Estimating the Role of Climate Internal Variability and Sources of Uncertainties in Hydrological Climate-Impact Projections
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Climate Change Scenarios
3. Methodology
3.1. Hydrological Modeling and Parameter Uncertainty Assessment
3.2. Climate Change Scenario and Downscaling Method
3.3. Method of the CIV Estimation
3.4. Source of Uncertainties Decomposition
3.4.1. The Hydrological Response to Climate Change
3.4.2. Decomposition of the Hydrological Response to Climate Change
3.4.3. The Different Components of the Total Uncertainty
3.4.4. Source of Quantifying Uncertainties
4. Results
4.1. Hydrological Model Parameters Calibrated and Uncertainty
4.2. Estimating the Uncertainties of Hydrological Climate-Impact Projections under Climate Change
4.2.1. Changes in Precipitation Projections
4.2.2. Change in Temperature Projections
4.2.3. Change in ET Projections
4.2.4. Change in Runoff Projections
4.2.5. Impacts of Climate Factors on Runoff Change
4.3. Evaluation and Investigation of the Source of Uncertainty
4.3.1. Estimating the Role of Internal Variability
4.3.2. Contribution Analysis of Uncertainty Sources
5. Discussion
5.1. Hydrological Climate-Impact Projections Changes
5.2. The Role of Internal Variability
5.3. Estimating the Source of Uncertainties
5.4. Uncertainty and Limitation
6. Conclusions
- (1)
- Based on this study, which is an analysis of the future climate conditions for the Biliu River basin, it can be found that precipitation and temperature show an increasing trend in the future, especially in RCP8.5 and in the later future period. In addition, the climate factors may produce different influences and uncertainty contributions to runoff change. For instance, the precipitation has a significant positive effect on runoff, and ET shows a relatively small negative effect. Hence, the change in precipitation and ET may be due to a corresponding change in runoff. Furthermore, wide uncertainty ranges can be found in each projection, and sources of uncertainty may have obviously influenced the reliability of the future hydrological process simulation.
- (2)
- By elucidating the impact of climate internal variability on runoff projections, this study analyzes the role of internal variability of hydrological climate-impact projections and determines the important influencing factors of uncertainty for runoff projections. In terms of precipitation and ET, the internal variability is larger in June to September, and the SNR values also show that internal variability and external forcing are both important influencing factors for runoff. Combining with the internal variability and GCMs are the dominant uncertainty contributors in June to September. It is worth noting that the internal variability can propagate in the hydrological simulation process, and that the internal variability of runoff projections is remarkable in the flood season of the study watershed in the future. For the rainy season in the study basin, some water resources adaptation measures need be planned to alleviate the influence of climate change, especially in high emission scenarios (RCP8.5) and in the far future (2080s).
- (3)
- The uncertainty contribution of internal variability with the GCMs and SWAT model parameters is temporal variability. The internal variability and GCMs are the main uncertainty contributors for runoff projections in the rainy season (June to September). In contrast, the internal variability and SWAT model parameter sets provided obvious uncertainty to the runoff in January to May, and October to December. There are many studies focused on estimating the role of climate internal uncertainty in climate system projections, such as temperature and precipitation projections. This study investigated the role of climate internal variability, GCM models, emission scenarios, hydrological model parameters and interaction effects in runoff projections. The findings of this study indicate that the role of internal variability for hydrological climate-impact projections is noticeable in the future; these kinds of effects may greatly influence stakeholders and local water resource governments to provide appropriate hydrological regulations and flood control measures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178–179, 521–534. [Google Scholar] [CrossRef]
