Life-Cycle Assessment of Power-to-Liquid Kerosene Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
- the amount of final energy required per unit product (MJ/MJ, PtL-kerosene) of each energy carrier;
- the types of final energy required, and
- the amount of water required per product unit (kg/MJ, PtL-kerosene).
- In all layouts, part of the recovered heat is used within the product system, and mainly serves to preheat the CO2 entering the Reverse Water Gas Shift reactor and deliver thermal energy to the DAC plant. In the HTFT plant, the recovered heat is also used to pre-heat the water vapor entering the electrolyser. In all layouts, enough thermal energy to operate the low-temperature DAC plant is recovered from the waste heat of the PtL plant or is provided via electrical heating.
2.2. Selection of Impact Categories and Assessment Methods
2.3. Adjusting AP and EP for the Levels of Sulphur and NOx in PtL-Kerosene
Impact Category | Characterization Factor/Inventory Indicator | Unit | Method |
---|---|---|---|
Climate change | Global Warming Potential, 100-year horizon (GWP-100) | kg CO2 equivalents | CML 2001, 2015 update [61,62] |
Acidification | Acidification Potential (AP) | kg SO2 equivalents | CML 2001, 2015 update [61,62] |
Eutrophication | Eutrophication Potential (EP) | kg PO4 equivalents | CML 2001, 2015 update [61,62] |
Photochemical Ozone Creation | Photochemical Ozone Creation Potential (POCP) | kg C2H4 equivalents | CML 2001, 2015 update [61,62] |
Non-renewable energy sources | Non-renewable primary energy | MJ | GaBi definition [63] |
Freshwater consumption | Freshwater consumption | kg | GaBi definition [64] |
Land transformation | Land transformation | m2 | GaBi definition using the LANCA method [65,66,67,68] |
3. Results
3.1. Comparison of Different Production Layouts for PtL-Kerosene
3.2. Relative Contribution of Life-Cycle Stages and Hotspots of PtL-Kerosene
- Climate change: Hotspots are combustion during the use phase (127% to 171%), CO2 capture during PtL-kerosene production (−64% up to −86%) and PtL plant operation (6% up to 9%), due to electricity-intensive production processes. Additionally, if the high-temperature DAC plant is used, DAC plant operation contributes up to 24% to total CO2 eq. due to the combustion of natural gas.
- AP, EP and POCP: The combustion phase causes up to 44–65% when electricity from PV is used and up to 80–91% when electricity from wind power is used. The PtL plant operation causes up to approximately 90% of the remaining impacts due to the production and transportation processes of the PV modules, the wind turbines and the used electricity in the PtL plant.
- Non-renewable primary energy: When the high-temperature DAC plant is employed, over 90% is attributable to natural gas; while when the low-temperature DAC plant is used, up to 84% is caused by construction and EOL of the PtL and DAC plants.
- Land transformation: land transformation from power plant infrastructure, construction and EOL sums up to >99.5% of total land transformation. Indirect land transformation (from the power plants’ production and EOL) comprises 39.8% to 79.6% of the latter, while direct land transformation (from the power plants’ infrastructure themselves) makes up 19.9% to 59.7% of it.
- Freshwater consumption: The hotspots vary depending on the DAC plant type and the final energy mix. With the low-temperature DAC plant combined with electricity from wind power, the contribution of extraction from air ranges from −226% to 0%, the direct consumption in fuel production up to 197%, and indirect consumption (from the energy sources) up to 129%. For electricity from PV, indirect freshwater consumption is negligible. For the high-temperature DAC plant, extraction from air does not occur and the hotspots are direct consumption in the DAC plant (between 66% and 86%) and in fuel production (i.e., from water electrolysis) (comprising 100% of the remaining share if electricity from PV is used and 70–80% of the remaining share if electricity from wind power is used). Therefore, the main drivers of freshwater consumption are either electrolysis or DAC, when the high-temperature DAC plant is used.
