Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Observation and Data Sources
2.3. Backward Trajectory and Potential Source Contribution Function Analysis
3. Results and Discussion
3.1. Variations in Meteorological Conditions and Air Pollutants
3.1.1. Meteorological Conditions
3.1.2. Air Pollutants
3.2. Distinct Variations in Air Pollutants among the Different Functional Areas
3.3. Source Identification of Air Pollutants during the COVID-19 Lockdown Period
3.3.1. Correlation Analysis
3.3.2. Diagnostic Ratio Analysis
3.3.3. Backward Trajectory Clustering and Potential Source Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5 attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Su, J.; Cui, T.; Li, X.; Dong, X.; Sun, F.; Yang, Y.; Tong, D.; Zheng, Y.; Li, Y.; et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: A model-based decomposition analysis. Atmos. Chem. Phys. 2019, 19, 6125–6146. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China-a case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef]
- Zeng, J.J.; Liu, T.; Feiock, R.; Li, F. The impacts of China’s provincial energy policies on major air pollutants: A spatial econometric analysis. Energy Policy 2019, 132, 392–403. [Google Scholar] [CrossRef]
- Xue, F.; Niu, H.; Hu, S.; Wu, C.; Zhang, C.; Gao, N.; Ren, X.; Li, S.; Hu, W.; Wang, J.; et al. Seasonal variations and source apportionment of carbonaceous aerosol in PM2.5 from a coal mining city in the North China Plain. Energy Explor. Exploit. 2021, 40, 834–851. [Google Scholar] [CrossRef]
- Song, X.; Jia, J.; Wu, F.; Niu, H.; Ma, Q.; Guo, B.; Shao, L.; Zhang, D. Local emissions and secondary pollutants cause severe PM2.5 elevation in urban air at the south edge of the North China Plain: Results from winter haze of 2017–2018 at a mega city. Sci. Total Environ. 2021, 802, 149630. [Google Scholar] [CrossRef]
- Chen, S.; Yang, J.; Yang, W.; Wang, C.; Bärnighausen, T. COVID-19 control in China during mass population movements at New Year. Lancet 2020, 395, 764–766. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Wang, Y.; Zhang, S.; Zhang, K.M.; Zheng, H.; Xing, J.; Wu, Y.; Hao, J. Four-month changes in air quality during and after the COVID-19 lockdown in six megacities in China. Environ. Sci. Technol. Lett. 2020, 7, 802–808. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmos. Res. 2021, 264, 105823. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Rahman, M.M.; Paul, K.C.; Hossain, M.A.; Ali, G.G.M.N.; Rahman, M.S.; Thill, J.C. Machine learning on the COVID-19 pandemic, human mobility and air quality: A review. IEEE Access 2021, 9, 72420–72450. [Google Scholar] [CrossRef]
- Gamelas, C.; Abecasis, L.; Canha, N.; Almeida, S.M. The Impact of COVID-19 Confinement Measures on the Air Quality in an Urban-Industrial Area of Portugal. Atmosphere 2021, 12, 1097. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754, 142374. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S. Nonlinear impact of COVID-19 on pollutions—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2021, 65, 102629. [Google Scholar] [CrossRef]
- Kroll, J.H.; Heald, C.L.; Cappa, C.D.; Farmer, D.K.; Fry, J.L.; Murphy, J.G.; Steiner, A.L. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 2020, 12, 777–779. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Q.; Fu, Q.; Xu, H.; Shen, Y.; Liu, D.; Wang, Y.; Jia, H.; Cheng, J. A high-resolution typical pollution source emission inventory and pollution source changes during the COVID-19 lockdown in a megacity, China. Environ. Sci. Pollut. Res. 2021, 28, 45344–45352. [Google Scholar] [CrossRef]
