Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Situation of Mine
2.2. Determining the Water Inrush Risk Evaluation Index
2.2.1. Equivalent Thickness of Sandstone (M)
2.2.2. Sandstone Lithology Coefficient (P)
2.2.3. Sand-Mud Interbedded Coefficient (I)
2.2.4. Core Recovery Rate (R)
2.3. Establishment of the Combination Weighting-Set Pair Analysis Prediction Model
2.3.1. Construction of the Set Connection Degree Function
2.3.2. Combination Weighting
- Improved Analytic Hierarchy ProcessThe IAHP uses the three-scale method of the optimal transfer matrix to construct the judgment matrix, which not only has good judgment transfer and rationality of scale values, but also avoids the blind and subjective consistency test, greatly improving the accuracy of the judgment results and the objectivity of the evaluation [37]. The weight determination steps are as follows:
- Constructing the Comparison Matrix A
According to the three-scale theory, the importance of the main control factors is compared pairwise, and the comparison matrix is as follows:In this matrix, when aij = 1, i is more important than j; when aij = 0, i and j are equally important; and when aij = −1, j is more important than i.- Calculating the Optimal Transfer Matrix C
- Determining the Judgment Matrix D
- Weighting the Evaluation Index
According to the judgment matrix D, the weight coefficient of the elements in this level related to some elements of the previous level is obtained using the product square root method. The weight vectors of the n elements in this hierarchy are W = [w1, w2,···,wn]T, and the formula for solving each weight is as follows: - Entropy weight methodThe entropy weight method is an objective method that determines the index weight by quantifying the data information of each unit to be evaluated. The smaller the entropy value of an index, the greater the weight, and vice versa [38]. The weight determination steps are as follows [39]:
- Constructing the Original Data Matrix R
The original data matrix R of m evaluation objects and n evaluation indexes is constructed as follows:- Standardizing the Processing of Original Data
X = (xij)n × m is obtained after standardization of R, where xij is the standard value of the jth evaluation index for the ith evaluation object. The standard values with positive correlation and negative correlation with risk can be calculated by Equations (14) and (15), respectively:- Determining the Entropy of the Evaluation Index
- Weighting the Evaluation Index
- Optimal combination weighting based on the sum of squared deviations
2.3.3. Calculate the Comprehensive Connection Degree
2.3.4. Improvement in the Evaluation Criteria
- Arrange all the connection data in the same grade in descending order and redefine them as am1, am2, am3, …, amn−1, amt. According to the confidence criterion of set pair analysis, the greater the value of the sample connection degree ami (1 < I < t), the higher its membership degree in the same grade and the lower the water inrush risk.
- Eami is an evaluation index that indicates the water inrush risk. Assuming that ami and Eami are negatively correlated, their relationship can be expressed by establishing a cosine function model:
- After Eami is standardized in the same grade to obtain the risk evaluation index E*ami in each grade, E*ami is quantified in the grade by Formula (26):
2.4. Prediction of Water Inrush Risk of Coal Seam Roof in the 221 Mining Area
2.4.1. Determination of Evaluation Index Partition Threshold
2.4.2. Calculate the Index Weight
- Improve the analytic hierarchy process and calculate subjective weight
- 2.
- Entropy weight method to calculate the objective weight
- 3.