3.3. Comparative Results of PtL-Kerosene and Fossil Jet A-1
4. Discussion
4.1. General Challenges
- A precise quantification of the impact of EOL practices, and of the lack thereof (in this work, it is assumed that these practices are carried out on each component).
- The effects of electrical infrastructure needed for the off-grid operation of the product system, such as power lines, converters, and in particular the effects of energy storage devices on the product system.
- The effects of transport practices on the environmental impacts of PtL-kerosene.
- The environmental impacts of water purification and deionization. A characterization of the rate of water extraction from air based on atmospheric data and/or the geographical location of the product system.
4.2. Considering Non-CO2 Effects from Aviation Fuel Combustion
4.3. Challenges in Accounting for Land Use Transformation
4.4. Sensitivity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abergel, T.; Dean, B.; Dulac, J. UN Environment—Global Status Report 2017; UN Environment and International Energy Agency: Nairobi, Kenya, 2017; ISBN 9789280736861. [Google Scholar]
- Hader, M. COVID-19—How We Will Need to Rethink the Aerospace Industry: Plunge in Air Traffic Will Deeply Impact Demand for New Aircraft. Available online: https://www.rolandberger.com/en/Insights/Publications/COVID-19-How-we-will-need-to-rethink-the-aerospace-industry.html (accessed on 7 March 2022).
- EUROCONTROL COVID-19 Impact on the European Air Traffic Network. Available online: https://www.eurocontrol.int/covid19 (accessed on 7 March 2022).
- NLR and SEO Amsterdam Economics. Destination 2050—A Route to Net Zero European Aviation Preface; SEO Amsterdam Economics: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Masiol, M.; Harrison, R.M. Aircraft Engine Exhaust Emissions and Other Airport-Related Contributions to Ambient Air Pollution: A Review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency Oil Final Consumption by Product—Retired Database. Available online: https://www.iea.org/classicstats/statisticssearch/report/?country=WORLD&product=oil&year=2015 (accessed on 12 September 2019).
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-Zero Emissions Energy Systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef]
- IPCC Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 22 May 2019).
- UNFCCC. Adoption of the Paris Agreement (FCCC/CP/2015/L.9/Rev.1). Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 3 December 2021).
- Jiang, H. Key Findings on Airplane Economic Life—Boeing Commercial Airplanes; Boeing: Seattle, WA, USA, 2013. [Google Scholar]
- Bjarnholt, P. Electric Propulsion in Passenger Jet Airplanes; KTH: Stockholm, Sweden, 2016. [Google Scholar]
- ATAG. The Right Flightpath to Reduce Aviation Emissions. In Proceedings of the UNFCCC Climate Talks, Durban, South Africa, November 2011. [Google Scholar]
- IATA. IATA Forecast Predicts 8.2 Billion Air Travelers in 2037. Available online: https://www.iata.org/en/pressroom/pr/2018-10-24-02/ (accessed on 2 July 2019).
- KLM. KLM, SkyNRG and SHV Energy Announce First European Sustainable Aviation Fuel Plant. Available online: https://news.klm.com/klm-skynrg-and-shv-energy-announce-project-first-european-plant-for-sustainable-aviation-fuel/ (accessed on 29 May 2019).
- Raffinerie Heide GmbH. Flying with Green Fuel—Environmentally Friendly, Synthetic Kerosene as the Energy Source of the Future: Raffinerie Heide GmbH and Deutsche Lufthansa AG Sign a Memorandum of Understanding. Available online: https://www.heiderefinery.com/en/press/press-detail/flying-with-green-fuel-environmentally-friendly-synthetic-kerosene-as-the-energy-source-of-the-fu/ (accessed on 28 May 2019).
- Sunfire GmbH. Out of the Laboratory, into the World—A Timeline of Sunfire’s HTFT Plant Development; Sunfire GmbH: Dresden, Germany, 2019. [Google Scholar]
- Schmidt, P.; Weindorf, W. Power-to-Liquids: Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel; Umweltbundesamt (UBA): Dessau-Roßlau, Germany, 2016.
