Blue Nitrogen: A Nature-Based Solution in the Blue Economy as a Tool to Manage Terrestrial Nutrient Neutrality
Abstract
:1. Introduction
- (1)
- Denitrification: This is an important mechanism to permanently remove excess nitrogen, through the conversion of nitrate to nitrogen gas. This transformation of nitrogen, from a reactive to an inert form, can help to control the rate of eutrophication, particularly in marine coastal ecosystems subject to large inputs of anthropogenic nitrogen.
- (2)
- Assimilation in biomass: Primary producers such as seaweed and phytoplankton (that can be consumed by organisms further up the food chain) represent net sinks for nitrogen. Although globally these might represent a small component, the relative differences between areas with a high biomass and a low biomass can be significant.
- (3)
- Burial within sediments: Although a relatively small sink compared to denitrification the permanent burial of nitrogen containing organic compounds is a well-defined sink for nitrogen in the marine environment [22].
2. Valorising Ecosystem Services
- Type 1: Better use and safeguard of natural/protected aquatic ecosystems
- Type 2: Managed or restored ecosystems
- Type 3: Creation of new nutrient regulating ecosystems through aquaculture
3. Policy Recommendations for Valuing Blue Nitrogen
- (1)
- Avoiding the removal of terrestrial land from food production;
- (2)
- providing financing for marine protected areas and marine habitat restoration;
- (3)
- promoting low trophic aquaculture for food production and other ecosystem services as part of a nature-based solution approach.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howarth, R.W. An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutr. Cycl. Agroecosyst. 1998, 52, 213–223. [Google Scholar] [CrossRef]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Natural England. Natural England Condition Assessment Solent Maritime Special Area of Conservation (SAC). Available online: http://www.solentems.org.uk/sems/Condition_assessments/Natural_England_Condition%20Assessment_Summary_Report_for_Solent_Maritime_SAC.PDF (accessed on 23 November 2021).
- Environment Agency. River Basin Management Plan—Nitrates. Available online: https://consult.environment-agency.gov.uk/++preview++/environment-and-business/challenges-and-choices/user_uploads/nitrates-pressure-rbmp-2021.pdf (accessed on 23 November 2021).
- Environment Agency. Phosphorous and Freshwater Eutrophication Pressure Narrative. Available online: https://consult.environment-agency.gov.uk/++preview++/environment-and-business/challenges-and-choices/user_uploads/phosphorus-pressure-rbmp-2021.pdf (accessed on 23 November 2021).
- Afed Ullah, K.; Jiang, J.; Wang, P. Land use impacts on surface water quality by statistical approaches. Glob. J. Environ. Sci. Manag. 2018, 4, 231–250. [Google Scholar]
- Lötjönen, S.; Ollikainen, M.; Kotamäki, N.; Huttunen, M.; Huttunen, I. Nutrient load compensation as a means of maintaining the good ecological status of surface waters. Ecol. Econ. 2021, 188, 107108. [Google Scholar] [CrossRef]
- IPPC. Working Group III Mitigation of Climate Change. Available online: https://www.ipcc.ch/working-group/wg3/ (accessed on 23 November 2021).
- Natural England. Advice on Acheiving Nutrient Neutrality for New Developments in the Solent Region Version 5; Natural England: York, UK, 2020; p. 56.
- Williams, E.; Eve, P. Nutrient Neutrality: What Impact Is It Having on Land Supply and Housebuilding? Available online: https://www.savills.com/research_articles/255800/319723-0#landsupply (accessed on 18 November 2021).
- Natural England. Solent Nutrient Trading Pilot. Project Update September 2021. Available online: https://www.chichester.gov.uk/media/36252/Solent-Nutrient-Trading-Pilot--Project-Update-Sept-2021/pdf/Project_Update_Sept_2021.pdf (accessed on 5 December 2021).
- Partnership for South Hampshire. Solent Nutrient Trading Pilot Project. Version 1. Available online: www.push.gov.uk/wp-content/uploads/2021/07/Frequently-asked-Questions-Solent-Nutrient-Trading-Pilot-July-2021.pdf (accessed on 5 December 2021).