- Combination weighting
2.4.3. Calculate the Comprehensive Connection Degree and Grade Judgment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gui, H.R.; Lin, M.L.; Song, X.M. Identification and Application of Roof Bed Separation (Water) in Coal Mines. Mine Water Environ. 2018, 37, 376–384. [Google Scholar] [CrossRef]
- Gui, H.R.; Lin, M.L. Types of water hazards in China coalmines and regional characteristics. Nat. Hazards 2016, 84, 1501–1512. [Google Scholar] [CrossRef]
- Fan, K.F.; Li, W.P.; Wang, Q.Q.; Liu, S.L.; Xue, S.; Xie, C.Y.; Wang, Z.K. Formation mechanism and prediction method of water inrush from separated layers within coal seam mining: A case study in the Shilawusu mining area, China. Eng. Fail. Anal. 2019, 103, 158–172. [Google Scholar] [CrossRef]
- Shi, S.Q.; Wei, J.C.; Yin, H.Y.; Xie, D.L.; Yang, J.H. Forecasting of water abundance of coal roof sandstone aquifer in Jining No. 3 mine. Coal Geol. Explor. 2017, 45, 100–104. [Google Scholar]
- Lin, C.S. Research and application of water control of thick sandstone in coal roof. Coal Geol. Explor. 2019, 47 (Suppl. S1), 81–85. [Google Scholar]
- Liu, J.H.; Zhao, Y.L.; Tan, T.; Zhang, L.Y.; Zhu, S.T.; Xu, F.Y. Evolution and modeling of mine water inflow and hazard characteristics in southern coalfields of China: A case of Meitanba mine. Int. J. Min. Sci. Technol. 2022, 32, 513–524. [Google Scholar] [CrossRef]
- Peng, T.; Feng, X.H.; Long, L.L.; Wang, Y.; Niu, C.; Liu, Y.F. Study on mechanism of water inrush and sand inrush in mining of coal seam with thick overlying bedrock. Coal Sci. Technol. 2019, 47, 260–264. [Google Scholar] [CrossRef]
- Sun, K.; Xia, Y.C.; Li, C.; Chen, J.P.; Fang, G. Risk assessment of water inflow (inrush) from coal seam roof under fully mechanized caving mining. J. Xi’an Univ. Sci. Technol. 2019, 39, 452–460. [Google Scholar] [CrossRef]
- Shi, L.Q.; Qu, X.Y.; Han, J.; Qiu, M.; Gao, W.F.; Qin, D.X.; Liu, H.S. Multi-model fusion for assessing the risk of inrush of limestone karst water through mine floor. J. China Coal Soc. 2019, 44, 2484–2493. [Google Scholar] [CrossRef]
- Lin, C.J.; Zhang, M.; Zhou, Z.Q.; Li, L.P.; Shi, S.Q.; Chen, Y.X.; Dai, W.J. A new quantitative method for risk assessment of water inrush in karst tunnels based on variable weight function and improved cloud model. Tunn. Undergr. Space Technol. 2020, 95, 10313. [Google Scholar] [CrossRef]
- Han, C.H.; Wei, J.C.; Xie, D.L.; Xu, J.G.; Zhang, W.J.; Zhao, Z.C. Water-richness evaluation of sandstone aquifer based on set pair analysis-variable fuzzy set coupling method: A case from Jurassic Zhiluo formation of Jinjiaqu coal mine in Ningdong mining area. J. China Coal Soc. 2020, 45, 2432–2443. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Q.; Zeng, Y.F.; Zheng, L.; Xu, L.L.; Liu, S.Q.; Wang, D. Integrated variable weight model and improved DRASTIC model for groundwater vulnerability assessment in a shallow porous aquifer. J. Hydrol. 2022, 608, 127538. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.C.; Li, L.P.; Peng, L.; Xu, Z.H.; Gao, C.L. Attribute recognition model for risk assessment of water inrush. Bull. Eng. Geol. Environ. 2019, 78, 1057–1071. [Google Scholar] [CrossRef]
