Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia
Abstract
:1. Introduction
2. Sustainability
2.1. Sustainability in Saudi Arabia
2.2. Sustainable/Green Building Standards and Codes
2.3. Sustainable/Green Building Certification Systems
2.4. Healthcare Building Assessment
2.5. Life Cycle Assessment
2.5.1. Overview
2.5.2. The Historical Background of the LCA
The LCA in Buildings
The Implementation of the LCA in the AEC Industries
Goal and Scope
Inventory Analysis
Impact Assessment
Interpretation
2.6. Building Information Modelling
2.7. The Saudi Building Code
3. Discussion and Results
4. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Röck, M.; Baldereschi, E.; Verellen, E.; Passer, A.; Sala, S.; Allacker, K. Environmental modelling of building stocks—An integrated review of life cycle-based assessment models to support EU policy making. Renew. Sustain. Energy Rev. 2021, 151, 111550. [Google Scholar] [CrossRef]
- Obrecht, T.P.; Kunič, R.; Jordan, S.; Legat, A. Roles of the reference service life (RSL) of buildings and the RSL of building components in the environmental impacts of buildings. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012146. [Google Scholar] [CrossRef]
- United Nations Environment Programme. 2021 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Nawaz, W.; Koç, M. Development of a systematic framework for sustainability management of organizations. J. Clean. Prod. 2017, 171, 1255–1274. [Google Scholar] [CrossRef]
- Steele, K.N.P.; Cole, G.; Parke, G.; Clarke, B.; Harding, J. The application of life cycle assessment technique in the investigation of brick arch highway bridges. In Proceedings of the Conference for the Engineering Doctorate in Environmental Technology, Dubrovnik, Croatia, 2–7 June 2002. [Google Scholar]
- Obrecht, T.P.; Jordan, S.; Legat, A.; Saade, M.R.M.; Passer, A. An LCA methodolody for assessing the environmental impacts of building components before and after refurbishment. J. Clean. Prod. 2021, 327, 129527. [Google Scholar] [CrossRef]
- Habert, G.; Röck, M.; Steininger, K.; Lupísek, A.; Birgisdottir, H.; Desing, H.; Chandrakumar, C.; Pittau, F.; Passer, A.; Rovers, R.; et al. Carbon budgets for buildings: Harmonising temporal, spatial and sectoral dimensions. Build. Cities 2020, 1, 429–452. [Google Scholar] [CrossRef]
- Castro, M.d.F.; Mateus, R.; Bragança, L. Proposal for a Healthcare Building Sustainability Assessment (HBSA) Method. In Proceedings of the World SB14, Barcelona, Spain, 28–30 October 2014. [Google Scholar]
- The United Nations’ Environment Programme’s Sustainable Buildings and Climate Initiative 2013; United Nations Environment Programme: Nairobi, Kenya, 2013.
- A Practical Guide to Climate-Resilient Buildings & Communities; United Nations Environment Programme: Nairobi, Kenya, 2021.
- Alawneh, R.; Ghazali, F.; Ali, H.; Sadullah, A.F. A Novel framework for integrating United Nations Sustainable Development Goals into sustainable non-residential building assessment and management in Jordan. Sustain. Cities Soc. 2019, 49, 101612. [Google Scholar] [CrossRef]
- Aljaz Kuncic, M.S.A. Assessment of Sustainable Development Goals in Saudi Arabia; United Nations Saudi Arabia: Riyadh, Saudi Arabia, 2021. [Google Scholar]
- Alhazmi, H.; Alduwais, A.K.; Tabbakh, T.; Aljamlani, S. Environmental Performance of Residential Buildings: A Life Cycle Assessment Study in Saudi Arabia. Sustainability 2021, 13, 3542. [Google Scholar] [CrossRef]
- Saudi Vision 2030; Saudi Arabia, 2016. Available online: https://www.researchgate.net/publication/263209500_Next_generation_of_sustainability_assessment_-_top_down_approach_and_stakeholders_needs (accessed on 9 July 2022).