- Partnership for South Hampshire. Potential Mitigation Schemes Available to Developers (October 2021). Available online: https://www.push.gov.uk/wp-content/uploads/2021/10/Potential-Mitigation-Schemes-Available-to-Developers-October-2021-.pdf (accessed on 18 November 2021).
- Test Valley Borough Council. Nitrate Mitigation: Report of the Planning Portolio Holder; Test Valley Borough Council: Andover, UK, 2021.
- Dvarskas, A.; Bricker, S.B.; Wikfors, G.H.; Bohorquez, J.J.; Dixon, M.S.; Rose, J.M. Quantification and Valuation of Nitrogen Removal Services Provided by Commercial Shellfish Aquaculture at the Subwatershed Scale. Environ. Sci. Technol. 2020, 54, 16156–16165. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, O. Mussel farming as a tool for re-eutrophication of coastal waters: Experiences from Sweden. In Shellfish Aquaculture and the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 217–237. [Google Scholar]
- DEFRA. Payments for Ecosystem Services: A Best Practice Guide. Annex—Case Study. May 2013. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/200901/pb13932a-pes-bestpractice-annexa-20130522.pdf (accessed on 23 November 2021).
- Rousk, J.; Bengtson, P. Microbial regulation of global biogeochemical cycles. Front. Microbiol. 2014, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Bertram, C.; Quaas, M.; Reusch, T.B.H.; Vafeidis, A.T.; Wolff, C.; Rickels, W. The blue carbon wealth of nations. Nat. Clim. Chang. 2021, 11, 704–709. [Google Scholar] [CrossRef]
- Thamdrup, B.; Dalsgaard, T. Nitrogen Cycling in Sediments. In Microbial Ecology of the Oceans; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 527–568. [Google Scholar] [CrossRef]
- Wan, X.; Li, Q.; Qiu, L.; Du, Y. How do carbon trading platform participation and government subsidy motivate blue carbon trading of marine ranching? A study based on evolutionary equilibrium strategy method. Mar. Policy 2021, 130, 104567. [Google Scholar] [CrossRef]
- DeFries, R.; Nagendra, H. Ecosystem management as a wicked problem. Science 2017, 356, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P. Nature-based solutions: New influence for environmental management and research in Europe. GAIA-Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Hussain, S.S.; Winrow-Giffin, A.; Moran, D.; Robinson, L.A.; Fofana, A.; Paramor, O.A.; Frid, C.L. An ex ante ecological economic assessment of the benefits arising from marine protected areas designation in the UK. Ecol. Econ. 2010, 69, 828–838. [Google Scholar] [CrossRef]
- Olsgard, F.; Schaanning, M.T.; Widdicombe, S.; Kendall, M.A.; Austen, M.C. Effects of bottom trawling on ecosystem functioning. J. Exp. Mar. Biol. Ecol. 2008, 366, 123–133. [Google Scholar] [CrossRef]
- Ferguson, A.J.; Oakes, J.; Eyre, B.D. Bottom trawling reduces benthic denitrification and has the potential to influence the global nitrogen cycle. Limnol. Oceanogr. Lett. 2020, 5, 237–245. [Google Scholar] [CrossRef]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.; Bouwman, A.; Lowrance, R.; Peterson, B.; Tobias, C.; Drecht, G.V. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Brisbane, S.; Hagger, V.; Smith, C.S.; Wilson, K.A.; Lovelock, C.E.; Gillies, C.; Steven, A.D.; Saunders, M.I. Priorities and motivations of marine coastal restoration research. Front. Mar. Sci. 2020, 7, 484. [Google Scholar] [CrossRef]
- Piehler, M.; Smyth, A. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere 2011, 2, 1–17. [Google Scholar] [CrossRef]
