Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neighbourhood Emissions
2.2. Geographic, Census and Other Data
2.2.1. 2011 Census
2.2.2. Public Transport Density
2.2.3. Income
2.2.4. Well-Being
2.3. Geographically Weighted Regression
3. Results
3.1. Descriptive Statistics and Spatial Emission Patterns
3.2. Emissions and Social Factors
3.2.1. Spatial Variance in the Relationship between Income and Emissions
3.2.2. Spatial Variance in the Relationship between Other Social Factors and Emissions
3.3. Emissions and Well-Being
4. Discussion
4.1. Geographically Weighted Regression as a Tool for Emissions Analysis
4.2. Policy Implications
4.3. International Applications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
COICOP 4 Code and Description | New Category |
---|---|
7.1.1.1 New cars/vans outright purchase | Car/van purchases and motoring oils |
7.1.1.2 New cars/vans loan/HP purchase | Car/van purchases and motoring oils |
7.1.2.1 Second-hand cars/vans outright purchase | Car/van purchases and motoring oils |
7.1.2.2 Second-hand cars/vans loan/HP purchase | Car/van purchases and motoring oils |
7.1.3.1 Outright purchase of new or second-hand motorcycles | Car/van purchases and motoring oils |
7.1.3.2 Loan/HP purchase of new or second-hand motorcycles | Car/van purchases and motoring oils |
7.1.3.3 Purchase of bicycles and other vehicles | Other transport |
7.2.1.1 Can/van accessories and fittings | Car/van purchases and motoring oils |
7.2.1.2 Car/van spare parts | Car/van purchases and motoring oils |
7.2.1.3 Motorcycle accessories and spare parts | Car/van purchases and motoring oils |
7.2.1.4 Bicycle accessories and spare parts | Other transport |
7.2.2.1 Petrol | Car/van purchases and motoring oils |
7.2.2.2 Diesel oil | Car/van purchases and motoring oils |
7.2.2.3 Other motor oils | Car/van purchases and motoring oils |
7.2.3.1 Car of van repairs, servicing and other work | Other transport |
7.2.3.2 Motorcycle repairs and servicing | Other transport |
7.2.4.1 Motoring organisation subscription | Other transport |
7.2.4.2 Garage rent other costs, car washing | Other transport |
7.2.4.3 Parking fees, tolls and permits | Other transport |
7.2.4.4 Driving lessons | Other transport |
7.2.4.5 Anti-freeze, battery water, cleaning materials | Other transport |
7.3.1.1 Rail and tube season tickets | Rail |
7.3.1.2 Rail and tube other than season tickets | Rail |
7.3.2.1 Bus and coach season tickets | Bus |
7.3.2.2 Bus and coach other than season tickets | Bus |
7.3.3.1 Combined fares other than season tickets | Combined fares |
7.3.3.2 Combined fares season tickets | Combined fares |
7.3.4.1 Air fares within UK | Flights |
7.3.4.2 Air fares international | Flights |
7.3.4.3 School travel | Other transport |
7.3.4.4 Taxis and hired cars with drivers | Other transport |
7.3.4.5 Other personal travel and transport services | Other transport |
7.3.4.6 Hire of self drive cars, vans, bicycles | Other transport |
7.3.4.7 Car leasing | Car/van purchases and motoring oils |
7.3.4.8 Water travel, ferries and season tickets | Other transport |
Appendix B
References
- London Councils; Glanville, P. The Role of Londoners and Their Councils Will Be Crucial in Fight against Climate Change: Mayor Glanville; London Councils: London, UK, 2020. [Google Scholar]
- London Councils about Climate Change. Available online: https://www.londoncouncils.gov.uk/our-key-themes/environment/climate-change (accessed on 31 January 2022).
- The Amsterdam City Doughnut. Biomimicry 3.8; Circle Economy; C40. In The Amsterdam City Doughnut: A Tool for Transformative Action; The Amsterdam City Doughnut: Amsterdam, The Netherlands, 2020. [Google Scholar]
- University of Leeds. C40 Cities, The Future of Urban Consumption in a 1.5 °C World; University of Leeds: Leeds, UK, 2019. [Google Scholar]
- Cedemia Climate Emergency Declarations in 1496 Jurisdictions and Local Governments Cover 820 Million Citizens. Available online: https://climateemergencydeclaration.org/climate-emergency-declarations-cover-15-million-citizens/%0D (accessed on 31 January 2022).