- Searle, S.; Christensen, A. Decarbonization Potential of Electrofules in the European Union, an ICCT White Paper; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2018. [Google Scholar]
- Deutsche Energie-Agentur GmbH (dena). Powerfuels: Missing Link to a Successful Global Energy Transition Current State of Technologies, Markets, and Politics—And Start of a Global Dialogue; German Energy Agency (dena): Berlin, Germany, 2019. [Google Scholar]
- Schulz, H. Short History and Present Trends of Fischer-Tropsch Synthesis. Appl. Catal. A Gen. 1999, 186, 3–12. [Google Scholar] [CrossRef]
- Zero Emission Resource Organization. Stationary Point Sources of CO2. Available online: http://www.zeroco2.no/capture/sources-of-co2 (accessed on 8 October 2019).
- Meurer, A.; Kern, J. Fischer–Tropsch Synthesis as the Key for Decentralized Sustainable Kerosene Production. Energies 2021, 14, 1836. [Google Scholar] [CrossRef]
- Malins, C. What Role Is There for Electrofuel Technologies in European Transport’s Low Carbon Future? Cerulogy: London, UK, 2017. [Google Scholar]
- Siegemund, S.; Trommler, M.; Schmidt, P.; Weindorf, W.; Zittel, W.; Raksha, T.; Zerhusen, J. The Potential of Electricity-Based Fuels for Low-Emission Transport in the EU—An Expertise by LBST and Dena; German Energy Agency (dena): Berlin, Germany, 2017; pp. 1–176. [Google Scholar]
- Crone, K.; Altgelt, F.; Friese, J.; Micheli, M.; Salomon, H. Global Alliance Powerfuels, Carbon Sources for Powerfuels Production; German Energy Agency (dena): Berlin, Germany, 2020. [Google Scholar]
- Synkero. Synkero Builds Facility in the Port of Amsterdam, Producing Sustainable Aviation Fuel from CO2. Available online: https://synkero.com/synkero-builds-facility-in-the-port-of-amsterdam-producing-sustainable-aviation-fuel-from-co2/ (accessed on 7 March 2022).
- SAF+ Consortium. SAF+ Consortium—First Producer of e-Fuel. Available online: https://safplusconsortium.com/ (accessed on 7 March 2022).
- Wei, Y.; Yildirim, P.; den Bulte, C.; Dellarocas, C.; Henley, W.E.; Vyas, S.D.; Tan, A.; Darby, S.; Loong, K.; Skan, J.; et al. Study on Hydrogen from Renewable Resources in the EU-Final Report-FCH; Fuel Cells and Hydrogen Joint Undertaking (FCH): Munich, Germany; Brussels, Belgium, 2015. [Google Scholar]
- Agora Verkehrswende, Agora Energiewende and Frontier Economics. The Future Cost of Electricity-Based Synthetic Fuels; Agora Verkehrswende and Agora Energiewend: Berlin, Germany, 2018. [Google Scholar]
- Kramer, U. Defossilizing the Transportation Sector. In Zukünftige Kraftstoffe; Springer: Berlin/Heidelberg, Germany, 2019; pp. 565–663. [Google Scholar] [CrossRef]
- Koj, J.C.; Wulf, C.; Zapp, P. Environmental Impacts of Power-to-X Systems—A Review of Technological and Methodological Choices in Life Cycle Assessments. Renew. Sustain. Energy Rev. 2019, 112, 865–879. [Google Scholar] [CrossRef]
- Sternberg, A.; Bardow, A. Power-to-What?-Environmental Assessment of Energy Storage Systems. Energy Environ. Sci. 2015, 8, 389–400. [Google Scholar] [CrossRef]
- Hoppe, W.; Bringezu, S. Vergleichende Ökobilanz Der CO2-Basierten Und Konventionellen Methan- Und Methanolproduktion. UWF 2016, 24, 43–47. [Google Scholar] [CrossRef]
- Biernacki, P.; Röther, T.; Paul, W.; Werner, P.; Steinigeweg, S. Environmental Impact of the Excess Electricity Conversion into Methanol. J. Clean. Prod. 2018, 191, 87–98. [Google Scholar] [CrossRef]
- Lozanovski, A.; Brandstetter, C.P. Verbundprojekt Sunfire: Herstellung von Kraftstoffen Aus CO2 Und H2O Unter Nutzung Regenerativer Energie; Bundesministerium für Bildung und Forschung (BMBF): Stuttgart, Germany, 2015. [Google Scholar]