- Liu, W.T.; Yu, J.; Shen, J.J.; Zheng, Q.S.; Han, M.K.; Hu, Y.Y.; Meng, X.X. Application of Clustering and Stepwise Discriminant Analysis Based on Hydrochemical Characteristics in Determining the Source of Mine Water Inrush. Geofluids 2021, 2021, 6670645. [Google Scholar] [CrossRef]
- Ding, X.W.; Chong, X.; Bao, Z.F.; Xue, Y.; Zhang, S.H. Fuzzy Comprehensive Assessment Method Based on the Entropy Weight Method and Its Application in the Water Environmental Safety Evaluation of the Heshangshan Drinking Water Source Area, Three Gorges Reservoir Area, China. Water 2017, 9, 329. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, H.; Zhao, Y.W.; Cui, J.Q. Dynamic visualization and prediction for water bursting on coal roof based on “three maps method”. J. China Coal Soc. 2016, 41, 2968–2974. [Google Scholar] [CrossRef]
- Li, J.Y.; Liu, Q.M.; Liu, Y.; Chai, H.C. Risk Assessment of Water Inrush from Coal Seam Roof Based on GIS and Entropy Method. Coal Eng. 2019, 51, 115–119. [Google Scholar]
- Ji, Y.D. The Risk Assessment of Roof Water Inrush based on Cluster Analysis and Fuzzy Comprehensive Evaluation. Min. Saf. Environ. Prot. 2019, 46, 68–72. [Google Scholar]
- Chen, X.F.; Miao, Y.C.; Chen, W.T. Study on evaluation of mine floor water inrush danger based on Fuzzy Set Pair Analysis Method. Coal Sci. Technol. 2019, 47, 218–223. [Google Scholar] [CrossRef]
- Yin, H.Y.; Lefticariu, L.; Wei, J.C.; Xie, D.L.; Xiao, L.L.; Zhang, W.J.; Tong, W.L. Water inrush risk zoning and classification during coal seam mining in the Jiangzhuang coal mine, Shandong province. China Min. Mag. 2015, 24, 149–154. [Google Scholar]
- Li, Y.G.; Li, H.J.; Xia, Y.J.; Liu, H.C.; Han, G. Prediction and evaluation study on coal seam roof water inrush based on multi-type four-double method. Coal Sci. Technol. 2019, 47, 219–228. [Google Scholar] [CrossRef]
- Yin, H.Y.; Shi, Y.L.; Niu, H.G. A GIS-based model of potential groundwater yield zonation for a sandstone aquifer in the Juye Coalfifield, Shangdong, China. J. Hydrol. 2018, 557, 434–447. [Google Scholar] [CrossRef]
- Fan, L.M.; Ma, L.Q.; Yu, Y.H.; Wang, S.K.; Xu, Y.J. Water-conserving mining influencing factors identification and weight determination in northwest China. Int. J. Coal Sci. Technol. 2019, 6, 95–101. [Google Scholar] [CrossRef]
- Onifade, M.; Genc, B. Spontaneous combustion liability of coal and coal-shale: A review of prediction method. Int. J. Coal Sci. Technol. 2019, 6, 151–168. [Google Scholar] [CrossRef]
- Wu, Q.; Jie, S.H.; Pei, Z.J. A new practical methodology of the coal floor water bursting evaluating III: The application of ANN vulnerable index method based on GIS. J. China Coal Soc. 2007, 45, 1301–1306. [Google Scholar]
- Yin, H.Y.; Zhou, X.L.; Lang, N.; Zhang, L.F.; Wang, M.L.; Wu, T.; Li, X. Prediction model and application of GA-BP neural network based on SSA optimization. Geol. Explor. 2021, 49, 175–185. [Google Scholar] [CrossRef]