- Hubacek, K.; Baiocchi, G.; Feng, K.; Muñoz Castillo, R.; Sun, L.; Xue, J. Global Carbon Inequality. Energy Ecol. Environ. 2017, 2, 361–369. [Google Scholar] [CrossRef]
- Peters, G.P.; Andrew, R.M.; Solomon, S.; Friedlingstein, P. Measuring a Fair and Ambitious Climate Agreement Using Cumulative Emissions. Environ. Res. Lett. 2015, 10, 105004. [Google Scholar] [CrossRef]
- Bruckner, B.; Hubacek, K.; Shan, Y.; Zhong, H.; Feng, K. Impacts of Poverty Alleviation on National and Global Carbon Emissions. Nat. Sustain. 2022, 5, 311–320. [Google Scholar] [CrossRef]
- Baker, L. Of Embodied Emissions and Inequality: Rethinking Energy Consumption. Energy Res. Soc. Sci. 2018, 36, 52–60. [Google Scholar] [CrossRef]
- Ivanova, D.; Vita, G.; Wood, R.; Lausselet, C.; Dumitru, A.; Krause, K.; Macsinga, I.; Hertwich, E.G. Carbon Mitigation in Domains of High Consumer Lock-In. Glob. Environ. Chang. 2018, 52, 117–130. [Google Scholar] [CrossRef]
- Cohen, C.; Lenzen, M.; Schaeffer, R. Energy Requirements of Households in Brazil. Energy Policy 2005, 33, 555–562. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Guan, D.; Liu, Z.; Meng, J.; Zhang, N.; Wei, Y.M. Unequal Household Carbon Footprints in China. Nat. Clim. Chang. 2017, 7, 75–80. [Google Scholar] [CrossRef]
- Jackson, T.; Papathanasopoulou, E. Luxury or “Lock-in”? An Exploration of Unsustainable Consumption in the UK: 1968 to 2000. Ecol. Econ. 2008, 68, 80–95. [Google Scholar] [CrossRef]
- Baiocchi, G.; Minx, J.C.; Hubacek, K. The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom. J. Ind. Ecol. 2010, 14, 50–72. [Google Scholar] [CrossRef]
- Ivanova, D.; Wood, R. The Unequal Distribution of Household Carbon Footprints in Europe and Its Link to Sustainability. Glob. Sustain. 2020, 3, e18. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. Household Energy Consumption in the UK: A Highly Geographically and Socio-Economically Disaggregated Model. Energy Policy 2008, 36, 3167–3182. [Google Scholar] [CrossRef]
- Minx, J.C.; Baiocchi, G.; Wiedmann, T.O.; Barrett, J.; Creutzig, F.; Feng, K.; Förster, M.; Pichler, P.-P.P.; Weisz, H.; Hubacek, K. Carbon Footprints of Cities and Other Human Settlements in the UK. Environ. Res. Lett. 2013, 8, 035039. [Google Scholar] [CrossRef]
- Sudmant, A.; Gouldson, A.; Millward-Hopkins, J.; Scott, K.; Barrett, J. Producer Cities and Consumer Cities: Using Production- and Consumption-Based Carbon Accounts to Guide Climate Action in China, the UK, and the US. J. Clean. Prod. 2018, 176, 654–662. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Oswald, Y. ‘Fair’ Inequality, Consumption and Climate Mitigation. Environ. Res. Lett. 2021, 16, 034007. [Google Scholar] [CrossRef]
- Lenzen, M.; Dey, C.; Foran, B. Energy Requirements of Sydney Households. Ecol. Econ. 2004, 49, 375–399. [Google Scholar] [CrossRef]
- Büchs, M.; Schnepf, S. V Who Emits Most? Associations between Socio-Economic Factors and UK Households ’ Home Energy, Transport, Indirect and Total CO2 Emissions. Ecol. Econ. 2013, 90, 114–123. [Google Scholar] [CrossRef]
- Simcock, N.; Jenkins, K.; Marrioli, G.; Lacy-Barnacle, M.; Bouzarovski, S.; Matiskainen, M. Vulnerability to Fuel and Transport Poverty; Centre for Research into Energy Demand Solutions: Oxford, UK, 2020. [Google Scholar]
- Simcock, N.; Jenkins, K.E.H.; Lacey-Barnacle, M.; Martiskainen, M.; Mattioli, G.; Hopkins, D. Identifying Double Energy Vulnerability: A Systematic and Narrative Review of Groups at-Risk of Energy and Transport Poverty in the Global North. Energy Res. Soc. Sci. 2021, 82, 102351. [Google Scholar] [CrossRef]
- Seto, K.C.; Davis, S.J.; Mitchell, R.B.; Stokes, E.C.; Unruh, G.; Ürge-Vorsatz, D. Carbon Lock-In: Types, Causes, and Policy Implications. Annu. Rev. Environ. Resour. 2016, 41, 425–452. [Google Scholar] [CrossRef]
- Brand-Correa, L.I.; Mattioli, G.; Lamb, W.F.; Steinberger, J.K. Understanding (and Tackling) Need Satisfier Escalation. Sustain. Sci. Pract. Policy 2020, 16, 309–325. [Google Scholar] [CrossRef]
- Mattioli, G.; Roberts, C.; Steinberger, J.K.; Brown, A. The Political Economy of Car Dependence: A Systems of Provision Approach. Energy Res. Soc. Sci. 2020, 66, 101486. [Google Scholar] [CrossRef]
- Büchs, M.; Mattioli, G. Trends in Air Travel Inequality in the UK: From the Few to the Many? Travel Behav. Soc. 2021, 25, 92–101. [Google Scholar] [CrossRef]
- Otto, I.M.; Kim, K.M.; Dubrovsky, N.; Lucht, W. Shift the Focus from the Super-Poor to the Super-Rich. Nat. Clim. Chang. 2019, 9, 82–84. [Google Scholar] [CrossRef]
- Ottelin, J.; Heinonen, J.; Junnila, S. Greenhouse Gas Emissions from Flying Can Offset the Gain from Reduced Driving in Dense Urban Areas. J. Transp. Geogr. 2014, 41, 1–9. [Google Scholar] [CrossRef]
- Alcock, I.; White, M.P.; Taylor, T.; Coldwell, D.F.; Gribble, M.O.; Evans, K.L.; Corner, A.; Vardoulakis, S.; Fleming, L.E. ‘Green’ on the Ground but Not in the Air: Pro-Environmental Attitudes Are Related to Household Behaviours but Not Discretionary Air Travel. Glob. Environ. Chang. 2017, 42, 136–147. [Google Scholar] [CrossRef]
- Wood, F.R.; Bows, A.; Anderson, K. Policy Update: A One-Way Ticket to High Carbon Lock-in: The UK Debate on Aviation Policy. Carbon Manag. 2012, 3, 537–540. [Google Scholar] [CrossRef]
- Higham, J.; Font, X. Decarbonising Academia: Confronting Our Climate Hypocrisy. J. Sustain. Tour. 2020, 28, 1–9. [Google Scholar] [CrossRef]
- Higham, J.; Ellis, E.; Maclaurin, J. Tourist Aviation Emissions: A Problem of Collective Action. J. Travel Res. 2019, 58, 535–548. [Google Scholar] [CrossRef]
- Elofsson, A.; Smedby, N.; Larsson, J.; Nässén, J. Local Governance of Greenhouse Gas Emissions from Air Travel. J. Environ. Policy Plan. 2018, 20, 578–594. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.; Leon-Gruchalski, B.; et al. A Systematic Review of the Evidence on Decoupling of GDP, Resource Use and GHG Emissions, Part II: Synthesizing the Insights. Environ. Res. Lett. 2020, 15, 065003. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Keyßer, L.T.; Steinberger, J.K. Scientists’ Warning on Affluence. Nat. Commun. 2020, 11, 3107. [Google Scholar] [CrossRef]
- Brand, C.; Anable, J.; Morton, C. Lifestyle, Efficiency and Limits: Modelling Transport Energy and Emissions Using a Socio-Technical Approach. Energy Effic. 2019, 12, 187–207. [Google Scholar] [CrossRef]
- CMA Building a Comprehensive and Competitive Electric Vehicle Charging Sector That Works for All Drivers. Available online: https://www.gov.uk/government/publications/electric-vehicle-charging-market-study-final-report/final-report#conclusions-and-recommendations (accessed on 6 December 2021).
