Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Methods
2.2.1. Data Source
2.2.2. Land-Use Dynamic Degree
2.2.3. Land Use Transfer Matrix
2.2.4. Land-Use Intensity Index
2.2.5. Calculation of Ecosystem Services Value
2.2.6. Hotspot Analysis
2.2.7. Sensitivity Analysis
2.2.8. Analysis of Driving Factors
3. Results
3.1. Analysis of Land Use Change
3.2. Analysis of Ecosystem Service Value
3.2.1. Time Series Change in Ecosystem Service Value
3.2.2. Spatial Change in Ecosystem Service Value
3.2.3. Sensitivity Analysis of Ecosystem Service Value
3.3. The Impact of Land Use Change on Ecosystem Service Value
3.4. Analysis of the Driving Factors of Ecosystem Service Value
4. Discussion
4.1. Land-Use Change
4.2. Changes in Ecosystem Service Value
4.3. Analysis of Driving Factors
4.4. Innovation, Shortcomings, and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bunker, D.E.; DeClerck, F.; Bradford, J.C.; Colwell, R.K.; Perfecto, I.; Phillips, O.L.; Sankaran, M.; Naeem, S. Species loss and aboveground carbon storage in a tropical forest. Science 2005, 310, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Blignaut, J.; Moolman, C. Quantifying the potential of restored natural capital to alleviate poverty and help conserve nature: A case study from South Africa. J. Nat. Conserv. 2006, 14, 237–248. [Google Scholar] [CrossRef]
- Economics of Ecosystems and Biodiversity (TEEB). Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; Progress Press: Valletta, Malta, 2010. [Google Scholar]
- Payne, C.; Sand, P. Environmental Liability: Gulf War Reparations and the UN Compensation Commission; Oxford University Press: London, UK; New York, NY, USA, 2011. [Google Scholar]
- Farley, J. The role of prices in conserving critical natural capital. Conserv. Biol. 2008, 22, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Farley, J.; Costanza, R. Payments for ecosystem services: From local to global. Ecol. Econ. 2010, 69, 2060–2068. [Google Scholar] [CrossRef]
- Leimona, B. Fairly Efficient or Efficiently Fair: Success Factors and Constraints of Payment and Reward Schemes for Environmental Services in Asia; Wageningen University and Research: Wageningen, Poland, 2011. [Google Scholar]
- Crossman, N.D.; Bryan, B.A. Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. Ecol. Econ. 2009, 68, 654–668. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Reid, W.V. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Kibria, A.S.M.G.; Behie, A.; Costanza, R.; Groves, C.; Farrell, T. The value of ecosystem services obtained from the protected forest of Cambodia: The case of Veun Sai-Siem Pang National Park. Ecosyst. Serv. 2017, 26, 27–36. [Google Scholar] [CrossRef]
- Ninan, K.N.; Kontoleon, A. Valuing Forest ecosystem services and disservices–Case study of a protected area in India. Ecosyst. Serv. 2016, 20, 1–14. [Google Scholar] [CrossRef]
- Liao, J.; Yu, C.; Feng, Z.; Zhao, H.; Wu, K.; Ma, X. Spatial differentiation characteristics and driving factors of agricultural eco-efficiency in Chinese provinces from the perspective of ecosystem services. J. Clean. Prod. 2021, 288, 125466. [Google Scholar] [CrossRef]
