Evaluation of Water Quality of Collected Rainwater in the Northeastern Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Water Quality Evaluation Methods
2.3.1. PCA
2.3.2. NPI Method
2.4. Data Analysis
3. Results
3.1. Precipitation Characteristics in Northwestern Shanxi Province
3.2. Characteristics of Various Types of Water in Rural Areas of Northwestern Shanxi Province
3.3. Quality of WCW for Different Catchment
3.4. Quality of WCW at Different Depths
3.5. Quality of WCW at Different Storage Times
3.6. Quality of Various Types of Water in Northwestern Shanxi Province
4. Discussion
4.1. Attribution Analysis of Different Types of WCW Quality in Rural Areas of the Northeastern Loess Plateau
4.2. Attribution Analysis of the Quality Differences of Various Types of Water in the Northeastern Loess Plateau
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Begizew, G. Agricultural production system in arid and semi-arid regions. Int. J. Agric. Sci. Food Technol. 2021, 7, 234–244. [Google Scholar] [CrossRef]
- Li, X.Y.; Shi, P.J.; Sun, Y.L.; Tang, J.; Yang, Z.P. Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semiarid loess region of China. For. Ecol. Manag. 2006, 233, 143–148. [Google Scholar] [CrossRef]
- Fang, W.; Zhong, X. Chapter 10 Water management systems of China: Water cellar for community. In Water Communities (Community, Environment and Disaster Risk Management); Emerald Group Publishing Limited: Bingley, UK, 2010; pp. 183–195. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Z.L.; Tang, X.Z.; Yuan, G.F.; Zhang, X.Y.; Sun, X.M.; Wang, J.; Chang, X.X.; Cheng, Y.S.; Chu, G.W.; et al. A Dataset of eight ions in the water at stations of Chinese ecosystem research network (CERN) during 2004–2016. China Sci. Data 2020, 5, 110–122. [Google Scholar]
- Ullah, Z.; Xu, Y.; Zeng, X.-C.; Rashid, A.; Ali, A.; Iqbal, J.; Almutairi, M.H.; Aleya, L.; Abdel-Daim, M.M.; Shah, M. Non-Carcinogenic Health Risk Evaluation of Elevated Fluoride in Groundwater and Its Suitability Assessment for Drinking Purposes Based on Water Quality Index. Int. J. Environ. Res. Public Health 2022, 19, 9071. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Khan, M.N.; Sirajuddin, M.; Salman, S.M.; Bilal, M. Assessment of Drinking Water Quality of Different Areas in Tehsil Isa Khel, Mianwali, Punjab, Pakistan. Pak. J. Anal. Environ. Chem. 2021, 22, 376–387. [Google Scholar] [CrossRef]
- Zandagba, J.E.B.; Adandedji, F.M.; Lokonon, B.E.; Chabi, A.; Dan, O.; Mama, D. Application Use of Water Quality Index (WQI) and Multivariate Analysis for Nokoué Lake Water Quality Assessment. Am. J. Environ. Sci. Eng. 2017, 1, 117–127. [Google Scholar]
- Singh, S.; Sachdeva, H.; Joon, H.; Narang, M. Water Quality Assessment of a Water Body using Principal Component Analysis–Sanjay Lake, New Delhi, India. Asian J. Water Environ. Pollut. 2020, 17, 23–29. [Google Scholar] [CrossRef]
- Ajani, G.E.; Popoola, S.O.; Oyatola, O.O. Evaluation of the Pollution Status of Lagos Coastal Waters and Sediments, using Physicochemical Characteristics, Contamination Factor, Nemerow Pollution Index, Ecological Risk and Potential Ecological Risk Index. Int. J. Environ. Clim. Chang. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2018, 96, 430–436. [Google Scholar] [CrossRef]
- Hu, S.; Lin, X.; Yang, Q.; Du, H.; Zhao, X.; Chen, R.; Li, G. Application of grading evaluation method of water radioactivity level in Chongqing section of Yangtze River. J. Environ. Radioact. 2022, 246, 106843. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; Li, X.; Yan, F. An improved Nemerow index model based on health risk. J. Nanchang Univ. Eng. Ed. 2020, 42, 220–223. [Google Scholar]
- Qin, Z.D. Study on the evaluation of land desertification harmfulness in the Northwestern part of Shanxi Province. Arid Land Geogr. 1996, 19, 8–15. [Google Scholar]
- Xue, Z.; Qin, Z.; Li, H.; Ding, G.; Meng, X. Evaluation of aeolian desertification from 1975 to 2010 and its causes in northwest Shanxi Province, China. Glob. Planet. Chang. 2013, 107, 102–108. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Liou, S.-M.; Lo, S.-L.; Wang, S.-H. A Generalized Water Quality Index for Taiwan. Environ. Monit. Assess. 2004, 96, 35–52. [Google Scholar] [CrossRef]