- HM Treasury. Build Back Better: Our Plan for Growth; HM Treasury Policy Paper: London, UK, 2021; ISBN 9781528624152. [Google Scholar]
- IPCC. AR5 Synthesis Report: Climate Change 2014; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Creutzig, F.; Callaghan, M.; Ramakrishnan, A.; Javaid, A.; Niamir, L.; Minx, J.; Müller-Hansen, F.; Sovacool, B.; Afroz, Z.; Andor, M.; et al. Reviewing the Scope and Thematic Focus of 100 000 Publications on Energy Consumption, Services and Social Aspects of Climate Change: A Big Data Approach to Demand-Side Mitigation. Environ. Res. Lett. 2021, 16, 033001. [Google Scholar] [CrossRef]
- Ivanova, D.; Barrett, J.; Wiedenhofer, D.; Macura, B.; Callaghan, M.; Creutzig, F. Quantifying the Potential for Climate Change Mitigation of Consumption Options. Environ. Res. Lett. 2020, 15, 093001. [Google Scholar] [CrossRef]
- Creutzig, F.; Mühlhoff, R.; Römer, J. Decarbonizing Urban Transport in European Cities: Four Cases Show Possibly High Co-Benefits. Environ. Res. Lett. 2012, 7, 044042. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.P.; Seto, K.C. Global Typology of Urban Energy Use and Potentials for an Urbanization Mitigation Wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef]
- Creutzig, F.; Fernandez, B.; Haberl, H.; Khosla, R.; Mulugetta, Y.; Seto, K.C. Beyond Technology: Demand-Side Solutions for Climate Change Mitigation. Annu. Rev. Environ. Resour. 2016, 41, 173–198. [Google Scholar] [CrossRef]
- Climate Change Committee. Progress in Reducing Emissions: 2021 Report to Parliament; Climate Change Committee: London, UK, 2021; ISBN 9781528625449. [Google Scholar]
- Creutzig, F.; Niamir, L.; Cullen, J.; Díaz-josé, J.; Lamb, W.; Perkins, P. Demand-Side Solutions to Climate Change Mitigation Consistent with High Levels of Wellbeing. Nat. Clim. Chang. 2021, 12, 36–46. [Google Scholar] [CrossRef]
- Brand, C.; Goodman, A.; Rutter, H.; Song, Y.; Ogilvie, D. Associations of Individual, Household and Environmental Characteristics with Carbon Dioxide Emissions from Motorised Passenger Travel. Appl. Energy 2013, 104, 158–169. [Google Scholar] [CrossRef]
- Brand, C.; Dons, E.; Anaya-Boig, E.; Avila-Palencia, I.; Clark, A.; de Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Gerike, R.; Götschi, T.; et al. The Climate Change Mitigation Effects of Daily Active Travel in Cities. Transp. Res. Part D Transp. Environ. 2021, 93, 102764. [Google Scholar] [CrossRef]
- Khreis, H.; May, A.D.; Nieuwenhuijsen, M.J. Health Impacts of Urban Transport Policy Measures: A Guidance Note for Practice. J. Transp. Health 2017, 6, 209–227. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and Transport Planning Pathways to Carbon Neutral, Liveable and Healthy Cities; A Review of the Current Evidence. Environ. Int. 2020, 140, 105661. [Google Scholar] [CrossRef]
- Hall, S.M. Energy Justice and Ethical Consumption: Comparison, Synthesis and Lesson Drawing. Local Environ. 2013, 18, 422–437. [Google Scholar] [CrossRef]
- Jenkins, K.; McCauley, D.; Heffron, R.; Stephan, H.; Rehner, R. Energy Justice: A Conceptual Review. Energy Res. Soc. Sci. 2016, 11, 174–182. [Google Scholar] [CrossRef]
- Gössling, S. Urban Transport Justice. J. Transp. Geogr. 2016, 54, 1–9. [Google Scholar] [CrossRef]
- Verlinghieri, E.; Schwanen, T. Transport and Mobility Justice: Evolving Discussions. J. Transp. Geogr. 2020, 87, 102798. [Google Scholar] [CrossRef] [PubMed]
- Schwanen, T. Low-Carbon Mobility in London: A Just Transition? One Earth 2020, 2, 132–134. [Google Scholar] [CrossRef]
- Ivanova, D.; Middlemiss, L. Characterizing the Energy Use of Disabled People in the European Union towards Inclusion in the Energy Transition. Nat. Energy 2021, 6, 1188–1197. [Google Scholar] [CrossRef]
- Lucas, K.; Mattioli, G.; Verlinghieri, E.; Guzman, A. Transport Poverty and Its Adverse Social Consequences. Proc. Inst. Civ. Eng. Transp. 2016, 169, 353–365. [Google Scholar] [CrossRef]
- Czepkiewicz, M.; Heinonen, J.; Ottelin, J. Why Do Urbanites Travel More than Do Others? A Review of Associations between Urban Form and Long-Distance Leisure Travel. Environ. Res. Lett. 2018, 13, 073001. [Google Scholar] [CrossRef]