- Kozak, J.; Lant, C.; Shaikh, S.; Wang, G. The geography of ecosystem service value: The case of the Des Plaines and Cache River wetlands, Illinois. Appl. Geogr. 2011, 31, 303–311. [Google Scholar] [CrossRef]
- Walters, D.; Kotze, D.; Rebelo, A.; Pretorius, L.; Job, N.; Lagesse, J.; Riddell, E.; Cowden, C. Validation of a rapid wetland ecosystem services assessment technique using the Delphi method. Ecol. Indic. 2021, 125, 107511. [Google Scholar] [CrossRef]
- Gascoigne, W.R.; Hoag, D.; Koontz, L.; Tangen, B.A.; Shaffer, T.L.; Gleason, R.A. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Region of the Dakotas, USA. Ecol. Econ. 2011, 70, 1715–1725. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; He, X.; Li, X.; Yang, G.; Li, D.; Xu, W.; Qiao, X.; Li, C.; Sui, L. Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China. Int. J. Environ. Res. Public Health 2022, 19, 6216. [Google Scholar] [CrossRef]
- Ericksen, P.; de Leeuw, J.; Said, M.; Silvestri, S.; Zaibet, L. Mapping ecosystem services in the Ewaso Ng’iro catchment. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 122–134. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Lin, T.; Xue, X.; Shi, L.; Gao, L. Urban spatial expansion and its impacts on island ecosystem services and landscape pattern: A case study of the island city of Xiamen, Southeast China. Ocean. Coast. Manag. 2013, 81, 90–96. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, X.; Liu, W. Spatial–Temporal Evolution and Correlation Analysis of Ecosystem Service Value and Landscape Ecological Risk in Wuhu City. Sustainability 2020, 12, 2803. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, S.; Hou, X.; Wu, X.; Dong, S.; Coxixo, A. The effects of urbanization on ecosystem services for biodiversity conservation in southernmost Yunnan Province, Southwest China. J. Geogr. Sci. 2019, 29, 1159–1178. [Google Scholar] [CrossRef]
- Gaglio, M.; Aschonitis, V.; Castaldelli, G.; Fano, E.A. Land use intensification rather than land cover change affects regulating services in the mountainous Adige river basin (Italy). Ecosyst. Serv. 2020, 45, 101158. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.; He, W.; Sun, F.; Zhang, Z.; Zhang, X.; Zhang, C.; Kong, Y.; An, M.; Yuan, L. Changes in ecosystem services value and establishment of watershed ecological compensation standards. Int. J. Environ. Res. Public Health 2019, 16, 2951. [Google Scholar] [CrossRef] [PubMed]
- Lafortezza, R.; Sanesi, G.; Chen, J. Large-scale effects of forest management in Mediterranean landscapes of Europe. Iforest 2013, 6, 342. [Google Scholar] [CrossRef]
- Jiyuan, L.; Zengxiang, Z.; Dafang, Z.; Yimou, W.; Wancun, Z. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. [Google Scholar]
- Balasubramanian, A. Digital Elevation Model (DEM) in GIS; University of Mysore: Mysore, India, 2017. [Google Scholar]
