Preparation of Fe-Based MOFs Composite as an Adsorptive Photocatalyst with Enhanced Photo-Fenton Degradation under LED Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of MIL-100 (Fe)@TiO2 Composite
2.3. Characterization
2.4. Adsorption and Degradation Photocatalytic Experiments
- Adsorption kinetic study: A series of RhB solutions with an initial concentration of 100 ppm and a volume of 50 mL were prepared. After that, 50 mg of adsorbent was added to each prepared solution. The adsorption was carried out under neutral pH and a shaking water bath at room temperature. The final concentration of RhB was measured at time intervals of 5 min.
- Adsorption isotherm study: A series of RhB solutions with various initial concentrations of 10 to 600 ppm and volumes of 50 mL were prepared. Subsequently, 50 mg of adsorbent was added to each prepared solution. The adsorption was conducted in a shaking water bath at neutral pH and room temperature. The final concentration of RhB was measured after the equilibrium condition was achieved.
- Effect of adsorbent mass: The same procedure as in the kinetic and isotherm studies was employed to study the influence of adsorbent mass on the adsorption of RhB. The various adsorbent mass of 10 to 50 mg was used in this case.
- Effect of MIL-100(Fe) and TiO2 ratio: In this case, the adsorption procedure was similar to that described above. MIL-100(Fe) with various TiO2 ratios (3:0.7, 3:1.4, and 3:2.4) were used as the adsorbents.
- Effect of Fenton Addition: A similar adsorption procedure was employed, and before the adsorption took place, 1, 2, or 3 mL of H2O2 was added to the mixture.
- Reusability test: Post-adsorption–photocatalytic process, ±0.5 g samples were immersed in 96% ethanol overnight, followed by washing three times until the solutions turned clear. The regenerated samples were used as the adsorbents in the next adsorption–photocatalytic cycle.
3. Results and Discussion
3.1. Characterization
3.2. Adsorption Kinetics and Isotherm
3.3. Thermodynamic Study
- The thermodynamic equilibrium constant, Kc, should be dimensionless;
- The selection of adsorbate concentration is critical to determine which model could be used;
- The regression coefficient (R2) of the van ’t Hoff equation must be high and linear, and calculated based on temperature with kelvin units (K);
- The behavior of isotherms, experimental data, and thermodynamic parameters should be logical and consistent.
3.4. Effect of Variables on Photocatalytic Dye Adsorption—Degradation
3.4.1. Effect of Adsorbent Mass towards Adsorption
3.4.2. Effect of Adsorbent Ratio towards Photocatalytic Degradation
3.4.3. Effect of Fenton Addition
3.4.4. Reusability Test
3.5. Plausible Mechanism of Photocatalytic Degradation of RhB on MxTy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Maythalony, B.A.; Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; Pinnau, I.; Eddaoudi, M. Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity. J. Am. Chem. Soc. 2015, 137, 1754–1757. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Chu, F.; Huang, X.; Li, Y.; Liang, K.; Wang, G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord. Chem. Rev. 2022, 450, 214240. [Google Scholar] [CrossRef]