- Mishalani, R.G.; Goel, P.K.; Westra, A.M.; Landgraf, A.J. Modeling the Relationships among Urban Passenger Travel Carbon Dioxide Emissions, Transportation Demand and Supply, Population Density, and Proxy Policy Variables. Transp. Res. Part D Transp. Environ. 2014, 33, 146–154. [Google Scholar] [CrossRef]
- Zheng, H.; Long, Y.; Wood, R.; Moran, D.; Zhang, Z.; Meng, J.; Feng, K.; Hertwich, E.; Guan, D. Ageing society in developed countries challenges carbon mitigation. Nat. Clim. Change 2022, 12, 241–248. [Google Scholar] [CrossRef]
- Mattioli, G.; Scheiner, J. The Impact of Migration Background, Ethnicity and Social Network Dispersion on Air and Car Travel in the UK. Travel Behav. Soc. 2022, 27, 65–78. [Google Scholar] [CrossRef]
- Garvey, A.; Norman, J.B.; Büchs, M.; Barrett, J. A “Spatially Just” Transition? A Critical Review of Regional Equity in Decarbonisation Pathways. Energy Res. Soc. Sci. 2022, 88, 102630. [Google Scholar] [CrossRef]
- Soja, E.W. The City and Spatial Justice. Justice Injustices Spat. 2009, 1, 1–5. [Google Scholar] [CrossRef]
- Soja, E.W. Seeking Spatial Justice; University of Minnesota Press: Minneapolis, MN, USA, 2010. [Google Scholar]
- Pirie, G.H. On Spatial Justice. Environ. Plan. A 1983, 15, 465–473. [Google Scholar] [CrossRef]
- Chatterton, P. Seeking the Urban Common: Furthering the Debate on Spatial Justice. City 2010, 14, 625–628. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Simcock, N. Spatializing Energy Justice. Energy Policy 2017, 107, 640–648. [Google Scholar] [CrossRef]
- Fotheringham, A.S. Geographically Weighted Regression. In The SAGE Handbook of Spatial Analysis; Fotheringham, A.S., Rogerson, P.A., Eds.; Sage: London, UK, 2011; pp. 243–253. ISBN 9783642234309. [Google Scholar]
- Comber, A.; Brunsdon, C.; Charlton, M.; Dong, G.; Harris, R.; Lu, B.; Yihe, L.; Murakami, D.; Nakaya, T.; Wang, Y.; et al. A Route Map for Successful Applications of Geographically Weighted Regression. Geogr. Anal. 2022, 1–24. [Google Scholar] [CrossRef]
- Wang, S.; Shi, C.; Fang, C.; Feng, K. Examining the Spatial Variations of Determinants of Energy-Related CO2 Emissions in China at the City Level Using Geographically Weighted Regression Model. Appl. Energy 2019, 235, 95–105. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Kang, Y.; Chen, W.; Zhao, M.; Li, W. Analyzing the Impact of Urbanization Quality on CO2 Emissions: What Can Geographically Weighted Regression Tell Us? Renew. Sustain. Energy Rev. 2019, 104, 127–136. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors Affecting CO2 Emissions in China’s Agriculture Sector: Evidence from Geographically Weighted Regression Model. Energy Policy 2017, 104, 404–414. [Google Scholar] [CrossRef]
- Owen, A.; Kilian, L. Consumption-Based Greenhouse Gas Emissions for Bristol; University of Leeds: Leeds, UK, 2016. [Google Scholar]
- Owen, A. Consumption-Based Greenhouse Gas Household Emissions Profiles for London Boroughs; University of Leeds: Leeds, UK, 2021. [Google Scholar]
- Kilian, L.; Owen, A.; Newing, A.; Ivanova, D. Per Capita Consumption-Based Greenhouse Gas Emissions for UK Lower and Middle Layer Super Output Areas; UK Data Service: Colchester, UK, 2016. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity Spatial. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions; 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780511626982. [Google Scholar]
- Wood, R.; Neuhoff, K.; Moran, D.; Simas, M.; Grubb, M.; Stadler, K. The Structure, Drivers and Policy Implications of the European Carbon Footprint. Clim. Policy 2020, 20, S39–S57. [Google Scholar] [CrossRef]
- Defra UK’s Carbon Footprint. Available online: https://www.gov.uk/government/statistics/uks-carbon-footprint (accessed on 3 March 2021).
- ONS. Input–Output Supply and Use Tables. Available online: https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/datasets/inputoutputsupplyandusetables (accessed on 30 November 2020).
- ONS. Atmospheric Emissions: Greenhouse Gases by Industry and Gas. Available online: https://www.ons.gov.uk/economy/environmentalaccounts/datasets/ukenvironmentalaccountsatmosphericemissionsgreenhousegasemissionsbyeconomicsectorandgasunitedkingdom (accessed on 26 March 2020).
