, O.; Torres da Costa, J.; Neves, P.; Capela, F.; Sousa Pinto, A. Respiratory Effects among Cotton Workers in Relation to Dust and Endotoxin Exposure. Ann. Occup. Hyg. 2002, 46, 277–280. [Google Scholar] [CrossRef]
- Paudyal, P.; Semple, S.; Niven, R.; Tavernier, G.; Ayres, J.G. Exposure to Dust and Endotoxin in Textile Processing Workers. Ann. Occup. Hyg. 2011, 55, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Centers for Didease Control and Prevention CDC. NIOSH Pocket Guide to Chemical Hazards-Trichloroethylene. Available online: http://dl.mozh.org/NIOSH/nioshdbs/npg/npgd0629.html (accessed on 10 June 2022).
- International Agency for Research on Cancer. GENERAL REMARKS-Trichloroethylene, Tetrachloroethylene, and Some Other Chlorinated Agents-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294276/ (accessed on 10 June 2022).
- International Agency for Research. TRICHLOROETHYLENE-Trichloroethylene, Tetrachloroethylene, and Some Other Chlorinated Agents-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294281/ (accessed on 10 June 2022).
- Guo, J.; Lin, K.; Deng, J.; Fu, X.; Xu, Z. Polybrominated Diphenyl Ethers in Indoor Air during Waste TV Recycling Process. J. Hazard. Mater. 2015, 283, 439–446. [Google Scholar] [CrossRef]
- Guo, J.; Luo, X.; Tan, S.; Ogunseitan, O.A.; Xu, Z. Thermal Degradation and Pollutant Emission from Waste Printed Circuit Boards Mounted with Electronic Components. J. Hazard. Mater. 2020, 382, 121038. [Google Scholar] [CrossRef]
- Guo, J.; Patton, L.; Wang, J.; Xu, Z. Fate and Migration of Polybrominated Diphenyl Ethers in a Workshop for Waste Printed Circuit Board De-Soldering. Environ. Sci. Pollut. Res. 2020, 27, 30342–30351. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ji, A.; Wang, J.; Ogunseitan, O.A.; Xu, Z. Emission Characteristics and Exposure Assessment of Particulate Matter and Polybrominated Diphenyl Ethers (PBDEs) from Waste Printed Circuit Boards de-Soldering. Sci. Total Environ. 2019, 662, 530–536. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Zhang, D.; Li, G.; Mai, B.; Fu, J. On-Site and off-Site Atmospheric PBDEs in an Electronic Dismantling Workshop in South China: Gas-Particle Partitioning and Human Exposure Assessment. Environ. Pollut. 2011, 159, 3529–3535. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Simoneit, B.R.T.; Wang, Z.Z.; Wang, X.; Sheng, G.; Fu, J. The Major Components of Particles Emitted during Recycling of Waste Printed Circuit Boards in a Typical E-Waste Workshop of South China. Atmos. Environ. 2010, 44, 4440–4445. [Google Scholar] [CrossRef]
- Ren, Z.; Xiao, X.; Chen, D.; Bi, X.; Huang, B.; Liu, M.; Hu, J.; Peng, P.; Sheng, G.; Fu, J. Halogenated Organic Pollutants in Particulate Matters Emitted during Recycling of Waste Printed Circuit Boards in a Typical E-Waste Workshop of Southern China. Chemosphere 2014, 94, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Abaya, S.W.; Bråtveit, M.; Deressa, W.; Kumie, A.; Moen, B.E. Reduced Lung Function among Workers in Primary Coffee Processing Factories in Ethiopia: A Cross Sectional Study. Int. J. Environ. Res. Public Health 2018, 15, 2415. [Google Scholar] [CrossRef] [PubMed]
- Abaya, S.W.; Bråtveit, M.; Deressa, W.; Kumie, A.; Moen, B.E. Personal Dust Exposure and Its Determinants among Workers in Primary Coffee Processing in Ethiopia. Ann. Work Expo. Health 2018, 62, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Abaya, S.W.; Bråtveit, M.; Deressa, W.; Kumie, A.; Moen, B.E. Respiratory Health among Hand Pickers in Primary Coffee-Processing Factories of Ethiopia. J. Occup. Environ. Med. 2019, 61, 565–571. [Google Scholar] [CrossRef]