- Wang, M.; Yang, L.; Guo, C.; Liu, X.; He, L.; Song, Y.; Zhang, Q.; Qu, X.; Zhang, H.; Zhang, Z.; et al. Bimetallic Fe/Ti-Based Metal–Organic Framework for Persulfate-Assisted Visible Light Photocatalytic Degradation of Orange II. ChemistrySelect 2018, 3, 3664–3674. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Li, L.; Jiang, J. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B Environ. 2014, 148–149, 191–200. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 2016, 369, 130–136. [Google Scholar] [CrossRef]
- Liu, N.; Huang, W.; Zhang, X.; Tang, L.; Wang, L.; Wang, Y.; Wu, M. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B Environ. 2018, 221, 119–128. [Google Scholar] [CrossRef]
- Ke, F.; Wang, L.; Zhu, J. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834–1846. [Google Scholar] [CrossRef]
- Huang, J.; Song, H.; Chen, C.; Yang, Y.; Xu, N.; Ji, X.; Li, C.; You, J.A. Facile synthesis of N-doped TiO2 nanoparticles caged in MIL-100(Fe) for photocatalytic degradation of organic dyes under visible light irradiation. J. Environ. Chem. Eng. 2017, 5, 2579–2585. [Google Scholar] [CrossRef]
- He, X.; Fang, H.; Gosztola, D.J.; Jiang, Z.; Jena, P.; Wang, W.N. Mechanistic Insight into Photocatalytic Pathways of MIL-100(Fe)/TiO 2 Composites. ACS Appl. Mater. Interfaces 2019, 11, 12516–12524. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Wang, X.; Hu, N.; Li, Y.; Li, C.; Meng, Y.; An, Y. Synergistic effect of B-TiO2 and MIL-100(Fe) for high-efficiency photocatalysis in methylene blue degradation. Appl. Surf. Sci. 2021, 561, 149969. [Google Scholar] [CrossRef]
- Kondamareddy, K.K.; Neena, D.; Lu, D.; Peng, T.; Lopez MA, M.; Wang, C.; Yu, Z.; Cheng, N.; Fu, D.J.; Zhao, X.Z. Ultra-trace (parts per million-ppm) W 6+ dopant ions induced anatase to rutile transition (ART) of phase pure anatase TiO 2 nanoparticles for highly efficient visible light-active photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 2018, 456, 676–693. [Google Scholar] [CrossRef]
- Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.Y.; Seo, Y.K.; Chang, J.S.; Grenèche, J.M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007, 100, 2820–2822. [Google Scholar] [CrossRef]
- Angela, S.; Bervia Lunardi, V.; Kusuma, K.; Edi Soetaredjo, F.; Nyoo Putro, J.; Permatasari Santoso, S.; Elisa Angkawijaya, A.; Lie, J.; Gunarto, C.; Kurniawan, A.; et al. Facile Synthesis of Hierarchical Porous ZIF-8@TiO2 for Simultaneous Adsorption and Photocatalytic Decomposition of Crystal Violet. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100598. [Google Scholar] [CrossRef]
- Guo, S.; Chi, L.; Zhao, T.; Nan, Y.; Sun, X.; Huang, Y.; Hou, B.; Wang, X. Construction of MOF/TiO2 nanocomposites with efficient visible-light-driven photocathodic protection. J. Electroanal. Chem. 2021, 880, 114915. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, Z.; Liu, X.; Yan, X.; Li, D.; Chu, W. Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photocatalytic activity. J. Alloy. Compd. 2011, 509, 3771–3776. [Google Scholar] [CrossRef]
- Xu, J.; Xu, J.; Jiang, S.; Cao, Y.; Xu, K.; Zhang, Q.; Wang, L. Facile synthesis of a novel Ag3PO4/MIL-100(Fe) Z-scheme photocatalyst for enhancing tetracycline degradation under visible light. Environ. Sci. Pollut. Res. 2020, 27, 37839–37851. [Google Scholar] [CrossRef]