- Tukker, A.; de Koning, A.; Owen, A.; Lutter, S.; Bruckner, M.; Giljum, S.; Stadler, K.; Wood, R.; Hoekstra, R. Towards Robust, Authoritative Assessments of Environmental Impacts Embodied in Trade: Current State and Recommendations. J. Ind. Ecol. 2018, 22, 585–598. [Google Scholar] [CrossRef]
- Edens, B.; Hoekstra, R.; Zult, D.; Lemmers, O.; Wilting, H.C.; Wu, R. A Method To Create Carbon Footprint Estimates Consistent With National Accounts. Econ. Syst. Res. 2015, 27, 440–457. [Google Scholar] [CrossRef]
- Kilian, L.; Owen, A.; Newing, A.; Ivanova, D. Microdata Selection for Estimating Household Consumption-Based Emissions. Econ. Syst. Res. 2022. [Google Scholar] [CrossRef]
- UN: Statistics Division COICOP Revision. Available online: https://unstats.un.org/unsd/class/revisions/coicop_revision.asp (accessed on 19 August 2019).
- ONS. Living Costs and Food Survey: User Guidance and Technical Information on the Living Costs and Food Survey. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/methodologies/livingcostsandfoodsurvey (accessed on 27 November 2019).
- Min, J.; Rao, N.D. Estimating Uncertainty in Household Energy Footprints. J. Ind. Ecol. 2018, 22, 1307–1317. [Google Scholar] [CrossRef]
- ONS. Census Geography: An Overview of the Various Geographies Used in the Production of Statistics Collected via the UK Census. Available online: https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography (accessed on 23 August 2019).
- ONS. Estimates of the Population for the UK, England and Wales, Scotland and Northern Ireland. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland (accessed on 30 November 2020).
- Girod, B.; de Haan, P. More or Better? A Model for Changes in Household Greenhouse Gas Emissions Due to Higher Income. J. Ind. Ecol. 2010, 14, 31–49. [Google Scholar] [CrossRef]
- ONS. 2011 Census. Available online: https://www.nomisweb.co.uk/ (accessed on 25 February 2019).
- ONS. Population Estimates for the UK, England and Wales, Scotland and Northern Ireland: Mid-2015. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/mid2015 (accessed on 26 November 2021).
- Transport for London Public Transport Accessibility Levels. Available online: https://data.london.gov.uk/dataset/public-transport-accessibility-levels (accessed on 12 August 2021).
- Mayor of London; Transport for London. Assessing Transport Connectivity in London; Mayor of London: London, UK, 2015. [Google Scholar]
- ONS. Income Estimates for Small Areas, England and Wales Statistical Bulletins. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/bulletins/smallareamodelbasedincomeestimates/previousReleases (accessed on 12 August 2021).
- Mayor of London; London Assembly London. Ward Well-Being Scores. Available online: https://data.london.gov.uk/london-ward-well-being-scores/ (accessed on 10 August 2021).
- Mayor of London. London Well-Being Scores at Ward Level; Mayor of London: London, UK, 2011. [Google Scholar]
- Lamb, W.F.; Steinberger, J.K. Human Well-Being and Climate Change Mitigation. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e485. [Google Scholar] [CrossRef]
- Singleton, P.A. Walking (and Cycling) to Well-Being: Modal and Other Determinants of Subjective Well-Being during the Commute. Travel Behav. Soc. 2019, 16, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, K.; Chng, S.; Clark, B.; Davis, A.; De Vos, J.; Ettema, D.; Handy, S.; Martin, A.; Reardon, L. Commuting and Wellbeing: A Critical Overview of the Literature with Implications for Policy and Future Research. Transp. Rev. 2020, 40, 5–34. [Google Scholar] [CrossRef]
- De Vos, J.; Singleton, P.A.; Dill, J. Travel, Health and Well-Being: A Focus on Past Studies, a Special Issue, and Future Research. J. Transp. Health 2020, 19, 100973. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Lu, B.; Harris, P.; Charlton, M.E.; Brunsdon, C.; Nakaya, T.; Gollini, I. Package ‘GW Model’; National University of Ireland Maynooth: Kildare, Ireland, 2017. [Google Scholar]
- BEIS. 2019 UK Greenhouse Gas Emissions, Final Figures; BEIS: Fauville, France, 2021. [Google Scholar]
- Pearson, K. On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs. Proc. R. Soc. Lond. 1897, 60, 489–498. [Google Scholar]
- Ward, A. Spurious Correlations and Causal Inferences. Erkenn 2013, 78, 699–712. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Song, K. Household Carbon Inequality in the U. S. J. Clean. Prod. 2021, 278, 123994. [Google Scholar] [CrossRef]