- Costa, S.; Carvalho, S.; Costa, C.; Coelho, P.; Silva, S.; Santos, L.S.; Gaspar, J.F.; Porto, B.; Laffon, B.; Teixeira, J.P. Increased Levels of Chromosomal Aberrations and DNA Damage in a Group of Workers Exposed to Formaldehyde. Mutagenesis 2015, 30, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Costa, C.; Madureira, J.; Valdiglesias, V.; Teixeira-Gomes, A.; Guedes de Pinho, P.; Laffon, B.; Teixeira, J.P. Occupational Exposure to Formaldehyde and Early Biomarkers of Cancer Risk, Immunotoxicity and Susceptibility. Environ. Res. 2019, 179, 108740. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; García-Lestón, J.; Coelho, M.; Coelho, P.; Costa, C.; Silva, S.; Porto, B.; Laffon, B.; Teixeira, J.P. Cytogenetic and Immunological Effects Associated with Occupational Formaldehyde Exposure. J. Toxicol. Environ. Health Part A Curr. Issues 2013, 76, 217–229. [Google Scholar] [CrossRef]
- Liu, R.; Ma, S.; Yu, Y.; Li, G.; Yu, Y.; An, T. Field Study of PAHs with Their Derivatives Emitted from E-Waste Dismantling Processes and Their Comprehensive Human Exposure Implications. Environ. Int. 2020, 144, 106059. [Google Scholar] [CrossRef]
- Liu, R.; Chen, J.; Li, G.; An, T. Using an Integrated Decontamination Technique to Remove VOCs and Attenuate Health Risks from an E-Waste Dismantling Workshop. Chem. Eng. J. 2017, 318, 57–63. [Google Scholar] [CrossRef]
- Liu, R.; Ma, S.; Li, G.; Yu, Y.; An, T. Comparing Pollution Patterns and Human Exposure to Atmospheric PBDEs and PCBs Emitted from Different E-Waste Dismantling Processes. J. Hazard. Mater. 2019, 369, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Straumfors, A.; Heldal, K.K.; Eduard, W.; Wouters, I.M.; Ellingsen, D.G.; Skogstad, M. Cross-Shift Study of Exposure-Response Relationships between Bioaerosol Exposure and Respiratory Effects in the Norwegian Grain and Animal Feed Production Industry. Occup. Environ. Med. 2016, 73, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Straumfors, A.; Heldal, K.K.; Wouters, I.M.; Eduard, W. Work Tasks as Determinants of Grain Dust and Microbial Exposure in the Norwegian Grain and Compound Feed Industry. Ann. Occup. Hyg. 2015, 59, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Straumfors, A.; Olsen, R.; Daae, H.L.; Afanou, A.; McLean, D.; Corbin, M.; Mannetje, A.; Ulvestad, B.; Bakke, B.; Johnsen, H.L.; et al. Exposure to Wood Dust, Microbial Components, and Terpenes in the Norwegian Sawmill Industry. Ann. Work Expo. Health 2018, 62, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Cai, H.; Xie, S.D. Spatial and Temporal Variation of Historical Anthropogenic NMVOCs Emission Inventories in China. Atmos. Chem. Phys. 2008, 8, 7297–7316. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S.; Mo, Z.; Shao, M.; Lu, S. Compilation of a Source Profile Database for Hydrocarbon and OVOC Emissions in China. Atmos. Environ. 2016, 143, 209–217. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian Emissions in 2006 for the NASA INTEX-B Mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Statistical Communiqué of the People’s Republic of China on the 2014 National Economic and Social Development; National Bureau of Statistics of China: Beijing, China, 2015.
- Dasgupta, S.; Huq, M.; Khaliquzzaman, M.; Pandey, K.; Wheeler, D. Who Suffers from Indoor Air Pollution? Evidence from Bangladesh. Health Policy Plan. 2006, 21, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Burgess, R.M. Guidelines for Using Passive Samplers to Monitor Organic Contaminants at Superfund Sediment Sites. Science Inventory; U.S. Environmental Protection Agency: Washington, DC, USA, 2021.
- Grosse, D.; McKernan, J. US EPA Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2014.