- Nemerow, N.L. Scientific Stream Pollution Analysis; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Yao, M.W.; Guo, X.F.; Yan, Y.L.; Zhang, X.; He, Q.S.; Wang, X.M. Chemical characteristics and source apportionment of atmospheric precipitation in Taiyuan, China. Chin. J. Environ. Eng. 2014, 8, 4864–4870, (In Chinese with English abstract). [Google Scholar]
- Zhang, J.F.; Xie, W.; Lei, Z.Q. Characteristics of ino release from soil during runoff process in northwest China’s semi-arid areas. J. Xi’an Univ. Archit. Technol. Nat. Sci. Ed. 2012, 44, 888–891, (In Chinese with English abstract). [Google Scholar]
- Li, X.M.; Meng, Q.J.; Gao, B.; Feng, Q.Y.; Zhang, Y.J. Effects of dissolved organic matter on adsorption and migration of heavy metals in soil. Sci. Technol. Eng. 2016, 16, 314–319, (In Chinese with English abstract). [Google Scholar]
- Li, X.N.; Zhu, L.G.; Gao, J.Y. Research on current status and countermeasures of drinking water quality safety in rural Karst rocky desertification areas of northwestern Guizhou–Taking Salaxi demonstration area in Bijie city as an example. J. Guizhou Norm. Univ. 2016, 34, 32–37, (In Chinese with English abstract). [Google Scholar]
- Loaiza, J.G.; Bustos-Terrones, Y.; Bustos-Terrones, V.; Monjardín-Armenta, S.A.; Quevedo-Castro, A.; Estrada-Vazquez, R.; Rangel-Peraza, J.G. Evaluation of the Hydrochemical and Water Quality Characteristics of an Aquifer Located in an Urbanized Area. Appl. Sci. 2022, 12, 6879. [Google Scholar] [CrossRef]
- Xu, X.Q. Water quality variation in micro-storage facilities and its influence on safety of drinking water in the Loess Plateau. Univ. Chin. Acad. Sci. 2014, 7–9, (In Chinese with English abstract). [Google Scholar]
- Wang, T.; Xu, S.; Liu, J. Dynamic Assessment of Comprehensive Water Quality Considering the Release of Sediment Pollution. Water 2017, 9, 275. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, C.; Zhao, X.; Dong, J.; Zheng, B. Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environ. Sci. Eur. 2020, 32, 1–9. [Google Scholar] [CrossRef]
- Cabral, J.; Nogueira, P.; Becegato, V.; Becegato, V.; Paulino, A. Environmental Assessment and Toxic Metal-Contamination Level in Surface Sediment of a Water Reservoir in the Brazilian Cerrado. Water 2021, 13, 1044. [Google Scholar] [CrossRef]
- Ma, K. Transfer and transformation characteristics experimental research of pollutant in water cellar’s sediment. Lanzhou Jiaotong Univ. 2016, 4, 38–41, (In Chinese with English abstract). [Google Scholar]
- Liu, J.L.; Zhang, G.Z.; Yang, H.; He, C.S. The variation of rainwater quality storing in water cellars made by different materials. J. Arid Land Resour. Environ. 2012, 26, 101–104, (In Chinese with English abstract). [Google Scholar]
- Riba, I.; García-Luque, E.; Blasco, J.; DelValls, T.A. Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chem. Speciat. Bioavailab. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- Iordache, A.M.; Nechita, C.; Zgavarogea, R.; Voica, C.; Varlam, M.; Ionete, R.E. Accumulation and ecotoxicological risk assessment of heavy metals in surface sediments of the Olt River, Romania. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Feng, Y.Y. Water quality assessment of atmospheric precipitation in Shanxi. Adm. Tech. Environ. Monit. 2003, 15, 23–25+36, (In Chinese with English abstract). [Google Scholar]
- Feng, R.; Yuan, R.Q. Groundwater quality assessment based on the t-SNE method in the north coal field of Shanxi. Acta Sci. 2017, 34, 2540–2546, (In Chinese with English abstract). [Google Scholar]
- Nan, Y.L.; Yang, H.; Zhen, F.P. Groundwater contamination assessment of Shenfu mining area in northern Shaanxi province. Ground Water 2018, 40, 5–8+25, (In Chinese with English abstract). [Google Scholar]