- Tian, H.; Araya, T.; Li, R.; Fang, Y.; Huang, Y. Removal of MC-LR using the stable and efficient MIL-100/MIL-53 (Fe)photocatalyst: The effect of coordinate immobilized layers. Appl. Catal. B Environ. 2019, 254, 371–379. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, G.; Xiong, J.; Xu, F.; Chen, R. Positive Ni(HCO3)2 as a Novel Cocatalyst for Boosting the Photocatalytic Hydrogen Evolution Capability of Mesoporous TiO2 Nanocrystals. ACS Sustain. Chem. Eng. 2017, 5, 5027–5038. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in Adsorption. Part XI.* A System. J. Chem. Soc. 1960, 846, 3973–3993. [Google Scholar] [CrossRef]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E. Adsorption processes for water treatment and purification. In Adsorption Processes for Water Treatment and Purification; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Karmakar, S.; Roy, D.; Janiak, C.; De, S. Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal-organic framework: Experimental and modeling approach. Sep. Purif. Technol. 2019, 215, 259–275. [Google Scholar] [CrossRef]
- Yadav, S.; Asthana, A.; Singh, A.K.; Chakraborty, R.; Vidya, S.S.; Susan, M.A.B.H.; Carabineiro, S.A. Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. J. Hazard. Mater. 2021, 409, 124840. [Google Scholar] [CrossRef] [PubMed]
- Biggar, J.; Cheung, M. Adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) on panoche, ephrata, and palouse soils: A thermodynamic approach to the adsorption mechanism. Soil Sci. Soc. Am. J. 1973, 37, 863–868. [Google Scholar] [CrossRef]
- Khan, A.A.; Singh, R. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf. 1987, 24, 33–42. [Google Scholar] [CrossRef]
- Milonjić, S.K. A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serbian Chem. Soc. 2007, 72, 1363–1367. [Google Scholar] [CrossRef]
- Hejazi, R.; Mahjoub, A.R.; Khavar AH, C.; Khazaee, Z. Fabrication of novel type visible-light-driven TiO2@MIL-100 (Fe) microspheres with high photocatalytic performance for removal of organic pollutants. J. Photochem. Photobiol. A Chem. 2020, 400, 112644. [Google Scholar] [CrossRef]
Kinetic Model | Non-Linear Equations | Parameters |
---|---|---|
Pseudo First Order (PFO) | Qt (mg/g): adsorption capacity at various time, t Qe,cal (mg/g): calculated equilibrium capacity of adsorption k1(1/min): the rate constant of the PFO kinetic model | |
Pseudo Second Order (PSO) | Qe,cal (mg/g): calculated equilibrium adsorption capacity k2 (g/mg·min): the rate constant of PSO kinetic model h (mg/g·min)= Q2e,cal k2: the initial adsorption rate | |
Elovich | α (mg/g·min): the initial adsorption rateβ (g/mg): a parameter related to the activation energy for chemisorption and the extent of surface coverage | |
Intra-Particle Diffusion (IPD) | Qt = kIPD t0.5+C | kIPD (mg/g·min0.5): IPD constant rate C (mg/g): a constant that provides value regarding the thickness of the boundary layer. |
First Order (FO) Kinetics | Ct (mg/L): final photocatalytic concentration C0 (mg/L): initial photocatalytic concentration k1p (1/min): the rate constant of FO kinetic model t (min): time of photocatalytic degradation | |
Second Order (SO) Kinetics | k2p (L/mg.min): the rate constant of SO kinetic model t (min): time of photocatalytic degradation | |