- European Commission. Reducing Emissions from Aviation. In Climate Action; European Comission: Brussels, Belgium, 2016; pp. 2–4. [Google Scholar]
- Atmosfair gGmbH. Atmosfair Flight Emissions Calculator; Atmosfair gGmbH: Berlin, Germany, 2016. [Google Scholar]
- Kärcher, B. Formation and Radiative Forcing of Contrail Cirrus. Nat. Commun. 2018, 9, 1824. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S. International Aviation and the Paris Agreement Temperature Goals; Manchester Metropolitan University, Deparment for Transport: Manchester, UK, 2018. [Google Scholar]
- Gutknecht, V.; Snæbjörnsdóttir, S.Ó.; Sigfússon, B.; Aradóttir, E.S.; Charles, L. Creating a Carbon Dioxide Removal Solution by Combining Rapid Mineralization of CO2 with Direct Air Capture. Energy Procedia 2018, 146, 129–134. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; St. Angelo, D.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef]
- Wirth, H. Recent Facts about Photovoltaics in Germany; Fraunhofer ISE: Freiburg, Germany, 2017; Volume 1. [Google Scholar]
- Sphera Process Data Set: Kerosene/Jet A1 at Refinery; from Crude Oil; Production Mix, at Refinery; 400 Ppm Sulphur (En). Available online: http://gabi-documentation-2019.gabi-software.com/xml-data/processes/6c664f4e-833b-4468-acc5-2ba81a1c6c4a.xml (accessed on 7 February 2020).
- König, D.H.; Baucks, N.; Dietrich, R.U.; Wörner, A. Simulation and Evaluation of a Process Concept for the Generation of Synthetic Fuel from CO2 and H2. Energy 2015, 91, 833–841. [Google Scholar] [CrossRef]
- Future Market Insights Hydrogen Electrolyzer Market—Global Industry Analysis, Size and Forecast, 2018 to 2028. Available online: https://www.persistencemarketresearch.com/market-research/hydrogen-electrolyzer-market.asp (accessed on 7 February 2020).
- Navigant. Electrolyzers—Water Electrolysis Units for Industry, Transportation, and Energy Storage; Navigant Research: Boulder, CO, USA, 2019. [Google Scholar]
- Fu, Y.; Liu, X.; Yuan, Z. Life-Cycle Assessment of Multi-Crystalline Photovoltaic Systems in China. J. Clean. Prod. 2014, 86, 180–190. [Google Scholar] [CrossRef]
- Koj, J.C.; Wulf, C.; Schreiber, A.; Zapp, P. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkalinewater Electrolysis. Energies 2017, 10, 860. [Google Scholar] [CrossRef]
- Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. Life-Cycle Analysis of Alternative Aviation Fuels in GREET; Argonne National Laboratory: Oak Ridge, TN, USA, 2012. [Google Scholar]
- Koroneos, C.; Dompros, A.; Roumbas, G.; Moussiopoulos, N. Life Cycle Assessment of Kerosene Used in Aviation. Int. J. Life Cycle Assess. 2005, 10, 417–424. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef]
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of Photovoltaic Panels: A Review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Bauknecht, D.; Preuschoff, S. Ökobilanzen Für Den Sektor Strom Und Gas; Forschungszentrum Jülich (FZJ): Jülich, Germany, 2006. [Google Scholar]
- Portha, J.F.; Louret, S.; Pons, M.N.; Jaubert, J.N. Estimation of the Environmental Impact of a Petrochemical Process Using Coupled LCA and Exergy Analysis. Resour. Conserv. Recycl. 2010, 54, 291–298. [Google Scholar] [CrossRef]
- Schüwer, D.; Hanke, T.; Luhmann, H.-J. Konsistenz Und Aussagefähigkeit der Primärenergie-Faktoren Für Endenergieträger Im Rahmen der EnEV; Wuppertal Institute: Wuppertal, Germany, 2015. [Google Scholar]
- Razdan, P.; Garrett, P. Life Cycle Assessment of Electricity Production from an Onshore V100-2.0 MW Wind Plant; Vestas Wind Systems A/S: Aarhus, Denmark, 2015. [Google Scholar]
- Sphera Life Cycle Assessment Software (GaBi Ts). Available online: https://sphera.com/life-cycle-assessment-software-download/ (accessed on 19 April 2022).