- Chen, W.; Chi, G.; Li, J. Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 3717. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.-Z.; Lin, W.-X. Evaluation of ecosystem services value and its implications for policy making in China—A case study of Fujian province. Ecol. Indic. 2020, 108, 105752. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Singh, P.R.; Chen, W.; Ju, H. Land-use/land-cover changes and their influence on the ecosystem in Chengdu City, China during the period of 1992–2018. Sustainability 2018, 10, 3580. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Wang, B.; Yuan, L.; Cheng, L.; Yu, Z.; Zhang, T. Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16, 5104. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Deng, S. Dynamic Effects on Ecosystem Services Value with Regional Landuse Change; Zhejiang University: Hangzhou, China, 2012. [Google Scholar]
- Xie, G.; Xiao, Y.; Zhen, L.; Lu, C. Study on ecosystem services value of food production in China. Chin. Acad. Sci. 2005, 13, 10–13. [Google Scholar]
- Li, Y.; Zhang, L.; Yan, J.; Wang, P.; Hu, N.; Cheng, W.; Fu, B. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. J. Geogr. Sci. 2017, 27, 681–696. [Google Scholar] [CrossRef]
- Hasan, S.; Shi, W.; Zhu, X. Impact of land use land cover changes on ecosystem service value—A case study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 19. [Google Scholar]
- Wang, R.; Bai, Y.; Alatalo, J.M.; Guo, G.; Yang, Z.; Yang, Z.; Yang, W. Impacts of Urbanization at City Cluster Scale on Ecosystem Services Along an Urban-Rural Gradient: A Case Study of Central Yunnan City Cluster, China. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Geng, W.; Yang, D.; Li, Y.; Zhang, Y.; Qin, M. Spatial and temporal evolution of land use and ecosystem service values in the lower reaches of the Yellow River. Trans. Chin. Soc. Agric. Eng 2020, 36, 277–288. [Google Scholar]
- Li, F.; Zhang, X.; Guo, H. Spatial and temporal variation characteristics of ecosystem service values in the Three Gorges reservoir area in the past 30 years based on land use. Soil Water Conserv. Res. 2021, 28, 309–318. [Google Scholar]
- Hu, M.; Li, Z.; Wang, Y.; Jiao, M.; Li, M.; Xia, B. Spatio-temporal changes in ecosystem service value in response to land-use/cover changes in the Pearl River Delta. Resour. Conserv. Recycl. 2019, 149, 106–114. [Google Scholar] [CrossRef]
- Zhang, D.; Lan, Z.; Wang, Q.; Wang, X.; Zhang, W.; Li, Z. In Study on the mangrove ecosystem services value change in Zhangjiang river estuary based on remote sensing and grey relational analysis-art. Proc. SPIE 2007, 6790, 79059. [Google Scholar]
- Chillo, V.; Vázquez, D.P.; Amoroso, M.M.; Bennett, E.M.; Koricheva, J. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct. Ecol. 2018, 32, 1390–1399. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Kun, B.; Qing, W.; Junmei, T.; Liping, C. The effects of population density changes on ecosystem services value: A case study in Western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Li, G.; Chen, W.; Zhang, X.; Yang, Z.; Bi, P.; Wang, Z. Ecosystem Service Values in the Dongting Lake Eco-Economic Zone and the Synergistic Impact of Its Driving Factors. Int. J. Environ. Res. Public Health 2022, 19, 3121. [Google Scholar] [CrossRef]
- Yuan, K.; Li, F.; Yang, H.; Wang, Y. The Influence of Land Use Change on Ecosystem Service Value in Shangzhou District. Int. J. Environ. Res. Public Health 2019, 16, 1321. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73. [Google Scholar] [CrossRef] [Green Version]