- Gehlot, M.; Shrivastava, S. Sustainable construction Practices: A perspective view of Indian construction industry professionals. Mater. Today Proc. 2022, 61, 315–319. [Google Scholar] [CrossRef]
- Blanco, I.; Vox, G.; Schettini, E.; Russo, G. Assessment of the environmental loads of green façades in buildings: A comparison with un-vegetated exterior walls. J. Environ. Manag. 2021, 294, 112927. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Mi, L.; Li, P.; Qi, K. Green building technologies adoption process in China: How environmental policies are reshaping the decision-making among alliance-based construction enterprises? Sustain. Cities Soc. 2021, 73, 103122. [Google Scholar] [CrossRef]
- Castro, M.d.F.; Mateus, R.; Bragança, L. Healthcare Building Sustainability Assessment tool—Sustainable Effective Design criteria in the Portuguese context. Environ. Impact Assess. Rev. 2017, 67, 49–60. [Google Scholar] [CrossRef]
- Liu, J. Developing a life cycle assessment model for measuring sustainable performance of buildings in China. Ph.D. Thesis, University of Technology, Sydney, Australia, 2014. [Google Scholar]
- Lützkendorf, T.; Hajek, P.; Lupisek, A.; Immendörfer, A.; Nibel, S.; Hakkinen, T. Next generation of sustainability assessment—Top down approach and stakeholders needs. In Proceedings of the World Sustainable Building Conference—SB11, Helsinki, Findland, 18–21 October 2011; pp. 234–235. [Google Scholar]
- Pinheiro, M.D.; Luís, N.C. COVID-19 Could Leverage a Sustainable Built Environment. Sustainability 2020, 12, 5863. [Google Scholar] [CrossRef]
- Sarkis, J.; Meade, L.; Neeley, J.; Presley, A. Sustainability in the built environment: Factors and a decision framework. In Handbook of Corporate Sustainability: Frameworks, Strategies and Tools; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Kuhlman, T.; Farrington, J. What is Sustainability? Sustainability 2010, 2, 3436–3448. [Google Scholar] [CrossRef]
- World Development Indicators Highlights: Featuring the Sustainable Development Goals 2016; World Bank Group: Washington, DC, USA, 2016.
- Gusmão Caiado, R.G.; Leal Filho, W.; Quelhas, O.L.; de Mattos Nascimento, D.L.; Ávila, L.V. A literature-based review on potentials and constraints in the implementation of the sustainable development goals. J. Clean. Prod. 2018, 198, 1276–1288. [Google Scholar] [CrossRef]
- Borg, R.; Dalli Gonzi, R.; Borg, S.P. Building Sustainably: A Pilot Study on the Project Manager’s Contribution in Delivering Sustainable Construction Projects—A Maltese and International Perspective. Sustainability 2020, 12, 10162. [Google Scholar]
- The Sustainable Social Housing Initiative (SUSHI); United Nations Environment Programme: Nairobi, Kenya, 2013.
- Kuruvilla, S.; Sadana, R.; Montesinos, E.V.; Beard, J.; Vasdeki, J.F.; de Carvalho, I.A.; Thomas, R.B.; Drisse, M.N.B.; Daelmans, B.; Goodman, T.; et al. A life-course approach to health: Synergy with sustainable development goals. Bull. World Health Organ. 2018, 96, 42–50. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Gola, M.; Appolloni, L.; Dettori, M.; Fara, G.M.; Rebecchi, A.; Settimo, G.; Capolongo, S. COVID-19 and Living space challenge. Well-being and Public Health recommendations for a healthy, safe, and sustainable housing. Acta Biomed. 2020, 91, 61–75. [Google Scholar]
- Bayer, C.W. Evidence-Based Design for Indoor Environmental Quality and Health. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2018; pp. 1–20. [Google Scholar]
- Amran, Y.H.A.; Amran, Y.M.; Alyousef, R.; Alabduljabbar, H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030, Current status and future prospects. J. Clean. Prod. 2020, 247, 119602. [Google Scholar] [CrossRef]
- Alrashed, M.; Abdullah, A. Saudi Arabia Facts; Saudi Geological Survey: Jeddah, Saudi Arabia, 2012. [Google Scholar]
- Population & Demography, Population in Kingdom by Gender, Age Group—Mid 2019 A.D. 2019; The General Authority for Statistics (GAStat): Riyadh, Saudi Arabia, 2019.
- International Energy Agency. Key World Energy Statistics 2009; International Energy Agency: Paris, France, 2009. [Google Scholar]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H. A review on energy scenario and sustainable energy in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 639–647. [Google Scholar]
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2018; Germanwatch: Bonn/Berlin, Germany, 2018. [Google Scholar]
- Abubakar, I.R.; Aina, Y.A. Achieving Sustainable Cities in Saudi Arabia, in Population Growth and Rapid Urbanization in the Developing World; IGI Global: Hershey, PA, USA, 2016; pp. 42–63. [Google Scholar]
- Balabel, A.; Alwetaishi, M. Towards Sustainable Residential Buildings in Saudi Arabia According to the Conceptual Framework of “Mostadam” Rating System and Vision 2030. Sustainability 2021, 13, 793. [Google Scholar]
- Saudi Green Initiative; Saudi Arabia, 2021. Available online: https://www.saudigreeninitiative.org/ (accessed on 9 July 2022).