- Zhang, K.; de Leeuw, G.; Yang, Z.; Chen, X.; Jiao, J. The impacts of the COVID-19 lockdown on air quality in the Guanzhong Basin, China. Remote Sens. 2020, 12, 3042. [Google Scholar] [CrossRef]
- Wang, H.; Tan, Y.; Zhang, L.; Shen, L.; Zhao, T.; Dai, Q.; Guan, T.; Ke, Y.; Li, X. Characteristics of air quality in different climatic zones of China during the COVID-19 lockdown. Atmos. Pollut. Res. 2021, 12, 101247. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Niu, H.; Wu, Z.; Xue, F.; Liu, Z.; Hu, W.; Wang, J.; Fan, J.; Lu, Y. Seasonal variations and risk assessment of heavy metals in PM from Handan, China. World J. Eng. 2021, 18, 886–897. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Abbott, M.L.; Lin, C.J.; Martian, P.; Einerson, J.J. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho. Appl. Geochem. 2008, 23, 438–453. [Google Scholar] [CrossRef]
- Xu, X.; Akhtar, U. Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling. Atmos. Chem. Phys. 2010, 10, 7073–7083. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.D.; Lin, C.J. Receptor modeling for smoke of 1998 biomass burning in Central America. J. Geophys. Res. 2001, 106, 22871–22886. [Google Scholar] [CrossRef]
- Qiao, Z.; Wu, F.; Xu, X.; Yang, J.; Liu, L. Mechanism of spatiotemporal air quality response to meteorological parameters: A national-scale analysis in China. Sustainability 2019, 11, 3957. [Google Scholar] [CrossRef]
- Pateraki, S.; Asimakopoulos, D.N.; Flocas, H.A.; Maggos, T.; Vasilakos, C. The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5-10). Sci. Total Environ. 2012, 419, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, C.; Wang, Q.; Qin, Q.; Ren, H.; Cao, J. Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. J. Environ. Manag. 2021, 284, 112071. [Google Scholar] [CrossRef]
- Hu, W.; Hu, M.; Hu, W.W.; Zheng, J.; Chen, C.; Wu, Y.; Guo, S. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmos. Chem. Phys. 2017, 17, 9979–10000. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.; Lian, X.; Fu, Y.; Lin, Q.; Yang, Y.; Bi, X.; Wang, X.; Peng, P.; Sheng, G. Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China. Environ. Res. 2022, 212, 113212. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Ding, Y.; Liu, Y.; Zhang, H.; Wang, Y.; Zhong, J. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China. Sci. China Earth Sci. 2019, 62, 1885–1902. [Google Scholar] [CrossRef]
- Xing, J.; Li, S.; Jiang, Y.; Wang, S.; Ding, D.; Dong, Z.; Zhu, Y.; Hao, J. Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: A response modeling study. Atmos. Chem. Phys. 2020, 20, 14347–14359. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Y.; Fu, H.; Chen, J.; Peng, M.; Wang, C. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs meteorological influences. Atmos. Chem. Phys. 2021, 21, 8677–8692. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef]
- Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2021, 751, 141820. [Google Scholar] [CrossRef]
- Ding, J.; Dai, Q.; Li, Y.; Han, S.; Zhang, Y.; Feng, Y. Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. J. Environ. Sci. 2021, 109, 45–56. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Du, R.; Teng, X.; Hu, R.; Yuan, Q.; Tang, S.; Ren, C.; Huang, X.; Xu, L.; et al. Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of eastern China. Geophys. Res. Lett. 2021, 48, 2020GL091611. [Google Scholar] [CrossRef]