- Liu, W.T.; Sun, Q.; Xu, B.C. Risk Evaluation of Water Inrush from Coal Seam Floor Based on GIS and Principal Component Analysis-Entropy Weight Method. Min. Res. Dev. 2020, 40, 83–88. [Google Scholar] [CrossRef]
- Li, X.B.; Li, Q.S.; Xu, X.H.; Zhao, Y.Q.; Li, P. Multiple Influence Factor Sensitivity Analysis and Height Prediction of Water-Conducting Fracture Zone. Geofluids 2021, 2021, 8825906. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, S.C.; Yang, B.B.; Liu, J.W.; Ye, Z.Y. Predicting the height of the water-conducting fractured zone using multiple regression analysis and GIS. Environ. Earth Sci. 2019, 78, 422. [Google Scholar] [CrossRef]
- Chen, J.T.; Zhao, J.H.; Zhang, S.C.; Zhang, Y.; Yang, F.; Li, M. An Experimental and Analytical Research on the Evolution of Mining Cracks in Deep Floor Rock Mass. Pure Appl. Geophys. 2020, 177, 5325–5348. [Google Scholar] [CrossRef]
- Yao, B.H.; Bai, H.B.; Zhang, B.Y. Numerical simulation on the risk of roof water inrush in Wuyang Coal Mine. Int. J. Min. Sci. Technol. 2012, 22, 273–277. [Google Scholar] [CrossRef]
- Meng, Z.P.; Li, G.Q.; Xie, X.T. A geological assessment method of floor water inrush risk and its application. Eng. Geol. 2012, 143–144, 51–60. [Google Scholar] [CrossRef]
- Wu, X. Prediction of Water Abundance of Sandstone Aquifer in 2-2 Coal Seam Roof and Risk Assessment of Water Inrush in 22 Mining Area of Yingpanhao Coal Mine. Shandong Univ. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Zhao, K.Q. Set Pair Analysis and Its Preliminary Application; Zhejiang Science and Technology Press: Hangzhou, China, 2000. [Google Scholar]
- Wang, T.T.; Jin, D.W.; Liu, J.; Yang, J.; Wang, X.Y.; Zhao, W. Application of dynamic weight-set pair analysis model in mine water inrush discrimination. J. China Coal Soc. 2019, 44, 2840–2850. [Google Scholar] [CrossRef]
- Shi, S.Q.; Wei, J.C.; Xie, D.L.; Yin, H.Y.; Li, L.Y. Prediction analysis model for groundwater potential based on set pair analysis of a confined aquifer overlying a mining area. Arab. J. Geosci. 2019, 12, 115. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jia, Z.X.; Jin, M.J.; Hao, J.N. Routine scheme Comparison of Coal Goaf Expressway Based on Comprehensive Evaluation Method. J. Taiyuan Univ. Sci. Technol. 2019, 40, 395–400. [Google Scholar] [CrossRef]
- Song, X.; Ning, Y.C.; Wang, R.M.; Wang, S.Q. Prediction and Evaluation of Coal Floor Water Inrush Based on Objective Optimization Combination Weighting Model. Saf. Coal Mines. 2019, 50, 138–141+145. [Google Scholar] [CrossRef]
- Hou, E.K.; Ji, Z.C.; Che, X.Y.; Wang, J.W.; Gao, L.J.; Tian, S.X.; Yang, F. Water abundance prediction method of weathered bedrock based on improved AHP and the entropy weight method. J. China Coal Soc. 2019, 44, 3164–3173. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Q.S.; Wang, X.Y. Application of attribute interval recognition model based on optimal combined weighting to prediction of classification of rockburst intensity. J. China Coal Soc. 2020, 45, 3772–3780. [Google Scholar] [CrossRef]