- Riyadh Green Project; Saudi Arabia, 2020. Available online: https://www.vision2030.gov.sa/v2030/v2030-projects/green-riyadh/ (accessed on 9 July 2022).
- Future Saudi Cities Programme City Profiles Series: Qatif; Ministry of Municipal and Rural Affairs: Riyadh, Saudi Arabia, 2019.
- Braulio-Gonzalo, M.; Jorge-Ortiz, A.; Bovea, M.D. How are indicators in Green Building Rating Systems addressing sustainability dimensions and life cycle frameworks in residential buildings? Environ. Impact Assess. Rev. 2022, 95, 106793. [Google Scholar] [CrossRef]
- Li, D.H.W.; Yang, L.; Lam, J.C. Zero energy buildings and sustainable development implications—A review. Energy 2013, 54, 1–10. [Google Scholar] [CrossRef]
- Sánchez Cordero, A.; Gómez Melgar, S.; Andújar Márquez, J.M. Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe. Energies 2019, 13, 66. [Google Scholar] [CrossRef]
- Alrashed, F.; Asif, M. Saudi Building Industry’s Views on Sustainability in Buildings: Questionnaire Survey. Energy Procedia 2014, 62, 382–390. [Google Scholar] [CrossRef]
- Building Design & Construction, Report on the Green Building Movement; U.S. General Services Administration & United States Department of Energy: Washington, DC, USA, 2003.
- Sodagar, B.; Fieldson, R.; Gilroy-Scott, B. Design for Sustainable Architecture and Environments. Int. J. Environ. Cult. Econ. Soc. Sustain. 2008, 4, 73–84. [Google Scholar] [CrossRef]
- Hong, Y.; Chan, D.W.M.; ASCE, M.; Chan, A.P.C.; Yeung, J.F.Y. Critical Analysis of Partnering Research Trend in Construction Journals. J. Manag. Eng. 2012, 28, 82–95. [Google Scholar] [CrossRef]
- A National Green Building Research Agenda; U.S. Green Building Council: Washington, DC, USA, 2007.
- Darko, A.; Chan, A.P.C. Critical analysis of green building research trend in construction journals. Habitat Int. 2016, 57, 53–63. [Google Scholar] [CrossRef]
- Kibert, C.J. Sustainable Construction Green Building Design and Delivery; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zabihi, H.; Habib, F.; Mirsaeedie, L. Sustainability in Building and Construction: Revising Definitions and Concepts. Int. J. Emerg. Sci. 2012, 2, 570–578. [Google Scholar]
- Laustsen, J. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings; IEA Information Paper; The International Energy Agency (IEA): Paris, France, 2008. [Google Scholar]
- Gou, Z.; Lau, S.S.Y.; Prasad, D. Market readiness and policy implications for green buildings: Case study from Hong Kong. J. Green Build. 2022, 8, 162–173. [Google Scholar] [CrossRef]
- Emaminejad, N.; Kalhor, K.; Khoshand, A. Toward Sustainability: The Role of Green Building Information Modeling. In Proceedings of the International Conference on Civil Engineering, Architecture and Urban Management, Tehran, Iran, 14–17 November 2018. [Google Scholar]
- Liu, S.; Meng, X.; Tam, C. Building information modeling based building design optimization for sustainability. Energy Build. 2015, 105, 139–153. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.-Y. Green building research—Current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Al-Saggaf, A.; Taha, M.; Hegazy, T.; Ahmed, H. Towards Sustainable Building Design: The Impact of Architectural Design Features on Cooling Energy Consumption and Cost in Saudi Arabia. Procedia Manuf. 2020, 44, 140–147. [Google Scholar] [CrossRef]
- Alrashed, F.; Asif, M. Climatic Classifications of Saudi Arabia for Building Energy Modelling. Energy Procedia 2015, 75, 1425–1430. [Google Scholar] [CrossRef]
- Kurian, C.P.; Milhoutra, S.; George, V.I. Sustainable building design based on building information modeling (BIM). In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), North Wollongong, NSW, Australia, 28 September–1 October 2016. [Google Scholar]
- Zaker Esteghamati, M.; Sharifnia, H.; Ton, D.; Asiatico, P.; Reichard, G.; Flint, M.M. Sustainable early design exploration of mid-rise office buildings with different subsystems using comparative life cycle assessment. J. Build. Eng. 2022, 48, 104004. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Kapoor, N.R.; Meena, C.S.; Jain, K.; Kulkarni, K.S.; Cozzolino, R. Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study. Sustainability 2021, 13, 11949. [Google Scholar] [CrossRef]
- Atanda, J.O.; Olukoya, O.A.P. Green building standards: Opportunities for Nigeria. J. Clean. Prod. 2019, 227, 366–377. [Google Scholar] [CrossRef]
- 189.1-2017, A.A.I.U.I.; International Green Construction Code. Standard for the Design of High-Performance. International Code Council: Washington, DC, USA, 2018.