- Xu, M.; Qin, Z.; Zhang, S. Integrated assessment of cleaning air policy in China: A case study for Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 296, 126596. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, T.; Hu, W.; Shao, L.; Sun, Y.; Xue, F.; Niu, H. Evolution in physico-chemical properties of fine particles emitted from residential coal combustion based on chamber experiment. Gondwana Res. 2022, 110, 252–263. [Google Scholar] [CrossRef]
- Hu, B.; Duan, J.; Liu, S.; Hu, J.; Zhang, M.; Kang, P.; Wang, C. Evaluation of the Effect of Fireworks Prohibition in the Beijing-Tianjin-Hebei and Surrounding Areas during the Spring Festival of 2018. Res. Environ. Sci. 2019, 32, 203–211. [Google Scholar]
- Xian, T.; Li, Z.; Wei, J. Changes in air pollution following the COVID-19 epidemic in Northern China: The role of meteorology. Front. Environ. Sci. 2021, 9, 654651. [Google Scholar] [CrossRef]
- He, Z.; Liu, P.; Zhao, X.; He, X.; Liu, J.; Mu, Y. Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019: A study based on multiple linear regression and WRF-Chem. Sci. Total Environ. 2021, 807, 150792. [Google Scholar] [CrossRef]
- Wu, C.L.; Wang, H.W.; Cai, W.J.; He, H.D.; Ni, A.N.; Peng, Z.R. Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse response of surface ozone to COVID-19 lockdown in China. Sci. Total Environ. 2021, 789, 147739. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wu, H.; Chen, D.; Ye, Z.; Shen, Y.; Liu, J.; Cheng, S. Estimation and prediction of pollutant emissions from agricultural and construction diesel machinery in the Beijing-Tianjin-Hebei (BTH) region, China. Environ. Pollut. 2020, 260, 113973. [Google Scholar] [CrossRef]
- Zhang, L.; An, J.; Liu, M.; Li, Z.; Liu, Y.; Tao, L.; Liu, X.; Zhang, F.; Zheng, D.; Gao, Q.; et al. Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China. Environ. Pollut. 2020, 262, 114276. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, B.; He, J.; Chen, S.X. Effects of corona virus disease-19 control measures on air quality in North China. Environmetrics 2021, 32, e2673. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.F.; Pavlovic, R.; Garland, R.M.; Massague, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef]
- Hassler, B.; McDonald, B.C.; Frost, G.J.; Borbon, A.; Carslaw, D.C.; Civerolo, K.; Granier, C.; Monks, P.S.; Monks, S.; Parrish, D.D.; et al. Analysis of long-term observations of NOx and CO in megacities and application to constraining emissions inventories. Geophys. Res. Lett. 2016, 43, 9920–9930. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Z.; Xie, F.; Cen, L.; Xie, Z.; Zhou, X.; He, J.; Lu, C. Changes in stoichiometric characteristics of ambient air pollutants pre-to post-COVID-19 in China. Environ. Res. 2022, 209, 112806. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef]
- Ostro, B.; World Health Organization/Occupational Environmental Health Team. Outdoor Air Pollution: Assessing the Environmental Burden of Disease at National and Local Levels; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Zha, H.; Wang, R.; Feng, X.; An, C.; Qian, J. Spatial characteristics of the PM2.5/PM10 ratio and its indicative significance regarding air pollution in Hebei Province, China. Environ. Monit. Assess. 2021, 193, 486. [Google Scholar] [CrossRef]
- Fu, S.; Guo, M.; Fan, L.; Deng, Q.; Han, D.; Wei, Y.; Luo, J.; Qin, G.; Cheng, J. Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown. Environ. Pollut. 2021, 272, 115927. [Google Scholar] [CrossRef]