- Westbrook, P.; Heffner, L.; La Peyre, M.K. Measuring carbon and nitrogen bioassimilation, burial, and denitrification contributions of oyster reefs in Gulf coast estuaries. Mar. Biol. 2019, 166, 4. [Google Scholar] [CrossRef]
- Smyth, A.R.; Piehler, M.F.; Grabowski, J.H. Habitat context influences nitrogen removal by restored oyster reefs. J. Appl. Ecol. 2015, 52, 716–725. [Google Scholar] [CrossRef]
- Aoki, L.R.; McGlathery, K.J. Restoration enhances denitrification and DNRA in subsurface sediments of Zostera marina seagrass meadows. Mar. Ecol. Prog. Ser. 2018, 602, 87–102. [Google Scholar] [CrossRef]
- Aoki, L.R.; McGlathery, K.J.; Oreska, M.P. Seagrass restoration reestablishes the coastal nitrogen filter through enhanced burial. Limnol. Oceanogr. 2020, 65, 1–12. [Google Scholar] [CrossRef]
- Hughes, A.D. Defining Nature-Based Solutions Within the Blue Economy: The Example of Aquaculture. Front. Mar. Sci. 2021, 8, 1042. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Sequeira, A.; Hawkins, A.; Newton, A.; Nickell, T.; Pastres, R.; Forte, J.; Bodoy, A.; Bricker, S. Analysis of coastal and offshore aquaculture: Application of the FARM model to multiple systems and shellfish species. Aquaculture 2009, 292, 129–138. [Google Scholar] [CrossRef]
- Holdt, S.L.; Edwards, M.D. Cost-effective IMTA: A comparison of the production efficiencies of mussels and seaweed. J. Appl. Phycol. 2014, 26, 933–945. [Google Scholar] [CrossRef]
- Xiao, X.; Agusti, S.; Lin, F.; Li, K.; Pan, Y.; Yu, Y.; Zheng, Y.; Wu, J.; Duarte, C.M. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 2017, 7, 46613. [Google Scholar] [CrossRef]
- Austen, M.; Andersen, P.; Armstrong, C.; Döring, R.; Hynes, S.; Levrel, H.; Oinonen, S.; Ressurreição, A.; Coopman, J. Valuing Marine Ecosystems-Taking into Account the Value of Ecosystem Benefits in the Blue Economy; European Marine Board: Oostende, Belgium, 2019. [Google Scholar]
- Vega-Muñoz, A.; Salazar-Sepúlveda, G.; Contreras-Barraza, N. Identifying the blue economy global epistemic community. Water 2021, 13, 3234. [Google Scholar] [CrossRef]
- Bari, A. Our oceans and the blue economy: Opportunities and challenges. Procedia Eng. 2017, 194, 5–11. [Google Scholar] [CrossRef]
- Lee, K.-H.; Noh, J.; Khim, J.S. The Blue Economy and the United Nations’ sustainable development goals: Challenges and opportunities. Environ. Int. 2020, 137, 105528. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, A.D.; Charalambides, G.; Franco, S.C.; Robinson, G.; Tett, P. Blue Nitrogen: A Nature-Based Solution in the Blue Economy as a Tool to Manage Terrestrial Nutrient Neutrality. Sustainability 2022, 14, 10182. https://doi.org/10.3390/su141610182
Hughes AD, Charalambides G, Franco SC, Robinson G, Tett P. Blue Nitrogen: A Nature-Based Solution in the Blue Economy as a Tool to Manage Terrestrial Nutrient Neutrality. Sustainability. 2022; 14(16):10182. https://doi.org/10.3390/su141610182
Chicago/Turabian StyleHughes, Adam D., George Charalambides, Sofia C. Franco, Georgina Robinson, and Paul Tett. 2022. "Blue Nitrogen: A Nature-Based Solution in the Blue Economy as a Tool to Manage Terrestrial Nutrient Neutrality" Sustainability 14, no. 16: 10182. https://doi.org/10.3390/su141610182
APA StyleHughes, A. D., Charalambides, G., Franco, S. C., Robinson, G., & Tett, P. (2022). Blue Nitrogen: A Nature-Based Solution in the Blue Economy as a Tool to Manage Terrestrial Nutrient Neutrality. Sustainability, 14(16), 10182. https://doi.org/10.3390/su141610182