- Berardi, U. Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings. Sustain. Dev. 2012, 20, 411–424. [Google Scholar] [CrossRef]
- BREEAM. International New Construction 2016 Technical Manual; BREEAM: Watford, UK, 2016. [Google Scholar]
- Hamilton, B.A. Building Economic Impact Study; U.S. Green Building Council: Washington, DC, USA, 2015; p. 20037. [Google Scholar]
- Ramani, A.; de Soto, B.G. Estidama and the Pearl Rating System: A Comprehensive Review and Alignment with LCA. Sustainability 2021, 13, 5041. [Google Scholar] [CrossRef]
- Saunders, T. A Discussion Document Comparing International Environmental Assessment Methods for Buildings; BREEAM: Dallas, TX, USA, 2008. [Google Scholar]
- Devuyst, D. Linking impact assessment and sustainable development at the local level: The introduction of sustainability assessment systems. Sustain. Dev. 2000, 8, 67–78. [Google Scholar] [CrossRef]
- Fowler, K.M.; Rauch, E.M. Sustainable Building Rating Systems Summary; The General Services Administration; Pacific Northwest National Laboratory: Washington, DC, USA, 2006. [Google Scholar]
- Al-Gahtani, K.; Alsulaihi, I.; El-Hawary, M.; Marzouk, M. Investigating sustainability parameters of administrative buildings in Saudi Arabia. Technol. Forecast. Soc. Change 2016, 105, 41–48. [Google Scholar] [CrossRef]
- Markelj, J.; Kuzman, M.; Zbasnik-Senegacnik, M. A review of building sustainability assessment methods. Archit. Res. 2013, XIV, 22–31. [Google Scholar]
- Conte, E.; Monno, V. Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings. Environ. Impact Assess. Rev. 2012, 34, 31–40. [Google Scholar] [CrossRef]
- Guimarães, E.; Barbosa, J.; Bragança, L. Critical Overview of Urban Sustainability Assssment Tools. 2016. Available online: https://www.researchgate.net/publication/315734105_Critical_overview_of_urban_sustainability_assssment_tools (accessed on 9 July 2022).
- Sustainability Assessment in a Global Market. Zell/Lurie Real Estate Center. Available online: https://realestate.wharton.upenn.edu/wp-content/uploads/2017/03/675.pdf (accessed on 9 July 2022).
- Cole, R.J. Emerging trends in building environmental assessment methods. Build. Res. Inf. 1998, 26, 3–16. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Feng, W.; Zhai, X.; Li, X. Sustainable framework for buildings in cold regions of China considering life cycle cost and environmental impact as well as thermal comfort. Energy Rep. 2020, 6, 3036–3050. [Google Scholar] [CrossRef]
- Ebert, T.; Essig, N.; Hauser, G. Green Building Certification Systems: Assessing Sustainability—International System Comparison—Economic Impact of Certifications; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Hensher, M. Incorporating environmental impacts into the economic evaluation of health care systems: Perspectives from ecological economics. Resour. Conserv. Recycl. 2020, 154, 104623. [Google Scholar] [CrossRef]
- COP26 Special Report on Climate Change and Health, the Health Argument for Climate Action; World Health Organization: Geneva, Switzerland, 2021.
- Safe Management of Wastes from Health-Care Activities; Prüss, A.; Giroult, E.; Rushbrook, P. (Eds.) World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Lenzen, M.; Malik, A.; Li, M.; Fry, J.; Weisz, H.; Pichler, P.P.; Chaves, L.S.M.; Capon, A.; Pencheon, D. The environmental footprint of health care: A global assessment. Lancet Planet. Health 2020, 4, e271–e279. [Google Scholar] [CrossRef]
- Karliner, J.; Slotterback, S. Health Care’s Climate Footprint, How the Health Sector Contributes to the Global Climate Crisis and Opportunities for Action. 2019. Available online: https://noharm-global.org/documents/health-care-climate-footprint-report (accessed on 9 July 2022).