- Chang, X.; Wang, S.; Zhao, B.; Xing, J.; Liu, X.; Wei, L.; Song, Y.; Wu, W.; Cai, S.; Zheng, H.; et al. Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Sci. Total Environ. 2019, 660, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, B.; Gao, J.; Kang, H.; Yang, P.; Wang, L.; Zhang, J. The Source Apportionment of Primary PM2.5 in an Aerosol Pollution Event over Beijing-Tianjin-Hebei Region using WRF-Chem, China. Aerosol Air Qual. Res. 2017, 17, 2966–2980. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, B.; Wang, L.; Lu, W.; Kang, H.; Gao, J. Source apportionments of black carbon induced by local and regional transport in the atmospheric boundary layer of the Yangtze River Delta under stable weather conditions. Sci. Total Environ. 2022, 840, 156517. [Google Scholar] [CrossRef] [PubMed]
2019 | PM2.5–10 | PM2.5 | SO2 | NO2 | CO | 2020 | PM2.5–10 | PM2.5 | SO2 | NO2 | CO |
---|---|---|---|---|---|---|---|---|---|---|---|
Stage I | Stage I | ||||||||||
PM2.5 | 0.834 ** | PM2.5 | 0.592 ** | ||||||||
SO2 | 0.019 | −0.009 | SO2 | 0.564 ** | 0.199 | ||||||
NO2 | 0.592 ** | 0.627 ** | 0.688 ** | NO2 | 0.628 ** | 0.799 ** | 0.581 ** | ||||
CO | 0.611 ** | 0.772 ** | 0.405 | 0.797 ** | CO | 0.493 * | 0.804 ** | −0.108 | 0.541 * | ||
O3 | −0.681 ** | −0.628 ** | −0.251 | −0.725 ** | −0.526 * | O3 | −0.240 | −0.511* | −0.22 | −0.480 * | −0.443 |
Stage II | Stage II | ||||||||||
PM2.5 | 0.879 ** | PM2.5 | 0.798 ** | ||||||||
SO2 | 0.780 ** | 0.671 * | SO2 | 0.261 | −0.236 | ||||||
NO2 | 0.711 * | 0.874 ** | 0.654 * | NO2 | 0.956 ** | 0.647 * | 0.411 | ||||
CO | 0.795 ** | 0.927 ** | 0.621 * | 0.898 ** | CO | 0.707 * | 0.820 ** | −0.064 | 0.673 * | ||
O3 | 0.367 | 0.13 | 0.701 * | 0.134 | 0.22 | O3 | −0.833 ** | −0.482 | −0.379 | −0.844 ** | −0.257 |
Stage III | Stage III | ||||||||||
PM2.5 | 0.943 ** | PM2.5 | 0.757 ** | ||||||||
SO2 | 0.008 | −0.012 | SO2 | 0.435 | 0.344 | ||||||
NO2 | 0.616 * | 0.564 * | 0.649 * | NO2 | 0.640 * | 0.709 ** | 0.812 ** | ||||
CO | 0.719 ** | 0.701 ** | 0.335 | 0.780 ** | CO | 0.742 ** | 0.926 ** | 0.603 * | 0.875 ** | ||
O3 | −0.305 | −0.238 | 0.594 * | 0.211 | 0.296 | O3 | 0.243 | −0.032 | 0.655 * | 0.468 | 0.175 |
Stage IV | Stage IV | ||||||||||
PM2.5 | 0.712 ** | PM2.5 | 0.413 | ||||||||
SO2 | −0.020 | 0.158 | SO2 | 0.381 | −0.001 | ||||||
NO2 | 0.217 | 0.445 | 0.808 ** | NO2 | 0.287 | 0.725 ** | 0.276 | ||||
CO | 0.199 | 0.534 * | 0.854 ** | 0.835 ** | CO | 0.242 | 0.839 ** | 0.052 | 0.750 ** | ||
O3 | 0.416 | 0.580 * | 0.148 | 0.338 | 0.464 | O3 | 0.339 | −0.353 | 0.527 * | −0.342 | −0.246 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, H.; Zhang, C.; Hu, W.; Hu, T.; Wu, C.; Hu, S.; Silva, L.F.O.; Gao, N.; Bao, X.; Fan, J. Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement. Sustainability 2022, 14, 11531. https://doi.org/10.3390/su141811531
Niu H, Zhang C, Hu W, Hu T, Wu C, Hu S, Silva LFO, Gao N, Bao X, Fan J. Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement. Sustainability. 2022; 14(18):11531. https://doi.org/10.3390/su141811531
Chicago/Turabian StyleNiu, Hongya, Chongchong Zhang, Wei Hu, Tafeng Hu, Chunmiao Wu, Sihao Hu, Luis F. O. Silva, Nana Gao, Xiaolei Bao, and Jingsen Fan. 2022. "Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement" Sustainability 14, no. 18: 11531. https://doi.org/10.3390/su141811531
APA StyleNiu, H., Zhang, C., Hu, W., Hu, T., Wu, C., Hu, S., Silva, L. F. O., Gao, N., Bao, X., & Fan, J. (2022). Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement. Sustainability, 14(18), 11531. https://doi.org/10.3390/su141811531