Behnajadi, Modirshahla, and Ghanbary (BMG) Models | m (min): reciprocal of initial removal rate b (dimensionless): reciprocal theoretical maximum oxidation capacity |
Isotherm Model | Non-Linear Equations | Technical Constant |
---|---|---|
Langmuir | Qm,cal (mg/g): calculated maximum adsorption capacity KL (L/mg): Langmuir isotherm constant RL = [1/(1+ KL Ce)]; RL (dimensionless): separation factor | |
Freundlich | Qe = KF Ce1/n | KF (mg/g)(L/g)n: Freundlich isotherm constant related to the adsorption capacity n (1 < n < 10): Degree adsorption favorability |
Redlich-Peterson (R-P) | KRP (L/g): Redlich–Peterson isotherm constant αRP (L/mg): Redlich–Peterson isotherm constant g (0 < g < 1): Redlich–Peterson isotherm binding constant | |
Sips | KS (L/g): Sips isotherm model constant qns (mg/g): Sips isotherm maximum adsorption capacity nS: Sips isotherm model exponent | |
Toth | Qm,To (mg/g): maximum adsorption capacity KTo (mg/L): Toth isotherm constant nTo: Toth isotherm model exponent; 0 < nTo ≤ 1 | |
Temkin | ln KT Ce | bT (J/mol): Temkin isotherm binding constant KT (L/g): Temkin isotherm equilibrium binding constant R (8.314 J/mol.K): the ideal gas constant |
Materials | BET Surface (m2/g) |
---|---|
MIL-100(Fe) | 1576.4 |
M3T0.7 | 179.2 |
M3T1.4 | 450.7 |
M3T2.4 | 799.5 |
TiO2 anatase | 79.3 |
Materials | X (eV) | EG (eV) | ECB (eV) | EVB (eV) |
---|---|---|---|---|
MIL-100(Fe) | 6.74 | 5.35 | −0.43 | 4.91 |
TiO2 anatase | 5.81 | 3.32 | −0.35 | 2.97 |
MIL-100(Fe)@TiO2 (M3T1.4) | 6.69 | 3.26 | 0.61 | 3.87 |
Adsorbents | Model | Parameters * | ||
---|---|---|---|---|
R2 | k1 | Qe,cal | ||
MIL-100(Fe) | PFO | 0.9967 | 0.0769 | 58.3991 |
M3T0.7 | 0.9934 | 0.1297 | 23.1596 | |
M3T1.4 | 0.9992 | 0.0717 | 66.6876 | |
M3T2.4 | 0.9971 | 0.0775 | 48.1273 | |
R2 | kIPD | C | ||
MIL-100(Fe) | 0.9844 0.9825 | 10.7556 3.8083 | 1.9822 30.5665 | |
M3T0.7 | IPD | 0.9712 0.9559 | 4.9588 1.3586 | 0.1858 14.746 |
M3T1.4 | 0.9894 0.9005 | 11.3210 2.9697 | 1.4738 43.558 | |
M3T2.4 | 0.9805 0.9404 | 8.5686 3.6735 | 1.2118 21.778 | |
PSO | R2 | k2 × 104 | Qe,cal | |
MIL-100(Fe) | 0.9945 | 11.0122 | 73.0601 | |
M3T0.7 | 0.9839 | 63.2139 | 26.7105 | |
M3T1.4 | 0.9952 | 8.5068 | 84.3482 | |
M3T2.4 | 0.9942 | 13.3000 | 60.1353 | |
Elovich | R2 | |||
MIL-100(Fe) | 0.9837 | 8.8664 | 0.0543 | |
M3T0.7 | 0.9599 | 13.1702 | 0.2003 | |
M3T1.4 | 0.9843 | 8.9117 | 0.0457 | |
M3T2.4 | 0.9828 | 7.4064 | 0.0662 |
Adsorbents | Model | Parameters * | |||
---|---|---|---|---|---|
R2 | KL | Qmax (calc) | |||
MIL-100(Fe) | Langmuir | 0.9977 | 0.0344 | 58.9810 | |
M3T1.4 | 0.9944 | 0.0354 | 93.0977 | ||
M3T0.7 | 0.9975 | 0.0243 | 83.1217 | ||
M3T2.4 | 0.9977 | 0.0306 | 66.2711 | ||
Freundlich | R2 | KF | n | ||
MIL-100(Fe) | 0.9322 | 10.5269 | 3.5129 | ||
M3T1.4 | 0.9282 | 18.9381 | 3.8696 | ||
M3T0.7 | 0.9158 | 13.7269 | 3.5249 | ||
M3T2.4 | 0.9118 | 12.6302 | 3.7898 | ||
R-P | R2 | KRP | αRP | g | |
MIL-100(Fe) | 0.9968 | 2.0290 | 0.0349 | 0.9932 | |
M3T1.4 | 0.9946 | 3.4787 | 0.0415 | 0.9827 | |
M3T0.7 | 0.9975 | 2.0290 | 0.0349 | 0.9999 | |
M3T2.4 | 0.9971 | 2.0155 | 0.0300 | 0.9939 | |
Sips | R2 | KS | ns | ||
MIL-100(Fe) | 0.9988 | 0.0410 | 58.9019 | 0.9755 | |
M3T1.4 | 0.9947 | 0.0464 | 95.9308 | 0.9004 | |