- Stevanovic, M.; Allacker, K.; Vermeulen, S. Development of an Approach to Assess the Life Cycle Environmental Impacts and Costs of General Hospitals through the Analysis of a Belgian Case. Sustainability 2019, 11, 856. [Google Scholar] [CrossRef]
- Delivering a ‘Net Zero’ National Health Service; NHS England: London, UK, 2020.
- Aydın, D.; Yaldız, E.; Büyükşahin, S. Sustainable Hospital Design for Sustainable Development. In Proceedings of the 8th International Conference on Urban Planning, Architecture, Civil and Environment Engineering, Dubai, United Arab Emirates, 21–22 December 2017. [Google Scholar]
- Gilson, L. Health Policy and Systems Research, A Methodology Reader; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Sustainable Health Systems Visions, Strategies, Critical Uncertainties and Scenarios; A report from the World Economic Forum Prepared in collaboration with McKinsey & Company; World Economic Forum: Cologny, Switzerland, 2013.
- Senay, E.; Landrigan, P.J. Assessment of Environmental Sustainability and Corporate Social Responsibility Reporting by Large Health Care Organizations. JAMA Netw. Open 2018, 1, e180975. [Google Scholar] [CrossRef]
- Hensher, M.; McGain, F. Health Care Sustainability Metrics: Building A Safer, Low-Carbon Health System. Health Aff. 2020, 39, 2080–2087. [Google Scholar] [CrossRef]
- Chui, K.T.; Alhalabi, W.; Pang, S.S.H.; Pablos, P.O.D.; Liu, R.W.; Zhao, M. Disease Diagnosis in Smart Healthcare: Innovation, Technologies and Applications. Sustainability 2017, 9, 2309. [Google Scholar] [CrossRef]
- Khosravi, F.; Izbirak, G.; Adewale Adesina, K. An Exponentially Distributed Stochastic Model for Sustainability Measurement of a Healthcare System. Sustainability 2019, 11, 1285. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Inoue, T.; Goh, T. Analysis of building environment assessment frameworks and their implications for sustainability indicators. Sustain. Sci. 2011, 6, 233–246. [Google Scholar] [CrossRef]
- Buffoli, M.; Capolongo, S.; Noia, M.D.; Gherardi, G.; Gola, M. Healthcare Sustainability Evaluation Systems. In Improving Sustainability During Hospital Design and Operation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 23–29. [Google Scholar]
- Guerrero, J.I.; Miró-Amarante, G.; Martín, A. Decision support system in health care building design based on case-based reasoning and reinforcement learning. Expert Syst. Appl. 2022, 187, 116037. [Google Scholar] [CrossRef]
- Baum, M.; Shepley, M.; Rostenberg, B.; Ginsberg, R. Eco-Effective Design and Evidence-Based Design: Removing Barriers to Integration; Final Report for AIA Board Knowledge Committee; The American Institute of Architects: Washington, DC, USA, 2009; Available online: https://www.brikbase.org/content/eco-effective-design-and-evidence-based-design-removing-barriers-integration (accessed on 9 July 2022).
- Bruce-Hyrkäs, T.; Pasanen, P.; Castro, R. Overview of Whole Building Life-Cycle Assessment for Green Building Certification and Ecodesign through Industry Surveys and Interviews. Procedia CIRP 2018, 69, 178–183. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency and Science Applications International Corporation. LCAccess—LCA 101; U.S. Environmental Protection Agency and Science Applications International Corporation: Reston, VA, USA, 2001. [Google Scholar]
- Klöpffer, W. The Role of SETAC in the Development of LCA. Int. J. Life Cycle Assess. 2006, 11, 116–122. [Google Scholar] [CrossRef]
- Society of Environmental Toxicology and Chemistry, SETAC Foundation for Environmental Education, Inc. A Conceptual Framework for Life-Cycle Impact Assessment; Society of Environmental Toxicology and Chemistry, SETAC Foundation for Environmental Education, Inc.: Pensacola, FL, USA, 1992. [Google Scholar]
- Selmes, D.G. Towards Sustainability: Direction for Life Cycle Assessment. Ph.D. Thesis, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK, 2005. [Google Scholar]
- Amienyo, D.; Gujba, H.; Stichnothe, H.; Azapagic, A. Life cycle environmental impacts of carbonated soft drinks. Int. J. Life Cycle Assess. 2012, 18, 77–92. [Google Scholar] [CrossRef]
- Boustead, L. LCA History: LCA—How it Came About The Beginning in the UK. Int. J. Life Cycle Assess. 1996, 1, 147–150. [Google Scholar] [CrossRef]
- Life Cycle Initiative 2017–2022 Strategy Ddocument. 2017. Available online: https://www.lifecycleinitiative.org/about/about-lci/ (accessed on 9 July 2022).