- Deng, H.W.; Wang, P. Evaluation of Regional Water Environmental Carrying Capacity Based on GIS and Sum of Deviation Square Combination Weighting Method. J. Yangtze River Sci. Res. Inst. 2020, 37, 22–28. [Google Scholar]
Borehole | Before Standardization | Post Standardization | ||||||
---|---|---|---|---|---|---|---|---|
M | R | I | P | M | R | I | P | |
S01 | 59.25 | 0.74 | 0.11 | 0.60 | 0.49 | 0.76 | 0.44 | 0.75 |
S02 | 58.74 | 0.76 | 0.06 | 0.76 | 0.48 | 0.69 | 0.95 | 1.00 |
S03 | 29.40 | 0.74 | 0.08 | 0.31 | 0.16 | 0.76 | 0.75 | 0.29 |
S04 | 44.94 | 0.82 | 0.10 | 0.50 | 0.33 | 0.48 | 0.53 | 0.58 |
S05 | 30.94 | 0.70 | 0.10 | 0.34 | 0.18 | 0.90 | 0.52 | 0.34 |
S07 | 77.18 | 0.73 | 0.09 | 0.69 | 0.69 | 0.79 | 0.63 | 0.88 |
S09 | 67.95 | 0.76 | 0.08 | 0.74 | 0.59 | 0.69 | 0.75 | 0.97 |
S10 | 40.43 | 0.83 | 0.10 | 0.36 | 0.28 | 0.45 | 0.56 | 0.36 |
S13 | 36.99 | 0.81 | 0.10 | 0.31 | 0.24 | 0.52 | 0.58 | 0.29 |
S15 | 54.24 | 0.74 | 0.07 | 0.32 | 0.43 | 0.76 | 0.84 | 0.30 |
S18 | 40.86 | 0.81 | 0.08 | 0.43 | 0.29 | 0.52 | 0.72 | 0.48 |
N47 | 57.32 | 0.80 | 0.09 | 0.47 | 0.47 | 0.55 | 0.68 | 0.54 |
N51 | 49.08 | 0.67 | 0.06 | 0.27 | 0.38 | 1.00 | 0.95 | 0.22 |
N58 | 21.63 | 0.77 | 0.08 | 0.18 | 0.07 | 0.66 | 0.79 | 0.08 |
N46 | 47.24 | 0.76 | 0.08 | 0.51 | 0.36 | 0.69 | 0.82 | 0.61 |
K03 | 48.98 | 0.80 | 0.10 | 0.58 | 0.38 | 0.55 | 0.59 | 0.71 |
K07 | 96.43 | 0.83 | 0.09 | 0.54 | 0.90 | 0.45 | 0.63 | 0.64 |
K13 | 50.03 | 0.82 | 0.11 | 0.51 | 0.39 | 0.48 | 0.47 | 0.60 |
K15 | 55.03 | 0.86 | 0.12 | 0.58 | 0.44 | 0.34 | 0.29 | 0.71 |
K22 | 38.77 | 0.76 | 0.08 | 0.37 | 0.26 | 0.69 | 0.79 | 0.39 |
K28 | 54.55 | 0.73 | 0.15 | 0.45 | 0.44 | 0.79 | 0.00 | 0.51 |
K30 | 31.18 | 0.82 | 0.09 | 0.29 | 0.18 | 0.48 | 0.65 | 0.25 |
K39 | 15.18 | 0.80 | 0.07 | 0.13 | 0.00 | 0.55 | 0.84 | 0.01 |
K47 | 58.27 | 0.76 | 0.09 | 0.52 | 0.48 | 0.69 | 0.71 | 0.63 |
K54 | 105.13 | 0.73 | 0.07 | 0.42 | 1.00 | 0.79 | 0.94 | 0.47 |
K62 | 32.11 | 0.76 | 0.08 | 0.19 | 0.19 | 0.69 | 0.79 | 0.10 |
K71 | 68.78 | 0.83 | 0.07 | 0.40 | 0.60 | 0.45 | 0.86 | 0.43 |
K75 | 73.44 | 0.81 | 0.08 | 0.46 | 0.65 | 0.52 | 0.81 | 0.53 |
1# | 79.62 | 0.89 | 0.11 | 0.68 | 0.72 | 0.24 | 0.44 | 0.88 |
2# | 57.47 | 0.94 | 0.14 | 0.38 | 0.47 | 0.07 | 0.15 | 0.40 |
3# | 65.75 | 0.96 | 0.09 | 0.49 | 0.56 | 0.00 | 0.68 | 0.57 |
Risk Assessment Index | Risk Assessment Grade | |||
---|---|---|---|---|
I | II | III | IV | |
Equivalent thickness of sandstone (M) | 0–40 | 40–60 | 60–85 | >85 |
Core recovery rate (R) | >0.85 | 0.79–0.85 | 0.73–0.79 | 0–0.73 |
Interbedded coefficient of sand and mud (I) | >0.12 | 0.10–0.12 | 0.08–0.10 | 0–0.08 |
Lithology coefficient of sandstone (P) | 0–0.34 | 0.34–0.49 | 0.49–0.64 | >0.64 |
Evaluating Indicator | Equivalent Thickness of Sandstone (M) | Lithology Coefficient of Sandstone (P) | Interbedded Coefficient of Sand and Mud (I) | Core Recovery Rate (R) |
---|---|---|---|---|
IAHP | 0.4114 | 0.2112 | 0.2689 | 0.1084 |
Entropy weight method | 0.3271 | 0.3063 | 0.1675 | 0.1990 |
Combination weighting | 0.3697 | 0.2582 | 0.2187 | 0.1532 |