- Koh, D.H.; Lee, M.Y.; Chung, E.K.; Jang, J.K.; Park, D.U. Comparison of Personal Air Benzene and Urine t,t-Muconic Acid as a Benzene Exposure Surrogate during Turnaround Maintenance in Petrochemical Plants. Ind. Health 2018, 56, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Yousefian, F.; Hassanvand, M.S.; Nodehi, R.N.; Amini, H.; Rastkari, N.; Aghaei, M.; Yunesian, M.; Yaghmaeian, K. The Concentration of BTEX Compounds and Health Risk Assessment in Municipal Solid Waste Facilities and Urban Areas. Environ. Res. 2020, 191, 110068. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, P.L.; Phillips, T.J.; Mulberg, E.J.; Hui, S.P.; Jenkins, P.L.; Phillips, T.J.; Mulberg, E.J.; Hui, S.P. Activity Patterns of Californians: Use of and Proximity to Indoor Pollutant Sources. Atmos. Environ. Part A Gen. Top. 1992, 26, 2141–2148. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Morawska, L.; Ayoko, G.A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Clifford, S.; Fu, S.C.; Hänninen, O.; He, C.; Isaxon, C.; et al. Airborne Particles in Indoor Environment of Homes, Schools, Offices and Aged Care Facilities: The Main Routes of Exposure. Environ. Int. 2017, 108, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, R.; Shen, X.; Mao, X. Wintertime Indoor Air Levels of PM10, PM2.5 and PM1 at Public Places and Their Contributions to TSP. Environ. Int. 2004, 30, 189–197. [Google Scholar] [CrossRef]
Group “A” | Group “B” | |
---|---|---|
Air Quality | ||
OR | ||
Pollution | ||
OR | ||
Pollutants | Industrial environment | |
OR | AND | OR |
Emissions | Indoor | |
OR | OR | |
Exposure | Work environment | |
OR | ||
Chemicals |
Year | Count | Percentage (%) | Accumulated Percentage (%) |
---|---|---|---|
2010 | 4 | 0.98 | 0.98 |
2011 | 25 | 6.10 | 7.08 |
2012 | 34 | 8.29 | 15.37 |
2013 | 29 | 7.07 | 22.44 |
2014 | 34 | 8.29 | 30.73 |
2015 | 34 | 8.29 | 39.02 |
2016 | 33 | 8.05 | 47.07 |
2017 | 35 | 8.54 | 55.61 |
2018 | 49 | 12.20 | 67.81 |
2019 | 65 | 15.85 | 83.66 |
2020 | 60 | 14.63 | 98.29 |
2021 | 7 | 1.71 | 100.00 |
Industry Macro Category | Specific Industry |
---|---|
Food | Coffee-processing factories |
Water bottling | |
Food production factory | |
Food and beverage plant | |
Grain industry | |
Fish-processing industry | |
Swine production | |
Sugar industry | |
Cheese factory | |
Grain and animal feed production industry | |
Waste | Waste electrical and electronic equipment (WEEE) treatment facility |
E-waste dismantling workshop | |
E-waste recycling workshops | |
Recycling process for waste TV | |
Mobile e-waste recycling plant | |
E-waste processing workshops | |
Battery-recycling industries | |
Recycling process of waste printed circuit board | |
Mines | Metal mines |
Chrysotile mine and processing factories | |
Gold miners | |
Taconite mines | |
Potash mines | |
Sangan iron ore mines | |
Platinum mines | |
Underground mines | |
Coal mines | |
Artisanal mercury mining communities | |
Textiles | Shoe-manufacturing facilities |
Clothes-manufacturing factories | |
Facility that produces rain jackets | |
Integrated textile factory | |
Texile industry | |
Textile dyeing, chemical manufacturer | |
Bra cup manufacturing facility | |
Rubber footwear industries | |
Textile-processing workers | |
Office | Office building |
Office room | |
Green office buildings | |
Mass timber office building | |
Open-plan offices | |
Commercial office | |
Urban office | |
Nuclear research center | |