Primary Classification | Secondary Classification | Cultivated Land | Woodland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Supply services | Food production | 0.96 | 0.26 | 0.21 | 0.80 | 0.00 | 0.00 |
Raw material production | 0.33 | 0.60 | 0.31 | 0.23 | −7.51 | 0.00 | |
Water supply | −0.55 | 0.31 | 0.17 | 8.29 | −2.42 | 0.00 | |
Regulating services | Gas regulation | 0.77 | 1.97 | 1.08 | 0.77 | 0.00 | 0.02 |
Climate regulation | 0.41 | 5.90 | 2.86 | 2.29 | −2.46 | 0.00 | |
Purify the environment | 0.12 | 1.72 | 0.95 | 5.55 | 0.00 | 0.10 | |
Hydrological regulation | 0.80 | 3.79 | 2.10 | 102.24 | 0.02 | 0.03 | |
Support services | Soil conservation | 0.81 | 2.40 | 1.32 | 0.93 | 0.00 | 0.02 |
Maintain nutrient cycling | 0.14 | 0.18 | 0.10 | 0.07 | 0.34 | 0.00 | |
Biodiversity | 0.15 | 2.19 | 1.20 | 2.55 | 0.01 | 0.02 | |
Cultural services | Aesthetic landscapes | 0.07 | 0.96 | 0.53 | 1.89 | 0.02 | 0.01 |
Land Use Type | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 |
---|---|---|---|---|---|
Cultivated land | −0.07 | 0.01 | −0.06 | −0.27 | −0.10 |
Woodland | 0.00 | −0.03 | −0.01 | −0.06 | −0.03 |
Grassland | 0.00 | −0.20 | −0.01 | −0.27 | −0.12 |
Water area | −0.08 | 0.57 | −0.73 | 2.91 | 0.65 |
Construction land | 1.42 | 4.96 | 1.72 | 7.40 | 4.94 |
Unused land | 0.02 | 0.74 | 0.00 | −0.09 | 0.16 |
Land-Use Type | Grassland | Cultivated Land | Construction Land | Woodland | Water Area | Unused Land |
---|---|---|---|---|---|---|
Grassland | - | 1393.76 | 400.04 | 2187.90 | 98.44 | 12.88 |
Cultivated land | 1195.59 | - | 936.21 | 1208.45 | 105.05 | 6.72 |
Construction land | 23.25 | 142.28 | - | 23.67 | 10.25 | 1.39 |
Woodland | 2086.96 | 1325.68 | 272.82 | - | 116.23 | 4.73 |
Water area | 40.13 | 70.31 | 31.35 | 24.36 | - | 2.37 |
Unused land | 12.30 | 7.00 | 0.14 | 2.55 | 1.03 | - |
Land Use Type | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ESV | Proportion | ESV | Proportion | ESV | Proportion | ESV | Proportion | ESV | Proportion | |
Cultivated land | 105.51 | 5.44% | 105.12 | 5.43% | 105.15 | 5.45% | 104.85 | 5.46% | 103.14 | 5.36% |
Woodland | 1281.34 | 66.12% | 1281.20 | 66.20% | 1279.28 | 66.27% | 1278.73 | 66.59% | 1273.60 | 66.24% |
Grassland | 381.83 | 19.70% | 381.91 | 19.73% | 378.06 | 19.58% | 377.94 | 19.68% | 372.44 | 19.37% |
Water area | 186.91 | 9.65% | 186.19 | 9.62% | 191.50 | 9.92% | 184.50 | 9.61% | 210.24 | 10.93% |
Construction land | −17.71 | −0.91% | −18.97 | −0.98% | −23.67 | −1.23% | −25.70 | −1.34% | −36.71 | −1.91% |
Unused land | 0.04 | 0.00% | 0.04 | 0.00% | 0.04 | 0.00% | 0.04 | 0.00% | 0.04 | 0.00% |
Total | 1937.92 | 100.00% | 1935.48 | 100.00% | 1930.36 | 100.00% | 1920.35 | 100.00% | 1922.75 | 100.00% |
Primary Classification | Secondary Classification | 2000 | 2005 | 2010 | 2015 | 2020 | ESV Variation |
---|---|---|---|---|---|---|---|
Supply services (5.77%) | Food production | 50.46 | 50.36 | 50.30 | 50.17 | 49.75 | −0.71 |
Raw material production | 46.95 | 46.13 | 43.03 | 41.70 | 34.41 | −12.54 | |
Water supply | 19.70 | 19.45 | 18.76 | 17.92 | 17.47 | −2.23 | |
Regulating services (67.74%) | Gas regulation | 184.13 | 184.05 | 183.52 | 183.35 | 182.13 | −2.00 |
Climate regulation | 484.17 | 483.84 | 481.41 | 480.64 | 475.73 | −8.44 | |
