Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Residual Biomass Characterization
2.3. Alkaline Hydrolysis
2.4. Bleaching Process
2.5. Nanocellulose Preparation
2.6. Physicochemical and Structural Characterization of Materials
2.6.1. ATR-FTIR Analysis
2.6.2. Superficial Morphology
2.6.3. Topographic Analysis
2.6.4. Thermogravimetric Analysis
2.6.5. Crystallinity Analysis
- I002 = is the maximum intensity at 2θ = 22.3°;
- Iam = corresponds to the intensity of the minimum.
2.6.6. Differential Calorimetric Analysis
2.6.7. Zeta Potential Measurements
2.7. Nanocellulose Extraction Efficiency
- P0 = mass of feedstock submitted to hydrolysis, g;
- P1 = mass of micro- and nanocellulose from the acid hydrolysis, g;
- X0 = cellulose mass fraction in the feedstock.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNC | cellulose nanocrystal |
SBHs | soybean hulls |
SCB | sugarcane bagasse |
ATR-FTIR | attenuated total reflectance Fourier transform infrared spectroscopy |
TGA | thermogravimetric analysis |
SEM | scanning electron microscopy |
AFM | atomic force microscopy |
XRD | X-ray diffraction analysis |
RPR | residue per product rate |
NDF | neutral detergent fiber |
ADF | acid detergent fiber |
ADL | acid detergent lignin |
H | extraction efficiency |
P1 | mass of micro- and nanocellulose from the acid hydrolysis |
P0 | mass of feedstock submitted to hydrolysis |
X0 | cellulose mass fraction in the feedstock |
I002 | maximum intensity at 2θ = 22.3° |
References
- SSEE. Subsecretaría de Estado de Economía 2020. Ministerio de Hacienda. Perfil Económico y Comercial—Paraguay—Junio 2020. Available online: https://economia.gov.py/application/files/1115/9231/4944/Perfil_Economico_y_Comercial_de_Paraguay.pdf (accessed on 20 December 2021).
- MAG-2022. Ministerio de Agricultura y Ganadería. Síntesis Estadísticas. Available online: http://www.mag.gov.py/index.php/institucion/dependencias/sintesis-estadistica (accessed on 20 December 2021).
- Torgbo, S.; Quan, V.M.; Sukyai, P. Cellulosic value-added products from sugarcane bagasse. Cellulose 2021, 28, 5219–5240. [Google Scholar] [CrossRef]
- Plermjai, K.; Boonyarattanakalin, K.; Mekprasart, W.; Pavasupree, S.; Phoohinkong, W.; Pecharapa, W. Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis. AIP Conf. Proc. 2018, 2010, 020005. [Google Scholar] [CrossRef]
- Liu, H.M.; Li, H.Y. Application and conversion of soybean hulls. In Soybean—The Basis of Yield, Biomass and Productivity; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Haldar, D.; Purkait, M.K. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydr. Polym. 2020, 250, 116937. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.W.Y.; Ladisch, M.R.; Sedlak, M.; Mosier, N.; Casey, E. Biofuels from Cellulosic Feedstocks. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 51–62. [Google Scholar] [CrossRef]
- Mandal, A.; Chakrabarty, D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 2011, 86, 1291–1299. [Google Scholar] [CrossRef]
- Cowie, J.; Bilek, E.T.; Wegner, T.H.; Shatkin, J.A. Market projections of cellulose nanomaterial-enabled products—Part 2: Volume estimates. TAPPI J. 2014, 13, 57–69. Available online: https://www.fs.usda.gov/treesearch/pubs/46175 (accessed on 4 April 2022). [CrossRef]
- Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent advances in nanocellulose processing, functionalization and applications: A review. Mater. Adv. 2021, 2, 1872–1895. [Google Scholar] [CrossRef]
- Flauzino Neto, W.P.; Silvério, H.A.; Dantas, N.O.; Pasquini, D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind. Crop. Prod. 2013, 42, 480–488. [Google Scholar] [CrossRef]