Dental office |
Indoor Working Environment | N. Citations | Percentage (%) |
---|---|---|
Office | 37 | 8.71 |
E-waste | 26 | 6.12 |
Mine | 22 | 5.18 |
Food | 22 | 5.18 |
Textile | 15 | 3.53 |
Cement factory | 13 | 3.06 |
Petroleum refinery | 12 | 2.82 |
Steel industry | 11 | 2.59 |
Paint factory | 9 | 2.12 |
Plastic factory | 9 | 2.12 |
Recycling facility | 9 | 2.12 |
Vehicle manufacturing | 8 | 1.88 |
Hospital | 7 | 1.65 |
Printing industry | 6 | 1.41 |
Foundry | 6 | 1.41 |
Wastewater treatment plant | 6 | 1.41 |
Others | 207 | 48.71 |
Pollutant | N. Detection | Percentage (%) |
---|---|---|
PM | 17 | 22.67 |
VOCs | 17 | 22.67 |
CO2 | 13 | 17.33 |
Metals | 5 | 6.67 |
O3 | 5 | 6.67 |
CO | 4 | 5.33 |
Others | 14 | 18.67 |
Pollutant | N. Detection | Percentage (%) |
---|---|---|
Metals | 17 | 36.96 |
PM | 9 | 19.57 |
PBDEs | 8 | 17.39 |
VOCs | 4 | 8.70 |
Flame retardants | 3 | 6.52 |
PAHs | 3 | 6.52 |
PCBs | 2 | 4.35 |
Pollutant | N. Detection | Percentage (%) |
---|---|---|
Dust | 13 | 44.83 |
Metals | 8 | 27.59 |
Diesel Particulate Matter | 2 | 6.90 |
Other | 6 | 20.68 |
Pollutant | N. Detection | Percentage (%) |
---|---|---|
Dust | 9 | 20.00 |
VOCs | 5 | 11.11 |
Endotoxin | 4 | 8.89 |
Bacteria or Fungi | 4 | 8.89 |
CO | 3 | 6.67 |
O3 | 2 | 4.44 |
CO2 | 2 | 4.44 |
β-glucan | 2 | 4.44 |
Other | 14 | 31.11 |
Pollutant | N. Detection | Percentage (%) |
---|---|---|
VOCs | 10 | 33.33 |
Dust | 5 | 16.67 |
Endotoxin | 2 | 6.67 |
Other | 13 | 43.33 |
Authors | N. Articles | Percentage (%) | Affiliation |
---|---|---|---|
Jie Guo | 4 | 0.98 | School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China |
Samson Wakuma Abaya | 3 | 0.73 | Department of Preventive Medicine, School of Public Health, College of Health Sciences, Addis Ababa, Ethiopia University, PO Box 9086, Addis Ababa, Ethiopia |
Solange Costa | 3 | 0.73 | Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal |
Ranran Liu | 3 | 0.73 | State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China |
Anne Straumfors | 3 | 0.73 | Department of Chemical and Biological Work Environment, National Institute of Occupational Health, PO Box 8149 Dep, Oslo N-0033, Norway |
Others | 393 | 96.09 | - |
Journals | N. Papers | Percentage (%) |
---|---|---|
International Journal of Environmental Research and Public Health | 23 | 5.62 |
Science of the Total Environment | 19 | 4.65 |
Annals of Work Exposures and Health | 18 | 4.40 |
Journal of Occupational and Environmental Hygiene | 15 | 3.67 |
Ann. Occupational Hygiene | 15 | 3.67 |
Environmental Science and Pollution Research | 15 | 3.67 |
Journal of Hazardous Materials | 12 | 2.93 |
International Archives of Occupational and Environmental Health | 12 | 2.93 |
Environment International | 11 | 2.69 |
Environmental Research | 10 | 2.44 |
Ecotoxicology and Environmental Safety | 9 | 2.20 |
Industrial Health | 9 | 2.20 |
Building and Environment | 9 | 2.20 |
Toxicology Letters | 8 | 1.96 |
Toxicology and Industrial Health | 8 | 1.96 |
International Journal of Hygiene and Environmental Health | 8 | 1.96 |
State | N. Citations | Percentage (%) |
---|---|---|
China | 63 | 15.33 |
USA | 48 | 11.68 |
Iran | 32 | 7.79 |
Italy | 21 | 5.11 |
Poland | 17 | 4.14 |
Norway | 15 | 3.65 |
Portugal | 13 | 3.16 |
Sweden | 13 | 3.16 |
France | 13 | 3.16 |
South Korea | 12 | 2.92 |
State | N. Citations | Percentage (%) |
---|---|---|
China | 65 | 15.78 |
USA | 42 | 10.58 |
Iran | 32 | 8.06 |
Italy | 21 | 5.29 |
Poland | 17 | 4.28 |