- Wang, B.; Liu, D.L.; Waters, C.; Yu, Q. Quantifying sources of uncertainty in projected wheat yield changes under climate change in eastern Australia. Clim. Change 2018, 151, 259273. [Google Scholar] [CrossRef]
- Vaghefi, S.A.; Iravani, M.; Sauchyn, D.; Andreichuk, Y.; Goss, G.; Faramarzi, M. Regionalization and parameterization of a hydrologic model significantly affect the cascade of uncertainty in climate-impact projections. Clim. Dyn. 2019, 53, 2861–2886. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan. Atmos. Res. 2019, 227, 233–248. [Google Scholar] [CrossRef]
- Yuan, S.; Quiring, S.M.; Kalcic, M.M.; Apostel, A.M.; Evenson, G.R.; Kujawa, H.A. Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. J. Hydrol. 2020, 588, 125064. [Google Scholar] [CrossRef]
- Champagne, O.; Arain, M.A.; Leduc, M.; Coulibaly, P.; McKenzie, S. Future shift in winter sreamflow modulated by the internal var-iability of climate in southern Ontario. Hydrol. Earth Syst. Sci. 2020, 24, 3077–3096. [Google Scholar] [CrossRef]
- Byun, K.; Chiu, C.-M.; Hamlet, A.F. Effects of 21st century climate change on seasonal flow regimes and hydrologic extremes over the Midwest and Great Lakes region of the US. Sci. Total Environ. 2018, 650, 1261–1277. [Google Scholar] [CrossRef]
- Li, L.; Diallo, I.; Xu, C.-Y.; Stordal, F. Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model. J. Hydrol. 2015, 528, 1–16. [Google Scholar] [CrossRef]
- Chen, J.; ST-Denis, B.G.; Brissette, F.P.; Lucas-Picher, P. Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies. Am. Meteorol. Soc. 2016, 17, 2155–2173. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Letsinger, S.L.; Stewart, I.T.; Maurer, E.P. Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States. Hydrol. Res. 2016, 47, 483–500. [Google Scholar] [CrossRef]
- Lee, M.H.; Bae, D.H. Uncertainty Assessment of Climate Change Impacts on Hydrology: A Case Study for the Central Highlands of Vietnam. Procedia Eng. 2016, 154, 617–623. [Google Scholar] [CrossRef]
- Nóbrega, M.T.; Collischonn, W.; Tucci, C.E.M.; Paz, A.R. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrol. Earth Syst. Sci. 2011, 15, 585–595. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Lafaysse, M.; Hingray, B.; Mezghani, A.; Gailhard, J.; Terray, L. Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resour. Res. 2014, 50, 3317–3341. [Google Scholar] [CrossRef]
- Gupta, A.; Govindaraju, R. Propagation of structural uncertainty in watershed hydrologic models. J. Hydrol. 2019, 575, 66–81. [Google Scholar] [CrossRef]
- Zhang, R.; Corte-Real, J.; Moreira, M.; Kilsby, C.; Birkinshaw, S.; Burton, A.; Fowler, H.J.; Forsythe, N.; Nunes, J.P.; Sampaio, E.; et al. Downscaling climate change of water availability, sediment yield and extreme events_ application to a Mediterranean climate basin. Int. J. Climatol. 2019, 39, 2947–2963. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Efstathiou, D.; Giannakis, G.V.; Kritsotakis, M.; Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K.; Nikolaidis, N.P. Climate change impact on the hydrological budget of a large Mediterranean island. Hydrol. Sci. J. 2019, 64, 1190–1203. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H.M. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef]
- Pesce, M.; Critto, A.; Torresan, S.; Giubilato, E.; Pizzol, L.; Marcomini, A. Assessing uncertainty of hydrological and ecological parameters originating from the application of an ensemble of ten global-regional climate model projections in a coastal ecosystem of the lagoon of Venice, Italy. Ecol. Eng. 2019, 133, 121–136. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.; Alexander, M.A.; Smoliak, B.V. Projecting north American climate over next 50 years: Uncertainty duo to internal variability. J. Clim. 2014, 27, 2271–2296. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1108. [Google Scholar] [CrossRef]