- Islam, M.T.; Alam, M.M.; Patrucco, A.; Montarsolo, A.; Zoccola, M. Preparation of nanocellulose: A review. AATCC J. Res. 2014, 1, 17–23. [Google Scholar] [CrossRef]
- Kafy, A.; Kim, H.C.; Zhai, L.; Kim, J.W.; Hai, L.V.; Kang, T.J. Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci. Rep. 2017, 7, 17683. [Google Scholar] [CrossRef]
- Pang, Z.; Wang, P.; Dong, C. Ultrasonic pretreatment of cellulose in ionic liquid for efficient preparation of cellulose nanocrystals. Cellulose 2018, 25, 7053–7064. [Google Scholar] [CrossRef]
- Tao, P.; Zhang, Y.; Wu, Z.; Liao, X.; Nie, S. Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure. Carbohydr. Polym. 2019, 214, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From fundamentals to advanced applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Chang, C.; Wang, Y. Recent developments and prospective food-related applications of cellulose nanocrystals: A review. Cellulose 2020, 27, 2991–3011. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Rojas, J. Current Trends in the Production of Cellulose Nanoparticles and Nanocomposites for Biomedical Applications. In Cellulose: Fundamental Aspects and Current Trends; Bedoya, M., Ed.; IntechOpen: London, UK, 2015; pp. 193–228. [Google Scholar]
- Wang, N.; Ding, E.; Cheng, R. Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 2008, 24, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Henschen, J.; Ek, M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem. 2017, 19, 5564–5567. [Google Scholar] [CrossRef]
- Bian, H.; Luo, J.; Wang, R.; Zhou, X.; Ni, S.; Shi, R.; Dai, H. Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain. Chem. Eng. 2019, 7, 20022–20031. [Google Scholar] [CrossRef]
- Yu, H.; Abdalkarim, S.Y.H.; Zhang, H.; Wang, C.; Tam, K.C. Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustain. Chem. Eng. 2019, 7, 4912–4923. [Google Scholar] [CrossRef]
- Bian, H.; Dong, M.; Chen, L.; Zhou, X.; Wang, R.; Jiao, L.; Dai, H. On-demand regulation of lignocellulosic nanofibrils based on rapid fractionation using acid hydrotrope: Kinetic study and characterization. ACS Sustain. Chem. Eng. 2020, 8, 9569–9577. [Google Scholar] [CrossRef]
- Cheng, M.; Qin, Z.; Hu, J.; Liu, Q.; Wei, T.; Li, W. Facile and rapid one–step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohyd. Polym. 2020, 231, 115701. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 2013, 95, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.; Ureña, Y.R.; Lopretti, M.; Carballo, L.B.; Moreno, G.; Alfaro, B.; Baudrit, J.R. Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. J. Renew. Mater. 2017, 5, 271–279. [Google Scholar] [CrossRef]
- Fotie, G.; Limbo, S.; Piergiovanni, L. Manufacturing of food packaging based on nanocellulose: Current advances and challenges. Nanomaterials 2020, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues Generation, Utilization, and Availability. In Proceedings of the Regional on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 January 1997; Available online: http://www.fao.org/3/ad576e/ad576e00.pdf (accessed on 20 May 2022).
- Rodas, R.I.; Cano, V.E.; Frutos, M.L. Análisis de la cadena de valor de la soja en el Paraguay: Chain value analysis of soybean and its manufactures in Paraguay. S. Fla. J. Dev. 2021, 2, 7412–7429. [Google Scholar] [CrossRef]
- Fleck, J.C. Estudio de Factibilidad Económica del Uso del Bagazo de Caña de Azúcar para la Obtención de Papel de Impresión y Escritura en el Paraguay. Master’s Thesis, Universidad Nacional de Misiones, Garupá, Argentina, 2009. [Google Scholar]
- Research and Market. 2022. Available online: https://www.researchandmarkets.com/reports/5009171/global-nanocellulose-market-by-type-mfc-and-nfc#rela4-5305030 (accessed on 20 May 2022).