- Zhou, W.; Matsumoto, K.; Sawaki, M. Long-Term Sustainability of Water Cellars in Traditional Chinese Villages: Factors Influencing Continuous Use and Effective Water Management Initiatives. Int. J. Environ. Res. Public Health 2021, 18, 4394. [Google Scholar] [CrossRef] [PubMed]
- GB/T 50596-2010; Technical Code for Rainwater Collection, Storage and Utilization of China. Ministry of Housing and Urban-Rural Development, General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2010. (In Chinese)
Water Cellar Number | Characteristic of Catchment Area | Abbreviation | Storage Time | Sampling Depth | Number of Samples | ||
---|---|---|---|---|---|---|---|
Time/Month | Abbreviation | Depth/m | Abbreviation | ||||
1 | Tile roof + trampled ground | A | 2 | T1 | 1 | S1 | 3 |
2 | S2 | 3 | |||||
3 | S3 | 3 | |||||
4 | S4 | 3 | |||||
2 | Cement floor | B | 2 | - | 2 | - | 3 |
3 | Tile roof + courtyard cement floor | C | 2 | - | 2 | - | 3 |
4 | Trampled ground | D | 2 | - | 2 | - | 3 |
5 | Tile roof + trampled ground | - | 12 | T2 | 2 | - | 3 |
6 | Tile roof + trampled ground | - | 30 | T3 | 2 | - | - |
7 | Rainwater | RW | - | - | - | - | 3 |
8 | Groundwater | GW | - | - | - | - | 3 |
9 | Tap water | TW | - | - | - | - | 3 |
Grade | Pollution Index | Level | Pollution | Grade | Pollution Index | Level | Pollution |
---|---|---|---|---|---|---|---|
1 | PI < 1 | I | Clean | 4 | 3 ≤ PI < 5 | IV | Heavy pollution |
2 | 1 ≤ PI < 2 | II | Light pollution | 5 | PI ≥ 5; KI ≥ 1 | V | Serious pollution |
3 | 2 ≤ PI < 3 | III | Moderate pollution | — |
Ions | F− | Cl− | NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | pH | EC |
---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | ms/cm | ||||||||||
Minimum | 0 | 0.04 | 0.91 | 0.81 | 0.05 | 0.55 | 0.12 | 0.11 | 0.42 | 7.88 | 1.54 |
Max | 0.01 | 0.14 | 5.72 | 3.73 | 0.23 | 1.29 | 0.28 | 0.26 | 0.83 | 9.01 | 3.19 |
Average | 0.007 | 0.07 | 2.84 | 2.00 | 0.11 | 0.71 | 0.16 | 0.17 | 0.50 | 8.53 | 2.02 |
Standard deviation | 0.00 | 0.04 | 1.76 | 1.12 | 0.05 | 0.20 | 0.04 | 0.06 | 0.12 | 0.48 | 0.52 |
Rainwater | 0.018 | 0.06 | 1.69 | 1.32 | 0.01 | 0.86 | 0.19 | 0.4 | 0.30 | 7.73 | 2.23 |
Groundwater | 0 | 0.67 | 17 | 7.31 | 1.065 | 0.24 | 0.05 | 2.91 | 1.18 | 8.3 | 7.81 |
Tap water | 0.01 | 0.17 | 0.3 | 0.26 | 0.03 | 0.72 | 0.16 | 0.08 | 0.03 | — | — |
Drinking water standard | 1 | 250 | 10 | 250 | — | — | — | — | — | 6.5–8.5 | 1–4 |
Correlation | Depths | F− | Cl− | NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | pH | EC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depths | 1 | — | — | — | — | — | — | — | — | — | — | — |
F− | 0.29 | 1 | — | — | — | — | — | — | — | — | — | — |
Cl− | 0.06 | 0.08 | 1 | — | — | — | — | — | — | — | — | — |
NO3− | −0.4 | −0.17 | 0.07 | 1 | — | — | — | — | — | — | — | — |
SO42− | 0.24 | −0.01 | 0.24 | 0.17 | 1 | — | — | — | — | — | — | — |
Na+ | 0.78 ** | 0.53 | 0.07 | −0.18 | −0.05 | 1 | — | — | — | — | — | — |
NH4+ | 0.57 | −0.06 | −0.01 | −0.42 | −0.22 | 0.62 * | 1 | — | — | — | — | — |
K+ | 0.45 | −0.13 | −0.13 | −0.36 | −0.43 | 0.58 * | 0.85 ** | 1 | — | — | — | — |
Mg2+ | 0.52 | 0.1 | −0.1 | −0.52 | −0.44 | 0.60 * | 0.83 ** | 0.90 ** | 1 | — | — | — |
Ca2+ | 0.73 ** | −0.17 | −0.12 | −0.51 | −0.02 | 0.32 | 0.60 * | 0.63 * | 0.68 * | 1 | — | — |
pH | −0.76 ** | 0.23 | 0.16 | 0.45 | −0.06 | −0.32 | −0.57 | −0.55 | −0.57 | −0.97 ** | 1 | — |
EC | 0.49 | 0.23 | 0 | −0.67 * | −0.02 | 0.45 | 0.51 | 0.65 * | 0.66 * | 0.61 * | −0.47 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xiao, M.; Dai, Y.; Zhang, Z.; Liu, G.; Zhao, J. Evaluation of Water Quality of Collected Rainwater in the Northeastern Loess Plateau. Sustainability 2022, 14, 10834. https://doi.org/10.3390/su141710834
Zhang P, Xiao M, Dai Y, Zhang Z, Liu G, Zhao J. Evaluation of Water Quality of Collected Rainwater in the Northeastern Loess Plateau. Sustainability. 2022; 14(17):10834. https://doi.org/10.3390/su141710834
Chicago/Turabian StyleZhang, Pengfei, Menglin Xiao, Yanyan Dai, Zhaorui Zhang, Geng Liu, and Jingbo Zhao. 2022. "Evaluation of Water Quality of Collected Rainwater in the Northeastern Loess Plateau" Sustainability 14, no. 17: 10834. https://doi.org/10.3390/su141710834