- Steinbach, R.; Green, J.; Datta, J.; Edwards, P. Cycling and the City: A Case Study of How Gendered, Ethnic and Class Identities Can Shape Healthy Transport Choices. Soc. Sci. Med. 2011, 72, 1123–1130. [Google Scholar] [CrossRef]
- Aldred, R. Incompetent or Too Competent? Negotiating Everyday Cycling Identities in a Motor Dominated Society. Mobilities 2013, 8, 252–271. [Google Scholar]
- Aldred, R.; Jungnickel, K. Why Culture Matters for Transport Policy: The Case of Cycling in the UK. J. Transp. Geogr. 2014, 34, 78–87. [Google Scholar] [CrossRef]
- Shove, E. Beyond the ABC: Climate Change Policy and Theories of Social Change. Environ. Plan. A 2010, 42, 1273–1285. [Google Scholar] [CrossRef]
- Shove, E. Energy Transitions in Practice: The Case of Global Indoor Climate Change. In Governing the Energy Transition: Reality, Illusion or Necessity? Routledge: London, UK, 2012; pp. 51–74. [Google Scholar]
- Shove, E. Putting Practice into Policy: Reconfiguring Questions of Consumption and Climate Change. Contemp. Soc. Sci. 2014, 9, 415–429. [Google Scholar] [CrossRef]
- Andersson, D.; Nässén, J.; Larsson, J.; Holmberg, J. Greenhouse Gas Emissions and Subjective Well-Being: An Analysis of Swedish Households. Ecol. Econ. 2014, 102, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Verhofstadt, E.; Van Ootegem, L.; Defloor, B.; Bleys, B. Linking Individuals’ Ecological Footprint to Their Subjective Well-Being. Ecol. Econ. 2016, 127, 80–89. [Google Scholar] [CrossRef]
- Wilson, J.; Tyedmers, P.; Spinney, J.E.L. An Exploration of the Relationship between Socioeconomic and Well-Being Variables and Household Greenhouse Gas Emissions. J. Ind. Ecol. 2013, 17, 880–891. [Google Scholar] [CrossRef]
- Clement, M.T.; Smith, C.L.; Leverenz, T. Quality of Life and the Carbon Footprint: A Zip-Code Level Study Across the United States. J. Environ. Dev. 2021, 30, 323–343. [Google Scholar] [CrossRef]
- Committee on Climate Change. The Sixth Carbon Budget: Aviation; Committee on Climate Change: London, UK, 2020. [Google Scholar]
- HM Government. Aviation 2050-The Future of UK Aviation; HM Government: London, UK, 2018. [Google Scholar]
- Bows-Larkin, A.; Mander, S.; Wood, R.; Traut, M. Aviation and Climate Change—The Continuing Challenge. In Green Aviation; Agarwal, R., Collier, F., Schäfer, A., Seabridge, A., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 3–14. [Google Scholar]
- Oswald, Y.; Owen, A.; Steinberger, J.K. Large Inequality in International and Intranational Energy Footprints between Income Groups and across Consumption Categories. Nat. Energy 2020, 5, 231–239. [Google Scholar] [CrossRef]
- Clarke-Sather, A.; Qu, J.; Wang, Q.; Zeng, J.; Li, Y. Carbon Inequality at the Sub-National Scale: A Case Study of Provincial-Level Inequality in CO2 Emissions in China 1997–2007. Energy Policy 2011, 39, 5420–5428. [Google Scholar] [CrossRef]
- Parrique, T.; Barth, J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. Decoupling Debunked: Evidence and Arguments against Green Growth as a Sole Strategy for Sustainability; European Environmental Bureau: Brussels, Belgum, 2019. [Google Scholar]
- Larsson, J.; Elofsson, A.; Sterner, T.; Åkerman, J. International and National Climate Policies for Aviation: A Review. Clim. Policy 2019, 19, 787–799. [Google Scholar] [CrossRef]
- London Councils Transport. Available online: https://www.londoncouncils.gov.uk/our-key-themes/transport (accessed on 4 February 2022).
- Mayor of London. Mayor’s Transport Strategy for London; Mayor of London: London, UK, 2018. [Google Scholar]
- London Councils; London TravelWatch; Trust for London. Living on the Edge: The Impact of Travel Costs on Low Paid Workers Living in Outer London; London Councils: London, UK, 2015. [Google Scholar]
- UN: DESA. World Urbanization Prospects; UN: DESA: New York, NY, USA, 2018. [Google Scholar]
- Lenzen, M.; Wood, R.; Wiedmann, T. Uncertainty Analysis for Multi-Region Input-Output Models—A Case Study of the UK’S Carbon Footprint. Econ. Syst. Res. 2010, 22, 43–63. [Google Scholar] [CrossRef]
- Rodrigues, J.F.D.; Moran, D.; Wood, R.; Behrens, P. Uncertainty of Consumption-Based Carbon Accounts. Environ. Sci. Technol. 2018, 52, 7577–7586. [Google Scholar] [CrossRef] [PubMed]
- Druckman, A.; Chitnis, M.; Sorrell, S.; Jackson, T. Missing Carbon Reductions? Exploring Rebound and Backfire Effects in UK Households. Energy Policy 2011, 39, 3572. [Google Scholar] [CrossRef]