Borehole | Comprehensive Degree of Connection | Grade | Borehole | Comprehensive Degree of Connection | Grade | ||||
---|---|---|---|---|---|---|---|---|---|
am | bm | cm | am | bm | cm | ||||
S01 | 0.129 | 0.548 | 0.323 | II | K07 | 0.102 | 0.379 | 0.519 | III |
S02 | 0.023 | 0.423 | 0.554 | III | K13 | 0.347 | 0.620 | 0.033 | II |
S03 | 0.628 | 0.053 | 0.319 | II | K15 | 0.464 | 0.385 | 0.151 | I |
S04 | 0.379 | 0.608 | 0.013 | II | K22 | 0.568 | 0.136 | 0.295 | I |
S05 | 0.659 | 0.187 | 0.153 | I | K28 | 0.390 | 0.456 | 0.153 | II |
S07 | 0.000 | 0.260 | 0.740 | IV | K30 | 0.705 | 0.199 | 0.097 | I |
S09 | 0.000 | 0.352 | 0.648 | III | K39 | 0.653 | 0.128 | 0.219 | I |
S10 | 0.691 | 0.306 | 0.003 | I | K47 | 0.032 | 0.677 | 0.291 | II |
S13 | 0.679 | 0.301 | 0.019 | I | K54 | 0.112 | 0.146 | 0.742 | IV |
S15 | 0.365 | 0.289 | 0.346 | II | K62 | 0.628 | 0.077 | 0.295 | I |
S18 | 0.500 | 0.336 | 0.164 | I | K71 | 0.252 | 0.399 | 0.348 | II |
N47 | 0.109 | 0.766 | 0.125 | II | K75 | 0.097 | 0.485 | 0.417 | II |
N51 | 0.460 | 0.168 | 0.372 | II | 1# | 0.263 | 0.189 | 0.548 | III |
N58 | 0.628 | 0.102 | 0.270 | I | 2# | 0.607 | 0.393 | 0.000 | I |
N46 | 0.236 | 0.428 | 0.336 | II | 3# | 0.153 | 0.637 | 0.209 | II |
K03 | 0.229 | 0.584 | 0.186 | II |
Borehole | Grade | E | Borehole | Grade | E | Borehole | Grade | E |
---|---|---|---|---|---|---|---|---|
S01 | II | 1.849 | N47 | II | 1.881 | K30 | I | 0.000 |
S02 | III | 2.912 | N51 | II | 1.310 | K39 | I | 0.232 |
S03 | II | 1.000 | N58 | I | 0.343 | K47 | II | 2.000 |
S04 | II | 1.448 | N46 | II | 1.681 | K54 | IV | 3.000 |
S05 | I | 0.206 | K03 | II | 1.692 | K62 | I | 0.343 |
S07 | IV | 4.000 | K07 | III | 2.615 | K71 | II | 1.656 |
S09 | III | 3.000 | K13 | II | 1.501 | K75 | II | 1.899 |
S10 | I | 0.061 | K15 | I | 1.000 | 1# | III | 2.000 |
S13 | I | 0.118 | K22 | I | 0.592 | 2# | I | 0.432 |
S15 | II | 1.472 | K28 | II | 1.430 | 3# | II | 1.812 |
S18 | I | 0.863 |
Borehole | Location | Grade | E | Borehole | Location | Grade | E |
---|---|---|---|---|---|---|---|
ZD-6 | Safe region | II | 1.924 | ZD-2 | Transition region | II | 2.422 |
ZL-4 | Safe region | III | 0.838 | ZL-7 | Safe region | II | 0.847 |
ZL-2 | Transition region | II | 2.031 | ZL-5 | Safe region | I | 1.336 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, D.; Han, J.; Zhang, H.; Wang, K.; Du, Z.; Miao, T. Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis. Sustainability 2022, 14, 11978. https://doi.org/10.3390/su141911978
Xie D, Han J, Zhang H, Wang K, Du Z, Miao T. Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis. Sustainability. 2022; 14(19):11978. https://doi.org/10.3390/su141911978
Chicago/Turabian StyleXie, Daolei, Jing Han, Huide Zhang, Kai Wang, Zhongwen Du, and Tianyu Miao. 2022. "Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis" Sustainability 14, no. 19: 11978. https://doi.org/10.3390/su141911978
APA StyleXie, D., Han, J., Zhang, H., Wang, K., Du, Z., & Miao, T. (2022). Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis. Sustainability, 14(19), 11978. https://doi.org/10.3390/su141911978