Purify the environment | 153.62 | 153.57 | 153.31 | 152.93 | 153.10 | −0.52 | |
Hydrological regulation | 486.35 | 485.67 | 488.90 | 483.03 | 501.63 | 15.28 | |
Support services (22.15%) | Soil conservation | 220.95 | 220.86 | 220.21 | 220.02 | 218.58 | −2.37 |
Maintain nutrient cycling | 19.47 | 19.49 | 19.57 | 19.61 | 19.78 | 0.31 | |
Biodiversity | 188.24 | 188.21 | 187.69 | 187.46 | 186.77 | −1.47 | |
Cultural services (4.34%) | Aesthetic landscapes | 83.87 | 83.86 | 83.66 | 83.53 | 83.39 | −0.48 |
Sensitivity Index | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Cultivated land | 0.054447 | 0.054311 | 0.054474 | 0.054601 | 0.053643 |
Woodland | 0.661194 | 0.661954 | 0.662717 | 0.665880 | 0.662384 |
Grassland | 0.197030 | 0.197320 | 0.195848 | 0.196808 | 0.193701 |
Water area | 0.096451 | 0.096196 | 0.099203 | 0.096076 | 0.109345 |
Construction land | −0.009140 | −0.009799 | −0.012261 | −0.013384 | −0.019092 |
Unused land | 0.000018 | 0.000018 | 0.000019 | 0.000019 | 0.000019 |
Land Use Type | Grassland | Cultivated Land | Construction Land | Woodland | Water Area | Unused Land |
---|---|---|---|---|---|---|
Grassland | 0.00 | −10.98 | −10.50 | 23.75 | 12.99 | −0.16 |
Cultivated land | 9.42 | 0.00 | −17.20 | 22.64 | 14.68 | −0.03 |
Construction land | 0.61 | 2.61 | 0.00 | 0.88 | 1.62 | 0.02 |
Woodland | −22.65 | −24.84 | −10.12 | 0.00 | 14.07 | −0.11 |
Water area | −5.29 | −9.83 | −4.96 | −2.95 | 0.00 | −0.34 |
Unused land | 0.15 | 0.03 | 0.00 | 0.06 | 0.15 | 0.00 |
Driving Factor | q Statistic | p Value | Degree of Impact |
---|---|---|---|
Elevation | 0.21 | 0.099 | 8 |
Slope | 0.301 | 0.015 | 4 |
Temperatures | 0.233 | 0.063 | 6 |
Rainfall | 0.134 | 0.357 | 9 |
NDVI | 0.497 | 0.000 | 2 |
Soil erosion | 0.314 | 0.072 | 3 |
Land-use intensity | 0.532 | 0.000 | 1 |
Population density | 0.29 | 0.004 | 5 |
GDP | 0.214 | 0.131 | 7 |
Driving Factor | Elevation | Slope | Temperatures | Rainfall | NDVI | Soil Erosion | Land-Use Intensity | Population Density | GDP |
---|---|---|---|---|---|---|---|---|---|
Elevation | 0.210 | ||||||||
Slope | 0.487 | 0.301 | |||||||
Temperatures | 0.412 | 0.740 | 0.233 | ||||||
Rainfall | 0.445 | 0.581 | 0.743 | 0.134 | |||||
NDVI | 0.681 | 0.565 | 0.711 | 0.685 | 0.497 | ||||
Soil erosion | 0.704 | 0.518 | 0.697 | 0.540 | 0.677 | 0.314 | |||
Land-use intensity | 0.653 | 0.654 | 0.676 | 0.705 | 0.785 | 0.711 | 0.532 | ||
Population density | 0.444 | 0.533 | 0.504 | 0.393 | 0.599 | 0.560 | 0.640 | 0.290 | |
GDP | 0.570 | 0.703 | 0.568 | 0.477 | 0.702 | 0.511 | 0.746 | 0.436 | 0.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, F. Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan. Sustainability 2022, 14, 10823. https://doi.org/10.3390/su141710823
Yang L, Liu F. Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan. Sustainability. 2022; 14(17):10823. https://doi.org/10.3390/su141710823
Chicago/Turabian StyleYang, Lei, and Fenglian Liu. 2022. "Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan" Sustainability 14, no. 17: 10823. https://doi.org/10.3390/su141710823
APA StyleYang, L., & Liu, F. (2022). Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan. Sustainability, 14(17), 10823. https://doi.org/10.3390/su141710823