M3T0.7 | 0.9999 | 0.0161 | 80.0316 | 1.1376 | |
M3T2.4 | 0.9982 | 0.0392 | 63.8829 | 0.9181 | |
Toth | R2 | Qm,To | KTo | nTo | |
MIL-100(Fe) | 0.9973 | 58.2251 | 29.0698 | 0.9883 | |
M3T1.4 | 0.9950 | 96.1932 | 15.9191 | 0.8679 | |
M3T0.7 | 0.9975 | 83.1153 | 41.2046 | 0.9921 | |
M3T2.4 | 0.9977 | 66.2678 | 32.6964 | 0.9993 | |
Temkin | R2 | ||||
MIL-100(Fe) | 0.9874 | 239.5997 | 0.5517 | ||
M3T1.4 | 0.9789 | 159.7044 | 0.6830 | ||
M3T0.7 | 0.9758 | 161.7385 | 0.3309 | ||
M3T2.4 | 0.9719 | 211.4439 | 0.4610 |
T(K) | R2 | KL | (g/L) | Qmax (calc) |
---|---|---|---|---|
303.15 | 0.9944 | 0.0354 | 996.584 | 93.0977 |
318.15 | 0.9874 | 0.0293 | 991.003 | 86.1641 |
333.15 | 0.9837 | 0.0226 | 985.917 | 80.7086 |
Temperature (K) | Thermodynamic Parameters | ||||
---|---|---|---|---|---|
ln Kd | R2 | ||||
303.15 | 8.0958 | −20.4046 | −16.7413 | 12.1974 | 0.9935 |
318.15 | 7.8238 | −20.6947 | |||
333.15 | 7.4964 | −20.7636 |
Kinetic Reaction Model | Technical Constant a | Catalyst and LED Irradiation without Fenton | Catalyst and LED Irradiation with Fenton on M3T1.4 | |||||
---|---|---|---|---|---|---|---|---|
M3T0.7 | M3T1.4 | M3T2.4 | MIL-100(Fe) | 1 mL | 2 mL | 3 mL | ||
First-order kinetics | 0.5834 | 1.5700 | 0.9479 | 0.2793 | 16.32 | 17.68 | 20.84 | |
0.9847 | 0.9944 | 0.9829 | 0.9462 | 0.9914 | 0.9964 | 0.9925 | ||
Second-order kinetics | 0.7483 | 2.2100 | 1.3100 | 0.3305 | 32.43 | 36.17 | 45.56 | |
0.9830 | 0.9666 | 0.9629 | 0.9039 | 0.9842 | 0.9795 | 0.9659 | ||
BMG | 1,353.4 | 568.115 | 783.069 | 1,819.64 | 39.26 | 38.02 | 35.69 | |
0.9767 | 0.7399 | 0.9663 | 2.4655 | 0.8896 | 0.8615 | 0.8088 | ||
0.9809 | 0.9829 | 0.9832 | 0.9249 | 0.9811 | 0.9891 | 0.9885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armando, P.; Lunardi, V.B.; Edi Soetaredjo, F.; Putro, J.N.; Santoso, S.P.; Wijaya, C.J.; Lie, J.; Irawaty, W.; Yuliana, M.; Shuwanto, H.; et al. Preparation of Fe-Based MOFs Composite as an Adsorptive Photocatalyst with Enhanced Photo-Fenton Degradation under LED Light Irradiation. Sustainability 2022, 14, 10685. https://doi.org/10.3390/su141710685
Armando P, Lunardi VB, Edi Soetaredjo F, Putro JN, Santoso SP, Wijaya CJ, Lie J, Irawaty W, Yuliana M, Shuwanto H, et al. Preparation of Fe-Based MOFs Composite as an Adsorptive Photocatalyst with Enhanced Photo-Fenton Degradation under LED Light Irradiation. Sustainability. 2022; 14(17):10685. https://doi.org/10.3390/su141710685
Chicago/Turabian StyleArmando, Patrick, Valentino Bervia Lunardi, Felycia Edi Soetaredjo, Jindrayani Nyoo Putro, Shella Permatasari Santoso, Christian Julius Wijaya, Jenni Lie, Wenny Irawaty, Maria Yuliana, Hardy Shuwanto, and et al. 2022. "Preparation of Fe-Based MOFs Composite as an Adsorptive Photocatalyst with Enhanced Photo-Fenton Degradation under LED Light Irradiation" Sustainability 14, no. 17: 10685. https://doi.org/10.3390/su141710685
APA StyleArmando, P., Lunardi, V. B., Edi Soetaredjo, F., Putro, J. N., Santoso, S. P., Wijaya, C. J., Lie, J., Irawaty, W., Yuliana, M., Shuwanto, H., Abdullah, H., Wenten, I. G., & Ismadji, S. (2022). Preparation of Fe-Based MOFs Composite as an Adsorptive Photocatalyst with Enhanced Photo-Fenton Degradation under LED Light Irradiation. Sustainability, 14(17), 10685. https://doi.org/10.3390/su141710685