- Van Doi, M.; Kim, J. Projections on climate internal variability and climatological mean at fine scales over South Korea. Stoch. Hydrol. Hydraul. 2020, 34, 1037–1058. [Google Scholar] [CrossRef]
- Steinschneider, S.; Wi, S.; Brown, C. The integrated effects of climate and hydrologic uncertainty on future flood risk assessments. Hydrol. Process. 2015, 29, 2823–2839. [Google Scholar] [CrossRef]
- Schindler, A.; Toreti, A.; Zampieri, M.; Scoccimarro, E.; Gualdi, S.; Fukutome, S.F.; Xoplaki, E.; Luterbacher, J. On the Internal Variability of Simulated Daily Precipitation. J. Clim. 2015, 28, 3624–3630. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Hristopulos, D.T.; Nikolaidis, N.P. Estimation of the uncertainty of hydrologic predictions in a karstic Mediterranean watershed. Sci. Total Environ. 2020, 717, 137131. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Barnes, E.; Deser, C.; Foust, W.E.; Phillips, A.S. Quantifying the Role of Internal Climate Variability in Future Climate Trends. J. Clim. 2015, 28, 6443–6456. [Google Scholar] [CrossRef]
- Yu, B.; Li, G.; Chen, S.; Lin, H. The role of internal variability in climate change projections of North American surface air temperature and temperature extremes in CanESM2 large ensemble simulations. Clim. Dyn. 2020, 55, 869–885. [Google Scholar] [CrossRef]
- Maher, N.; Lehner, F.; Marotzke, J. Quantifying the role of internal variability in the temperature we expect to observe in the coming decades. Environ. Res. Lett. 2020, 15, 54014. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Bosshard, T.; Carambia, M.; Goergen, K.; Kotlarski, S.; Krahe, P.; Zappa, M.; Schar, C. Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res. 2013, 49, 1523–1536. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P. Partitioning uncertainty in streamflow projections under nonstationary model conditions. Adv. Water Resour. 2018, 112, 266–282. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Fu, G.T.; Zhou, H.C.; Liu, J.G. Quantifying Uncertainties in Extreme Flood Predictions under Climate Change for a Medium-Sized Basin in Northeastern China. J. Hydrometeorol. 2016, 17, 3099–3112. [Google Scholar] [CrossRef]
- Kujawa, H.; Kalcic, M.; Martin, J.; Aloysius, N.; Apostel, A.; Kast, J.; Murumkar, A.; Evenson, G.; Becker, R. The hydrological model as a source of nutrient loading uncertainty in future climate. Sci. Total Environ. 2020, 724, 138004. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.; Zischg, A.P.; Mosimann, M.; Rössler, O.; Weingartner, R.; Martius, O. Large ensemble flood loss modelling and uncertainty assessment for future climate conditions for a Swiss pre-alpine catchment. Sci. Total Environ. 2019, 693, 133400. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huang, G.H.; Fan, Y.; Li, Y.P. Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models. Water Resour. Manag. 2020, 34, 3199–3217. [Google Scholar] [CrossRef]
- Shi, L.; Feng, P.; Wang, B.; Liu, D.L.; Cleverly, J.; Fang, Q.; Yu, Q. Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia. J. Hydrol. 2020, 584, 124756. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.Y.; Wang, G.Q.; Liu, J.F.; He, R.M.; Wang, H.J.; Liu, C.S.; Jin, J.L. Assessing the effect of climate natural variability in water resources evaluation impacted by climate change. Hydrol. Process. 2012, 27, 1061–1071. [Google Scholar] [CrossRef]
- Xue, C.; Chen, B.; Wu, H.J. Parameter Uncertainty Analysis of Surface Flow and Sediment Yield in the Huolin Basin, China. Am. Soc. Civ. Eng. 2014, 19, 1224–1236. [Google Scholar] [CrossRef]
- Yen, H.; Wang, X.; Fontane, D.G.; Harmel, R.D.; Arabi, M. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environ. Model. Softw. 2014, 54, 211–221. [Google Scholar] [CrossRef]
- Belcher, S.E.; Hacker, J.N.; Powell, D.S. Constructing design weather data for future climates. Build. Serv. Eng. Res. Technol. 2005, 26, 49–61. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; Van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Zhu, X.P.; Zhang, C.; Qi, W.; Cai, W.J.; Zhao, X.H.; Wang, X.F. Multiple Climate Change Scenarios and Runoff Response in Biliu River. Water 2018, 10, 126. [Google Scholar] [CrossRef]