- Gehlke, C.E.; Biehl, K. Certain Effects of Grouping Upon the Size of the Correlation Coefficient in Census Tract Material. J. Am. Stat. Assoc. 1934, 29, 169–170. [Google Scholar]
- Flowerdew, R. How Serious Is the Modifiable Areal Unit Problem for Analysis of English Census Data? Popul. Trends 2011, 145, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Openshaw, S. Ecological Fallacies and the Analysis of Areal Census Data. Environ. Plan. A 1984, 16, 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Weighted by Population | MSOA Average | MSOA Population (1000) | ||||||
---|---|---|---|---|---|---|---|---|
Weekly Income (1000 GBP) | Distance to Workplace (100 km) | Public Transport Density (Metric) | Pop. Aged ≥65 (%) | Pop. Aged ≤14 (%) | Pop. Identifying as BAME (%) | Pop. Limited in Day-to-Day Activities (%) | ||
Mean | 0.23 | 0.11 | 2.31 | 11.22 | 18.68 | 39.51 | 14.17 | 8.69 |
Std. deviation | 0.08 | 0.02 | 0.77 | 4.12 | 3.88 | 19.35 | 2.68 | 1.54 |
Minimum | 0.10 | 0.06 | 0.00 | 2.40 | 5.78 | 3.81 | 6.04 | 5.41 |
Maximum | 0.59 | 0.18 | 4.64 | 27.23 | 34.00 | 93.86 | 22.79 | 15.36 |
Original CategoryPTAL 2015 | Transformed Variable Used in This Paper | |
---|---|---|
Minimum | Maximum | |
0 (lowest) | 0.00 | 0.00 |
1a | 0.01 | 1.24 |
1b | 1.25 | 1.79 |
2 | 1.80 | 2.40 |
3 | 2.41 | 2.77 |
4 | 2.78 | 3.03 |
5 | 3.04 | 3.26 |
6a | 3.27 | 3.71 |
6b (highest) | 3.72 | 4.64 |
Car/Van Purchases and Motoring Oils | Flights | Rail | Bus | Combined Fares | Other Transport | Total Transport | |
---|---|---|---|---|---|---|---|
Mean (tCO2e/capita) | 1.11 | 0.98 | 0.13 | 0.03 | 0.08 | 0.39 | 2.72 |
Standard deviation | 0.39 | 0.35 | 0.07 | 0.01 | 0.02 | 0.17 | 0.66 |
Minimum (MSOA) | 0.52 | 0.45 | 0.02 | 0.01 | 0.01 | 0.10 | 1.44 |
Maximum (MSOA) | 2.26 | 2.40 | 0.47 | 0.06 | 0.16 | 1.29 | 4.47 |
Dep. Variable (tCO2e) | Residual Moran’s I (LM) | AIC | Adjusted R2 | Global Coefficients (GWR) | Local Income Coeff. (GWR) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LM | GWR | LM | GWR | Income | Intercept | Pop. | 1st Qu. | Med | 3rd Qu. | >0 (%) | ||
Cars/vans | 0.79 ** | 5139 | 3016 | 0.17 | 0.88 | 1.06 ** | 1.55 * | 0.69 ** | 0.42 | 1.59 | 4.35 | 83.2 |
Flights | 0.54 ** | 3867 | 2817 | 0.73 | 0.89 | 3.84 ** | −1.41 ** | 0.26 ** | 2.46 | 3.15 | 3.98 | 98.89 |
Rail | 0.55 ** | 842 | −282 | 0.65 | 0.87 | 0.73 ** | −0.25 ** | −0.01 | 0.46 | 0.62 | 0.81 | 96.26 |
Bus | 0.51 ** | −2069 | −3089 | 0.31 | 0.72 | −0.05 ** | 0.02 | 0.04 ** | −0.11 | −0.06 | −0.02 | 17.91 |
C. Fares | 0.56 ** | −761 | −1877 | 0.38 | 0.77 | 0.07 ** | −0.07 * | 0.07 ** | −0.07 | 0.06 | 0.14 | 64.47 |
Dependent Variable (tCO2e) | Predictor Variable | Residuals’ Moran’s I (LM) | AIC | Adjusted R2 | ||
---|---|---|---|---|---|---|
LM | GWR | LM | GWR | |||
Car/van purchases and motoring oils | Public Transport Density | 0.49 ** | 4534 | 3072 | 0.55 | 0.88 |
Pop. ltd in day-to-day act. | 0.74 ** | 5087 | 3223 | 0.21 | 0.86 | |
Pop. aged 65 or older | 0.42 ** | 4140 | 3148 | 0.70 | 0.88 | |
Pop. aged 14 or younger | 0.77 ** | 5123 | 3184 | 0.18 | 0.87 | |
Pop. identifying as BAME | 0.69 ** | 4856 | 3127 | 0.38 | 0.88 | |
Distance to workplace | 0.51 ** | 4577 | 3240 | 0.53 | 0.86 | |
Flights | Pop. ltd in day-to-day act. | 0.50 ** | 3669 | 2500 | 0.78 | 0.92 |
Pop. aged 65 or older | 0.43 ** | 3542 | 2749 | 0.81 | 0.90 | |
Pop. aged 14 or younger | 0.53 ** | 3733 | 2630 | 0.76 | 0.91 | |
Pop. identifying as BAME | 0.44 ** | 3764 | 2822 | 0.76 | 0.89 | |
Rail | Public Transport Density | 0.38 ** | 565 | −197 | 0.73 | 0.87 |
Pop. ltd in day-to-day act. | 0.50 ** | 746 | −168 | 0.68 | 0.86 | |
Pop. aged 65 or older | 0.37 ** | 538 | −196 | 0.74 | 0.87 | |
Pop. aged 14 or younger | 0.53 ** | 766 | −133 | 0.67 | 0.86 | |
Pop. identifying as BAME | 0.49 ** | 798 | −210 | 0.66 | 0.87 | |
Distance to workplace | 0.39 ** | 601 | −119 | 0.72 | 0.86 | |
Bus | Public Transport Density | 0.49 ** | −2107 | −3047 | 0.34 | 0.71 |
Pop. ltd in day-to-day act. | 0.51 ** | −2076 | −3029 | 0.32 | 0.71 | |
Pop. aged 65 or older | 0.49 ** | −2226 | −3101 | 0.41 | 0.73 | |
Pop. aged 14 or younger | 0.51 ** | −2084 | −3155 | 0.32 | 0.74 | |
Pop. identifying as BAME | 0.51 ** | −2067 | −2999 | 0.31 | 0.70 | |
Distance to workplace | 0.50 ** | −2076 | −3024 | 0.32 | 0.70 | |
Combined fares | Public Transport Density | 0.47 ** | −876 | −1877 | 0.45 | 0.77 |