- Timko, M.T.; Yu, Z.; Onasch, T.B.; Wong, H.W.; Miake-Lye, R.C.; Beyersdorf, A.J.; Anderson, B.E.; Thornhill, K.L.; Winstead, E.L.; Corporan, E.; et al. Particulate Emissions of Gas Turbine Engine Combustion of a Fischer-Tropsch Synthetic Fuel. Energy Fuels 2010, 24, 5883–5896. [Google Scholar] [CrossRef]
- Mazlan, N.M.; Savill, M.; Kipouros, T. Evaluating NOx and CO Emissions of Bio-SPK Fuel Using a Simplified Engine Combustion Model: A Preliminary Study towards Sustainable Environment. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 859–865. [Google Scholar] [CrossRef]
- CML-Department of Industrial Ecology CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors#downloads (accessed on 16 December 2019).
- CML—Department of Industrial Ecology. CML-IA Characterisation Factors; Institute of the Faculty of Science of Leiden University: Leiden, The Netherlands, 2021. [Google Scholar]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Leiden University: Leiden, The Netherlands, 2002. [Google Scholar]
- Sphera GaBi Software. Available online: https://gabi.sphera.com/deutsch/software/gabi-software/ (accessed on 19 April 2022).
- Koehler, A.; Thylmann, D. Introduction to Water Assessment in the GaBi Software|Version 1.2.; Sphera GaBi: Leinfelden-Echterdingen, Germany, 2012. [Google Scholar]
- Bos, U. Documentation of Land Use Inventory in GaBi; Sphera GaBi: Leinfelden-Echterdingen, Germany, 2018. [Google Scholar]
- Beck, T.; Bos, U.; Wittstock, B.; Baitz, M.; Fischer, M.; Sedlbauer, K. LANCA® Land Use Indicator Value Calculation in Life Cycle Assessment—Method Report; Fraunhofer Verlag: Stuttgart, Germany, 2010. [Google Scholar]
- Bos, U.; Horn, R.; Back, T.; Lindner, J.P.; Fischer, M. LANCA Characterization Factors for Life Cycle Assessment—Version 2.0; Fraunhofer Verlag: Stuttgart, Germany, 2016. [Google Scholar]
- Bos, U.; Maier, S.D.; Horn, R.; Leistner, P.; Finkbeiner, M. A GIS Based Method to Calculate Regionalized Land Use Characterization Factors for Life Cycle Impact Assessment Using LANCA®. Int. J. Life Cycle Assess. 2020, 25, 1259–1277. [Google Scholar] [CrossRef]
- IATA. Fact Sheet Climate and CORSIA; International Air Transport Association (IATA): Montreal, Canada, 2018; pp. 1–2. [Google Scholar]
- ICAO. Environmental Trends in Aviation to 2050. 2019 Environ. Rep. 2019, 24, 17–23. [Google Scholar]
- Viebahn, P.; Scholz, A.; Zelt, O. The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis. Energies 2019, 12, 3443. [Google Scholar] [CrossRef]
- Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J. Life Cycle Water Use for Electricity Generation: A Review and Harmonization of Literature Estimates. Environ. Res. Lett. 2013, 8, 015031. [Google Scholar] [CrossRef]
- Carbon Engineering—Carbon Dioxide Removal. Available online: https://carbonengineering.com/carbon-removal/ (accessed on 4 March 2022).