- Dorrestijn, E.; Laarhoven, L.J.J.; Arends, I.W.C.E.; Mulder, P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 2000, 54, 153–192. [Google Scholar] [CrossRef]
- Merci, A.; Urbano, A.; Grossmann, M.V.E.; Tischer, C.A.; Mali, S. Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res. Int. 2015, 73, 38–43. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, L.; Li, M.C.; Wu, Q.; Zhou, D. Cellulose nanocrystals (CNCs) from corn stalk: Activation energy analysis. Materials 2017, 10, 80. [Google Scholar] [CrossRef]
- Nang An, V.; Nhan, C.; Thuc, H.; Tap, T.D.; Van, T.T.T.; Van Viet, P.; Van Hieu, L. Extraction of high crystalline nanocellulose from biorenewable sources of Vietnamese agricultural wastes. J. Polym. Environ. 2020, 28, 1465–1474. [Google Scholar] [CrossRef]
- Debiagi, F.; Faria-Tischer, P.; Mali, S. Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 2020, 27, 1975–1988. [Google Scholar] [CrossRef]
- Pappas, C.; Tarantilis, P.A.; Daliani, I.; Mavromoustakos, T.; Polissiou, M. Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf (Hibiscus cannabinus L.) and eucalyptus (Eucalyptus rodustrus Sm.). Ultrason. Sonochemistry 2002, 9, 19–23. [Google Scholar] [CrossRef]
- Sugiyama, J.; Vuong, R.; Chanzy, H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 1991, 24, 4168–4175. [Google Scholar] [CrossRef]
- Frone, A.N.; Chiulan, I.; Panaitescu, D.M.; Nicolae, C.A.; Ghiurea, M.; Galan, A.M. Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater. Lett. 2017, 194, 160–163. [Google Scholar] [CrossRef]
- Coelho, C.C.; Michelin, M.; Cerqueira, M.A.; Gonçalves, C.; Tonon, R.V.; Pastrana, L.M.; Freitas-Silva, O.; Vicente, A.A.; Cabral, L.M.; Teixeira, J.A. Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydr. Polym. 2018, 192, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Sainorudin, M.H.; Abdullah, N.A.; Rani, M.S.; Mohammad, M.; Abd Kadir, N.H.; Razali, H.; Asim, N.; Yaakob, Z. Investigation of the structural, thermal and orphological properties of nanocellulose synthesised from pineapple leaves and sugarcane bagasse. Curr. Nanosci. 2022, 18, 68–77. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Soni, B.; Iglesias, M.C.; Vega-Erramuspe, I.B.; Frazier, C.E.; Peresin, M.S. Soybean hull pectin and nanocellulose: Tack properties in aqueous pMDI dispersions. J. Mater. Sci. 2022, 57, 5022–5035. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lee, B.M.; Koo, D.H.; Kang, P.H.; Jeun, J.P. Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose 2016, 23, 3039–3049. [Google Scholar] [CrossRef]
- Lin, N.; Dufresne, A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 2014, 6, 5384–5393. [Google Scholar] [CrossRef]
- Roman, M.; Winter, W.T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 2004, 5, 1671–1677. [Google Scholar] [CrossRef]
- Pavalaydon, K.; Ramasawmy, H.; Surroop, D. Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites. Environ. Dev. Sustain. 2022, 24, 9963–9984. [Google Scholar] [CrossRef]
- Gond, R.K.; Gupta, M.K.; Jawaid, M. Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications. Polym. Compos. 2021, 42, 5400–5412. [Google Scholar] [CrossRef]
- Andrade, F.K.; Morais, J.P.S.; Muniz, C.R.; Nascimento, J.H.O.; Vieira, R.S.; Gama, F.M.P.; Rosa, M.F. Stable microfluidized bacterial cellulose suspension. Cellulose 2019, 26, 5851–5864. [Google Scholar] [CrossRef]
- Lee, H.V.; Hamid, S.B.A.; Zain, S.K. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Sci. World J. 2014, 2014, 631013. [Google Scholar] [CrossRef] [PubMed]
- Katakojwala, R.; Mohan, S.V. Multi-product biorefinery with sugarcane bagasse: Process development for nanocellulose, lignin and biohydrogen production and lifecycle analysis. Chem. Eng. J. 2022, 446, 137233. [Google Scholar] [CrossRef]
Parameter | Soybean Hull | Sugarcane Bagasse | Method |
Crude fiber, % | 41.32 | 47.48 | FibreBag |
Neutral detergent fiber, % | 62.38 | 76.66 | FibreBag |
Acid detergent fiber, % | 49.79 | 58.79 | FibreBag |
Acid detergent lignin, % | 2.66 | 14.64 | FibreBag |
Cellulose, % | 47.13 | 44.5 | Calculated |
Hemicellulose, % | 12.59 | 17.87 | Calculated |
Ash, % | 4.30 | 8.45 | ISO 5984:2002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez, M.E.; Ferreiro, O.B.; Menezes, D.B.; Corrales-Ureña, Y.; Vega-Baudrit, J.R.; Rivaldi, J.D. Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization. Sustainability 2022, 14, 11386. https://doi.org/10.3390/su141811386
Velázquez ME, Ferreiro OB, Menezes DB, Corrales-Ureña Y, Vega-Baudrit JR, Rivaldi JD. Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization. Sustainability. 2022; 14(18):11386. https://doi.org/10.3390/su141811386
Chicago/Turabian StyleVelázquez, Maria Edelira, Omayra Beatriz Ferreiro, Diego Batista Menezes, Yendry Corrales-Ureña, José Roberto Vega-Baudrit, and Juan Daniel Rivaldi. 2022. "Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization" Sustainability 14, no. 18: 11386. https://doi.org/10.3390/su141811386
APA StyleVelázquez, M. E., Ferreiro, O. B., Menezes, D. B., Corrales-Ureña, Y., Vega-Baudrit, J. R., & Rivaldi, J. D. (2022). Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization. Sustainability, 14(18), 11386. https://doi.org/10.3390/su141811386