Portugal | 13 | 3.27 |
Sweden | 12 | 3.02 |
South Korea | 12 | 3.02 |
France | 12 | 3.02 |
Norway | 12 | 3.02 |
State | N. Citations | Percentage (%) | ||
---|---|---|---|---|
Authors’ State of Origin | Case Study | Authors’ State of Origin | Case Study | |
China | 63 | 65 | 15.33 | 15.78 |
USA | 48 | 42 | 11.68 | 10.19 |
Finland | 10 | 9 | 2.43 | 2.18 |
Sweden | 13 | 12 | 3.16 | 2.91 |
France | 13 | 12 | 3.16 | 2.91 |
Norway | 15 | 12 | 3.65 | 2.91 |
Spain | 9 | 10 | 2.19 | 2.43 |
Denmark | 8 | 6 | 1.95 | 1.46 |
Different states | 0 | 7 | 0.00 | 1.70 |
Egypt | 4 | 5 | 0.97 | 1.21 |
Russian Federation | 4 | 5 | 0.97 | 1.21 |
United Kingdom | 7 | 6 | 1.70 | 1.46 |
South Africa | 5 | 4 | 1.22 | 0.97 |
Brazil | 6 | 5 | 1.46 | 1.21 |
Nepal | 2 | 6 | 0.49 | 1.46 |
Tanzania | 1 | 5 | 0.24 | 1.21 |
Canada | 3 | 4 | 0.73 | 0.97 |
Nigeria | 2 | 3 | 0.49 | 0.73 |
Australia | 3 | 1 | 0.73 | 0.24 |
Vietnam | 1 | 2 | 0.24 | 0.49 |
Saudi Arabia | 1 | 2 | 0.24 | 0.49 |
Greece | 2 | 1 | 0.49 | 0.24 |
Hungary | 3 | 1 | 0.73 | 0.24 |
Jordan | 2 | 1 | 0.49 | 0.24 |
Kuwait | 0 | 1 | 0.00 | 0.24 |
Bolivia | 0 | 1 | 0.00 | 0.24 |
Bangladesh | 1 | 0 | 0.24 | 0.00 |
Netherlands | 2 | 1 | 0.49 | 0.24 |
Keyword | N. Citations | Percentage (%) |
---|---|---|
Exposure | 407 | 5.78 |
Occupational | 220 | 3.13 |
Air | 161 | 2.29 |
Assessment | 145 | 2.06 |
Dust | 131 | 1.86 |
Risk | 121 | 1.72 |
Health | 108 | 1.53 |
Indoor | 89 | 1.26 |
Pollution | 62 | 0.88 |
Quality | 62 | 0.88 |
Workers | 62 | 0.88 |
Waste | 58 | 0.82 |
Industry | 56 | 0.80 |
Monitoring | 51 | 0.72 |
Respiratory | 46 | 0.65 |
Lung | 44 | 0.63 |
Organic | 44 | 0.63 |
Environmental | 42 | 0.60 |
Matter | 37 | 0.53 |
Cancer | 36 | 0.51 |
Particulate | 36 | 0.51 |
Compounds | 36 | 0.51 |
VOCs | 35 | 0.50 |
Volatile | 35 | 0.50 |
Carbon | 35 | 0.50 |
Function | 32 | 0.45 |
Particles | 32 | 0.45 |
Symptoms | 32 | 0.45 |
Building | 30 | 0.43 |
Industrial | 30 | 0.43 |
Nanoparticles | 30 | 0.43 |
Plant | 30 | 0.43 |
Recycling | 30 | 0.43 |
Acid | 28 | 0.40 |
Benzene | 28 | 0.40 |
Hygiene | 28 | 0.40 |
Metals | 28 | 0.40 |
Respirable | 28 | 0.40 |
Emission | 26 | 0.37 |
Workplace | 26 | 0.37 |
Endotoxin | 25 | 0.36 |
Particle | 25 | 0.36 |
Personal | 25 | 0.36 |
Metal | 24 | 0.34 |
PAHs | 24 | 0.34 |
Silica | 24 | 0.34 |
Work | 24 | 0.34 |
Biological | 22 | 0.31 |
Cement | 22 | 0.31 |
Formaldehyde | 22 | 0.31 |
Office | 21 | 0.30 |
PM2.5 | 21 | 0.30 |
Measure Approach | N. Citations | Percentage (%) |
---|---|---|
Active | 126 | 29.58 |
Passive | 300 | 70.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lolli, F.; Coruzzolo, A.M.; Marinello, S.; Traini, A.; Gamberini, R. A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments. Sustainability 2022, 14, 10108. https://doi.org/10.3390/su141610108
Lolli F, Coruzzolo AM, Marinello S, Traini A, Gamberini R. A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments. Sustainability. 2022; 14(16):10108. https://doi.org/10.3390/su141610108
Chicago/Turabian StyleLolli, Francesco, Antonio Maria Coruzzolo, Samuele Marinello, Asia Traini, and Rita Gamberini. 2022. "A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments" Sustainability 14, no. 16: 10108. https://doi.org/10.3390/su141610108
APA StyleLolli, F., Coruzzolo, A. M., Marinello, S., Traini, A., & Gamberini, R. (2022). A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments. Sustainability, 14(16), 10108. https://doi.org/10.3390/su141610108