- Climeworks’ Unique Carbon Dioxide Removal Technology Solution for Your Sustainability Strategy. Available online: https://climeworks.com/net-zero-solutions-for-businesses (accessed on 4 March 2022).
- The GT Solution—Global Thermostat. Available online: https://globalthermostat.com/the-gt-solution/ (accessed on 19 April 2022).
- Prometheus—Home. Available online: https://prometheusfuels.com/ (accessed on 4 March 2022).
- Carbfix—We Turn CO2 into Stone. Available online: https://www.carbfix.com/ (accessed on 4 March 2022).
- TerraFixing—Fixing Global Warming. Available online: https://www.terrafixing.com/ (accessed on 4 March 2022).
- Carbyon—Direct Air Capture of CO2 to Clean Up Our Atmosphere. Available online: https://carbyon.com/ (accessed on 4 March 2022).
- Infinitree LCC—Technology. Available online: http://www.infinitreellc.com/technology (accessed on 4 March 2022).
- World Economic Forum and McKinsey & Company. Clean Skies for Tomorrow—Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation; World Economic Forum: Geneva, Switzerland, 2020. [Google Scholar]
- Ueckerdt, F.; Bauer, C.; Dirnaichner, A.; Everall, J.; Sacchi, R.; Luderer, G. Potential and Risks of Hydrogen-Based e-Fuels in Climate Change Mitigation. Nat. Clim. Chang. 2021, 11, 384–393. [Google Scholar] [CrossRef]
- Cames, M.; Chaudry, S.; Göckeler, K.; Kasten, P.; Kurth, S. E-Fuels versus—Total Costs of Electro-Fuels and Direct Air Capture and Carbon Storage While Taking into Account Direct and Upstream Emissions and Environmental Risks; Öko-Institut e.V.: Berlin, Germany, 2021. [Google Scholar]
- Batteiger, V.; Ebner, K.; Habersetzer, A.; Moser, L.; Schmidt, P.; Weindorf, W.; Rakscha, T. Power-to-Liquids—A Scalable and Sustainable Fuel Supply Perspective for Aviation; Umweltbundesamt (UBA): Dessau-Roßlau, Germany, 2022.
- International Air Transport Association IATA—Fuel Price Monitor. Available online: https://www.iata.org/en/publications/economics/fuel-monitor/ (accessed on 22 August 2009).
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and Global Climate Change in the 21st Century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef]
- Lee, D.S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.E.; Petzold, A.; Prather, M.J.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport Impacts on Atmosphere and Climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef]
- Stratton, R.W.; Wolfe, P.J.; Hileman, J.I. Impact of Aviation Non-CO2 Combustion Effects on the Environmental Feasibility of Alternative Jet Fuels. Environ. Sci. Technol. 2011, 45, 10736–10743. [Google Scholar] [CrossRef]
- Scheelhaase, J.D.; Dahlmann, K.; Jung, M.; Keimel, H.; Nieße, H.; Sausen, R.; Schaefer, M.; Wolters, F. How to Best Address Aviation’s Full Climate Impact from an Economic Policy Point of View?—Main Results from AviClim Research Project. Transp. Res. Part D Transp. Environ. 2016, 45, 112–125. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Jungbluth, N.; Meili, C. Recommendations for Calculation of the Global Warming Potential of Aviation Including the Radiative Forcing Index. Int. J. Life Cycle Assess. 2019, 24, 404–411. [Google Scholar] [CrossRef]
- Cames, M.; Graichen, J.; Siemons, A.; Cook, V. Greenhouse Gas Emission Reduction Targets for International Aviation and Shipping; European Parliamentary Research Service (EPRS): Brussels, Belgium, 2015. [Google Scholar]
- Bons, M.; Döring, M.; Klessmann, C.; Knapp, J.; Tiedemann, S.; Pape, C.; Horst, D.; Reder, K.; Stappel, M. Analyse der Kurz-Und Mittelfristigen Verfügbarkeit von Flächen Für Die Windenergienutzung an Land—Kurztitel: Flächenanalyse Windenergie an Land Abschlussbericht; Umweltbundesamt (UBA): Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Wirth, H. Aktuelle Fakten Zur Photovoltaik in Deutschland; Fraunhofer ISE: Freiburg, Germany, 2022. [Google Scholar]
- Frauenhofer Institute Frauenhofer Energy Charts. Available online: https://www.energy-charts.de/ (accessed on 9 February 2019).