- International Organization for Standardization. Environmental Management: Life Cycle Assessment; Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- EN 15978:2011; Sustainability of Construction Works Assessment of Environmental Performance of Buildings. The national Standards Authority of Ireland: Dublin, Ireland, 2011.
- Dodd, N.; Cordella, M. A Common EU Framework of Core Sustainability Indicators for Office and Residential Buildings User Manual 1: Introduction to the Level(s) Common Framework; European Committee for Standardization: Brussels, Belgium, 2020. [Google Scholar]
- Fava, J.A. Will the Next 10 Years be as Productive in Advancing Life Cycle Approaches as the Last 15 Years? Int. J. Life Cycle Assess. 2006, 11, 6–8. [Google Scholar] [CrossRef]
- Frischknecht, R.; Wyss, F.; Knöpfel, S.B.; Stolz, P. Life cycle assessment in the building sector: Analytical tools, environmental information and labels. Int. J. Life Cycle Assess. 2015, 20, 421–425. [Google Scholar] [CrossRef]
- Life Cycle Costing for Construction; Bull, J.W. (Ed.) Blackie Academic & Professional: Newcastle, UK, 1993. [Google Scholar]
- Khasreen, M.M.; Banfill, P.F.G.; Menzies, G.F. Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability 2009, 1, 674–701. [Google Scholar] [CrossRef]
- Nebel, B.; Zimmer, B.; Wegener, G. Life Cycle Assessment of Wood Floor Coverings—A Representative Study for the German Flooring Industry. Int. J. Life Cycle Assess. 2006, 11, 172–182. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wang, X. The Outlook of Building Information Modeling for Sustainable Development; Department of Housing and Interior Design, Kyung Hee University: Seoul, Korea, 2016. [Google Scholar]
- Charef, R. The use of Building Information Modelling in the circular economy context: Several models and a new dimension of BIM (8D). Clean. Eng. Technol. 2022, 7, 100414. [Google Scholar] [CrossRef]
- Barryman, E.W.Z.S.C. A Building LCA Case Study Using Autodesk Ecotect and BIM Model; University of Nebraska-Lincoln: Lincoln, NE, USA, 2011. [Google Scholar]
- Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review and future directions. Autom. Constr. 2017, 83, 134–148. [Google Scholar] [CrossRef]
- Gharouni Jafari, K.; Noorzai, E.; Hosseini, M.R. Assessing the capabilities of computing features in addressing the most common issues in the AEC industry. Constr. Innov. 2021, 21, 875–898. [Google Scholar]
- Salman, A.; Khalfan, M.; Maqsood, T. Building information modeling (BIM): Now and beyond. Australas. J. Constr. Econ. Build. 2012, 12, 15. [Google Scholar]
- Jiang, S.; Wang, N.; Wu, J. Combining BIM and ontology to facilitate intelligent green building evaluation. J. Comput. Civ. Eng. 2018, 32, 04018039. [Google Scholar] [CrossRef]
- Maskil-Leitan, R.; Gurevich, U.; Reychav, I. BIM Management Measure for an Effective Green Building Project. Buildings 2020, 10, 147. [Google Scholar] [CrossRef]
- Najjar, M.; Figueiredo, K.; Hammad, A.W.; Haddad, A. Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Appl. Energy 2019, 250, 1366–1382. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Deng, M.; Tse, K.T.; Chan, C.M.; Lo, I.M.; Cheng, J.C. Holistic BIM framework for sustainable low carbon design of high-rise buildings. J. Clean. Prod. 2018, 195, 1091–1104. [Google Scholar] [CrossRef]
- Abbasi, S.; Noorzai, E. The BIM-Based multi-optimization approach in order to determine the trade-off between embodied and operation energy focused on renewable energy use. J. Clean. Prod. 2021, 281, 125359. [Google Scholar] [CrossRef]
- Pezeshki, Z.; Soleimani, A.; Darabi, A. Application of BEM and using BIM database for BEM: A review. J. Build. Eng. 2019, 23, 1–17. [Google Scholar] [CrossRef]