Pop. ltd in day-to-day act. | 0.52 ** | −856 | −1752 | 0.43 | 0.75 | |
Pop. aged 65 or older | 0.50 ** | −849 | −1788 | 0.43 | 0.76 | |
Pop. aged 14 or younger | 0.53 ** | −812 | −1773 | 0.41 | 0.75 | |
Pop. identifying as BAME | 0.37 ** | −1205 | −1975 | 0.60 | 0.80 | |
Distance to workplace | 0.47 ** | −885 | −1803 | 0.45 | 0.76 |
Dependent Variable (tCO2e) | Predictor Variable | Global Coefficients | Local Predictor Coefficients | ||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Intercept | Population | Income | 1st Qu. | Med | 3rd Qu. | >0 (%) | ||
Car/van purchases and motoring oils | Public Transport Density | −2.91 ** | 6.50 ** | 0.76 ** | 1.63 ** | −1.71 | −0.76 | −0.17 | 15.08 |
Pop. ltd in day-to-day act. | 3.74 ** | 0.98 | 0.07 | 1.73 ** | −2.35 | −0.53 | 1.63 | 42.41 | |
Pop. aged 65 or older | 7.86 ** | −0.81 * | 0.36 ** | −0.10 | 0.97 | 3.78 | 5.55 | 83.20 | |
Pop. aged 14 or younger | 1.70 ** | 1.39 * | 0.25 * | 1.65 ** | −2.07 | −0.35 | 1.24 | 41.40 | |
Pop. identifying as BAME | −1.46 ** | −0.49 | 2.15 ** | −1.72 ** | −1.19 | −0.49 | 0.20 | 31.88 | |
Distance to workplace | 1.17 ** | 0.64 | −0.64 ** | 1.51 ** | −0.38 | 0.00 | 0.37 | 49.60 | |
Flights | Pop. ltd in day-to-day act. | −3.63 ** | −0.85 ** | 0.86 ** | 3.20 ** | −4.49 | −2.29 | −0.81 | 11.44 |
Pop. aged 65 or older | −2.75 ** | −0.58 * | 0.38 ** | 4.25 ** | −3.52 | −1.80 | −0.68 | 12.15 | |
Pop. aged 14 or younger | −2.34 ** | −1.20 ** | 0.86 ** | 3.04 ** | −3.20 | −1.67 | −0.36 | 17.51 | |
Pop. identifying as BAME | 0.49 ** | −0.73 * | −0.23 ** | 4.77 ** | −0.37 | 0.02 | 0.37 | 52.23 | |
Rail | Public Transport Density | 0.24 ** | −0.66 ** | −0.01 | 0.68 ** | −0.01 | 0.01 | 0.04 | 63.77 |
Pop. ltd in day-to-day act. | −0.56 ** | −0.16 * | 0.09 ** | 0.63 ** | −0.07 | 0.00 | 0.10 | 50.91 | |
Pop. aged 65 or older | −0.58 ** | −0.07 | 0.02 * | 0.82 ** | −0.18 | −0.08 | −0.02 | 19.03 | |
Pop. aged 14 or younger | −0.39 ** | −0.21 ** | 0.09 ** | 0.60 ** | −0.02 | 0.05 | 0.12 | 69.33 | |
Pop. identifying as BAME | 0.07 ** | −0.15 * | −0.08 ** | 0.86 ** | −0.03 | 0.00 | 0.02 | 47.47 | |
Distance to workplace | −0.09 ** | −0.17 ** | 0.10 ** | 0.69 ** | −0.01 | 0.00 | 0.02 | 59.41 | |
Bus | Public Transport Density | 0.02 ** | −0.02 | 0.04 ** | −0.05 ** | 0.04 | 0.12 | 0.20 | 84.01 |
Pop. ltd in day-to-day act. | −0.04 ** | 0.02 | 0.05 ** | −0.05 ** | −0.66 | −0.40 | −0.14 | 12.96 | |
Pop. aged 65 or older | −0.10 ** | 0.05 ** | 0.04 ** | −0.03 ** | −0.57 | −0.33 | −0.06 | 19.33 | |
Pop. aged 14 or younger | 0.04 ** | 0.01 | 0.03 ** | −0.03 ** | −0.52 | −0.31 | −0.11 | 14.98 | |
Pop. identifying as BAME | 0.00 | 0.02 | 0.04 ** | −0.05 ** | −0.15 | −0.03 | 0.06 | 43.02 | |
Distance to workplace | 0.00 ** | 0.02 | 0.04 ** | −0.05 ** | −0.02 | 0.03 | 0.06 | 66.50 | |
Combined fares | Public Transport Density | 0.07 ** | −0.19 ** | 0.07 ** | 0.06 ** | −0.22 | −0.11 | 0.01 | 26.62 |
Pop. ltd in day-to-day act. | −0.25 ** | −0.03 | 0.11 ** | 0.03 ** | −0.19 | −0.09 | 0.10 | 36.03 | |
Pop. aged 65 or older | −0.15 ** | −0.03 | 0.07 ** | 0.09 ** | −0.19 | −0.08 | 0.03 | 30.26 | |
Pop. aged 14 or younger | −0.14 ** | −0.06 | 0.10 ** | 0.02 * | 0.00 | 0.04 | 0.09 | 77.13 | |
Pop. identifying as BAME | 0.09 ** | 0.05 * | −0.02 ** | 0.24 ** | −0.02 | 0.01 | 0.03 | 59.41 | |
Distance to workplace | −0.03 ** | −0.05 | 0.10 ** | 0.06 ** | −1.71 | −0.76 | −0.17 | 15.08 |
Car/Van Purchases and Motoring Oils | Land Transport | All Transport | |
---|---|---|---|
Index Score 2013 | 17.60 | 11.68 | 10.56 |
Subjective well-being average score, 2013 | 27.84 | 25.60 | 24.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilian, L.; Owen, A.; Newing, A.; Ivanova, D. Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications. Sustainability 2022, 14, 11844. https://doi.org/10.3390/su141911844
Kilian L, Owen A, Newing A, Ivanova D. Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications. Sustainability. 2022; 14(19):11844. https://doi.org/10.3390/su141911844
Chicago/Turabian StyleKilian, Lena, Anne Owen, Andy Newing, and Diana Ivanova. 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications" Sustainability 14, no. 19: 11844. https://doi.org/10.3390/su141911844
APA StyleKilian, L., Owen, A., Newing, A., & Ivanova, D. (2022). Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications. Sustainability, 14(19), 11844. https://doi.org/10.3390/su141911844