- Solar GIS Solar Radiation Data for Regular PV Performance Assessment/Solar Performance Maps. Available online: https://solargis.com/products/monitor/solar-performance-maps (accessed on 9 May 2020).
Methodological Choice | Methodological Choice Applied in This Study |
---|---|
LCA type | Attributional, comparative |
System boundary | Extended Well-to-Wake: All activities from raw material extraction to the release of waste to the environment. Manufacturing and end-of-life (EOL) of the vehicle (aircraft), as well as maintenance of the foreground system and related flows are not included in the system boundary |
Functional unit | 1 MJ of liquid fuel (lower heating value) |
Reference flow | All materials and production resources needed to produce 1 MJ of liquid fuel (lower heating value) |
Time horizon | 2015–2020 |
Geographical scope | Germany, up to mainland Europe |
Allocation | Allocation of input and output flows is performed on the output fuels of the product system by their energy content |
Impact categories/inventory indicators | Climate change Eutrophication Acidification Photochemical Ozone Creation Non-renewable primary energy Freshwater consumption Land transformation |
SUB-SYSTEM | Layout Options | Operating Conditions |
---|---|---|
PtL plant (type of electrolyser) | high-temperature Fischer-Tropsch (HTFT) based on solid oxide electrolyser (SOEC) | 80% (energy conversion efficiency) |
low-temperature Fischer-Tropsch (LTFT) based on proton exchange membrane (PEM) | 50.8% (energy conversion efficiency) | |
Carbon capture plant | low-temperature DAC (Climeworks) | 87% thermal energy + 13% electricity (at 0.637 MJ/MJ, PtL-kerosene) (final energy composition and consumption) |
high-temperature DAC (Carbon Engineering) | 100% natural gas (at 0.678 MJ/MJ, PtL-kerosene) (final energy composition and consumption) |
Grouping | Subsystem or Flow | Land Transformation | |
---|---|---|---|
Direct | Indirect | ||
PtL plant | HTFT plant | ✓ | ✕NA |
LTFT plant | ✓ | ✕NA | |
Carbon capture plant | DAC plants | ✓ | ✕NA |
Final energy source | German electricity mix | ✓NEG | ✓ |
Wind farm | ✓ | ✓ | |
PV array | ✓ | ✓ | |
Natural gas | ✓ | ✓ | |
Water | Water | ✕ | ✕ |
Vehicle | Aircraft | ✕Scope | ✕Scope |
Fuel production | PtL-kerosene | (✓) | (✓) |
Jet A-1 | ✕NA | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micheli, M.; Moore, D.; Bach, V.; Finkbeiner, M. Life-Cycle Assessment of Power-to-Liquid Kerosene Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany. Sustainability 2022, 14, 10658. https://doi.org/10.3390/su141710658
Micheli M, Moore D, Bach V, Finkbeiner M. Life-Cycle Assessment of Power-to-Liquid Kerosene Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany. Sustainability. 2022; 14(17):10658. https://doi.org/10.3390/su141710658
Chicago/Turabian StyleMicheli, Matteo, Daniel Moore, Vanessa Bach, and Matthias Finkbeiner. 2022. "Life-Cycle Assessment of Power-to-Liquid Kerosene Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany" Sustainability 14, no. 17: 10658. https://doi.org/10.3390/su141710658
APA StyleMicheli, M., Moore, D., Bach, V., & Finkbeiner, M. (2022). Life-Cycle Assessment of Power-to-Liquid Kerosene Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany. Sustainability, 14(17), 10658. https://doi.org/10.3390/su141710658