- Mésároš, P.; Spišáková, M.; Mandičák, T.; Čabala, J.; Oravec, M.M. Adaptive Design of Formworks for Building Renovation Considering the Sustainability of Construction in BIM Environment—Case Study. Sustainability 2021, 13, 799. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Informetric analysis and review of literature on the role of BIM in sustainable construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Y.; Luo, X. Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. Autom. Constr. 2019, 103, 41–52. [Google Scholar] [CrossRef]
- Dalla Mora, T.; Bolzonello, E.; Cavalliere, C.; Peron, F. Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends. Sustainability 2020, 12, 7182. [Google Scholar] [CrossRef]
- Mataloto, B.; Calé, D.; Carimo, K.; Ferreira, J.C.; Resende, R. 3D IoT System for Environmental and Energy Consumption Monitoring System. Sustainability 2021, 13, 1495. [Google Scholar] [CrossRef]
- Chihib, M.; Salmerón-Manzano, E.; Novas, N.; Manzano-Agugliaro, F. Bibliometric Maps of BIM and BIM in Universities: A Comparative Analysis. Sustainability 2019, 11, 4398. [Google Scholar] [CrossRef]
- Jin, R.; Zhong, B.; Ma, L.; Hashemi, A.; Ding, L. Integrating BIM with building performance analysis in project life-cycle. Autom. Constr. 2019, 106, 102861. [Google Scholar] [CrossRef]
- Nwadike, A.; Wilkinson, S. Promoting Performance-Based Building Code Compliance in New Zealand. J. Perform. Constr. Facil. 2021, 35, 04021032. [Google Scholar] [CrossRef]
- The Regulations for Classification of Saudi Building Code Violations; Saudi Building Code National Committee: Riyadh, Saudi Arabia, 2019.
- Meacham, B.J. Accommodating Innovation in Building Regulation: Lessons and Challenges; Department of Fire Protection Engineering, Worcester Polytechnic Institute: Worcester, MA, USA, 2010. [Google Scholar]
- Saudi Building Code. The General Building Code SBC 201-CR; Saudi Building Code: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Saudi Building Code. Green Construction Code SBC 1001-CR; Saudi Building Code: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Díaz-López, C.; Carpio, M.; Martín-Morales, M.; Zamorano, M. Analysis of the scientific evolution of sustainable building assessment methods. Sustain. Cities Soc. 2019, 49, 101610. [Google Scholar] [CrossRef]
- Haapio, A.; Viitaniemi, P. A critical review of building environmental assessment tools. Environ. Impact Assess. Rev. 2008, 28, 469–482. [Google Scholar] [CrossRef]
- Kohler, N.; König, H.; Kreissig, J.; Lützkendorf, T. A Life Cycle Approach to Buildings, Principles Calculations Design Tools; Walter de Gruyter: Berlin, Germany, 2010. [Google Scholar]
- Lazar, N.; Chithra, K. Comprehensive bibliometric mapping of publication trends in the development of Building Sustainability Assessment Systems. Environ. Dev. Sustain. 2021, 23, 4899–4923. [Google Scholar] [CrossRef]
- Kamaruzzaman, S.N.; Lou, E.C.W.; Zainon, N.; Zaid, N.S.M.; Wong, P.F. Environmental assessment schemes for non-domestic building refurbishment in the Malaysian context. Ecol. Indic. 2016, 69, 548–558. [Google Scholar] [CrossRef]
- Aarseth, W.; Ahola, T.; Aaltonen, K.; Økland, A.; Andersen, B. Project sustainability strategies: A systematic literature review. Int. J. Proj. Manag. 2017, 35, 1071–1083. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Klein, M.; Osterhage, T.; Mueller, D.; Kosanović, S. Building Certification Systems and Processes. 2018, pp. 83–98. Available online: https://www.researchgate.net/publication/327043813_building_certification_systems_and_processes (accessed on 9 July 2022).
- Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F. Critical review and methodological approach to evaluate the differences among international green building rating tools. Renew. Sustain. Energy Rev. 2018, 82, 950–960. [Google Scholar] [CrossRef]
- Liang, L.; Wen, B.; Xu, F.; Yan, J.; Yan, X.; Ramesh, S. Linking the Development of Building Sustainability Assessment Tools with the Concept Evolution of Sustainable Buildings. Sustainability 2021, 13, 12909. [Google Scholar] [CrossRef]
- Ameen, R.; Mourshed, M.; Li, H. A critical review of environmental assessment tools for sustainable urban design. Environ. Impact Assess. Rev. 2015, 55, 110–125. [Google Scholar] [CrossRef]
- Roh, S.; Tae, S.; Kim, R. Developing a Green Building Index (GBI) Certification System to Effectively Reduce Carbon Emissions in South Korea’s Building Industry. Sustainability 2018, 10, 1872. [Google Scholar] [CrossRef]
- Assaf, S.; Nour, M. Potential of energy and water efficiency improvement in Abu Dhabi’s building sector—Analysis of Estidama pearl rating system. Renew. Energy 2015, 82, 100–107. [Google Scholar] [CrossRef]
- Ferwati, M.S.; Al Saeed, M.; Shafaghat, A.; Keyvanfar, A. Qatar Sustainability Assessment System (QSAS)—Neighborhood Development (ND) Assessment Model: Coupling green urban planning and green building design. J. Build. Eng. 2019, 22, 171–180. [Google Scholar] [CrossRef]
- GSAS Technical Guide v2.2—2014; Global Sustainability Asesment System; GSAS Publications Series; Gulf Organization for Research and Development: Doha, Qatar, 2014.
- Abu Dhabi Urban Planing Council. The Pearl Rating System for Estidama Public Realm Rating System Design & Construction; Abu Dhabi Urban Planing Council: Abu Dhabi, United Arab Emirates, 2016. [Google Scholar]
- Al-Surf, M.; Balabel, A.; Alwetaishi, M.; Abdelhafiz, A.; Issa, U.; Sharaky, I.; Shamseldin, A.; Al-Harthi, M. Stakeholder’s Perspective on Green Building Rating Systems in Saudi Arabia: The Case of LEED, Mostadam, and the SDGs. Sustainability 2021, 13, 8463. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Dano, U.L. Sustainable urban planning strategies for mitigating climate change in Saudi Arabia. Environ. Dev. Sustain. 2020, 22, 5129–5152. [Google Scholar] [CrossRef]
- Al-Homoud, M.; Krarti, M. Energy Efficiency of Residential Buildings in the Kingdom of Saudi Arabia: Review of Status and Future Roadmap. J. Build. Eng. 2021, 36, 102143. [Google Scholar] [CrossRef]
- Sabbagh, M.J.; Mansour, O.E.; Banawi, A.A. Grease the Green Wheels: A Framework for Expediting the Green Building Movement in the Arab World. Sustainability 2019, 11, 5545. [Google Scholar] [CrossRef]
- Shaawat, M.E.; Jamil, R. A Guide to Environmental Building Rating System for Construction of New Buildings in Saudi Arabia. Emir. J. Eng. Res. 2014, 19, 47–56. [Google Scholar]
- Jamil, R.; Shaawat, M.E. Analysis of Challenges in Sustainable Construction Industry by Using Analytic Hierarchy Process: A Case Study of Jubail Industrial City, Saudi Arabia. Int. J. Sustain. Real Estate Constr. Econ. 2018, 1, 109–122. [Google Scholar]
- Marchi, L.; Antonini, E.; Politi, S. Green Building Rating Systems (GBRSs). Encyclopedia 2021, 1, 998–1009. [Google Scholar] [CrossRef]
- Ding, G.K. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Say, C.; Wood, A. Sustainable rating systems around the world. Counc. Tall Build. Urban Habitat J. 2008, 2, 18–29. [Google Scholar]
- Reed, R.; Bilos, A.; Wilkinson, S.; Schulte, K.W. International comparison of sustainable rating tools. J. Sustain. Real Estate 2009, 1, 1–22. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamoussi, B.; Abu-Rizaiza, A.; AL-Haij, A. Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia. Sustainability 2022, 14, 10314. https://doi.org/10.3390/su141610314
Jamoussi B, Abu-Rizaiza A, AL-Haij A. Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia. Sustainability. 2022; 14(16):10314. https://doi.org/10.3390/su141610314
Chicago/Turabian StyleJamoussi, Bassem, Asad Abu-Rizaiza, and Ali AL-Haij. 2022. "Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia" Sustainability 14, no. 16: 10314. https://doi.org/10.3390/su141610314
APA StyleJamoussi, B., Abu-Rizaiza, A., & AL-Haij, A. (2022). Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia. Sustainability, 14(16), 10314. https://doi.org/10.3390/su141610314