- Chen, S.T.; Yu, P.S.; Tang, Y.H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385, 13–22. [Google Scholar] [CrossRef]
- Kim, J.; Tanveer, M.E.; Bae, D.-H. Quantifying climate internal variability using an hourly ensemble generator over South Korea. Stoch. Hydrol. Hydraul. 2018, 32, 3037–3051. [Google Scholar] [CrossRef]
- Frankcombe, L.M.; England, M.H. Separating Internal Variability from the Externally Forced Climate Response. J. Clim. 2015, 28, 8184–8202. [Google Scholar] [CrossRef]
- Evin, G.; Hingra, B.; Blanche, J.; Eckert, N.; Morin, V. Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. J. Clim. 2019, 32, 2423–2440. [Google Scholar] [CrossRef]
- Hingray, B.; Blanchet, J.; Evin, G.; Vidal, J.P. Uncertainty component estimates in transient climate projections: Precision of estimators in a single time or time series approach. Clim. Dyn. 2019, 53, 2501–2516. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Xu, Y.; Wu, L.; Wang, Y.; Han, L. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. CATENA 2018, 170, 305–315. [Google Scholar] [CrossRef]
- Aryal, A.; Shrestha, S.; Babel, M.S. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2018, 135, 193–209. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Qiu, L.; Sun, Y.; Sun, L.; Li, Q.; Niu, J.; Wang, G. Parameter Uncertainty Analysis of the SWAT Model in a Mountain-Loess Transitional Watershed on the Chinese Loess Plateau. Water 2018, 10, 690. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, A.; Wu, P.; Qi, W.; Fu, G.; Yue, G.; Liu, X. Uncertainty Impacts of Climate Change and Downscaling Methods on Future Runoff Projections in the Biliu River Basin. Water 2019, 11, 2130. [Google Scholar] [CrossRef]
- Zhang, L.M.; Yuan, F.; Wang, B.; Ren, L.L.; Zhao, C.X.; Shi, J.Y.; Liu, Y.; Jianf, S.H.; Yang, X.L.; Chen, T.; et al. Quantifying uncertainty sources in extreme flow projections for three watersheds with different climate features in China. Atmos. Res. 2021, 249, 105331. [Google Scholar] [CrossRef]
- Decuyper, M.; Chávez, R.O.; Čufar, K.; Estay, S.A.; Clevers, J.G.; Prislan, P.; Gričar, J.; Črepinšek, Z.; Merela, M.; de Luis, M.; et al. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia—An integrated approach using remote sensing and tree-ring data. Agric. For. Meteorol. 2020, 287, 107925. [Google Scholar] [CrossRef]
- Reshmidevi, T.V.; Kumar, D.N.; Mehrotra, R.; Sharma, A. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. J. Hydrol. 2018, 556, 11921204. [Google Scholar] [CrossRef] [Green Version]
Climate Models | Country | Resolution | Scenarios |
---|---|---|---|
ACCESS1.0 | Australia | 1.88° × 2.48° | RCP4.5, RCP8.5 |
BCC-CSM1.1(m) | China | 1.13° × 1.13° | RCP4.5, RCP8.5 |
CESM1(BGC) | USA | 1.3° × 0.9° | RCP4.5, RCP8.5 |
CESM1(CAM5) | USA | 1.3° × 0.9° | RCP4.5, RCP8.5 |
CMCC-CM | Italy | 0.75° × 0.75° | RCP4.5, RCP8.5 |
MPI-ESM-MR | Germany | 1.88° × 1.88° | RCP4.5, RCP8.5 |
Parameter | Definition | Min | Max |
---|---|---|---|
CN2 | Initial SCS runoff curve number for moisture condition | 0.75 | 1.25 |
SURLAG | Surface runoff lag coefficient | 1.00 | 23.98 |
LAT_TTIME | Lateral flow converge coefficient | 0.01 | 179.92 |
ESCO | Soil evaporation compensation factor | 0.01 | 1.00 |
GW_DELAY | The delay time | 0.37 | 500.00 |
ALPHA_BF | Baseflow alpha factors (days) | 0.00 | 1.00 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur | 0.41 | 499.72 |
SFTMP | Snowfall temperature | −5.00 | 5.00 |
SMFMX | Melt factor for snow | 1.50 | 8.00 |
TIMP | Snowmelt temperature lag factor | 0.01 | 1.00 |
Models | a1 | b1 | c1 | d1 | e1 | R2 |
---|---|---|---|---|---|---|
ACCESS1-0_RCP45 | 22.75 | −21.40 | 0.92 *** | −0.97 *** | −197.62 ** | 0.96 |
ACCESS1-0_RCP85 | 61.05 | 23.89 | 0.97 *** | −0.86 | −1284.58 | 0.75 |
BCC-CSM1.1(m)_RCP45 | 20.96 | −15.30 | 0.85 *** | −0.81 *** | −237.05 | 0.92 |
BCC-CSM1.1(m)_RCP85 | 17.26 | −13.92 | 0.84 *** | −0.76 ** | −205.54 | 0.93 |
CESM1(BGC)_RCP45 | 28.98 | −25.77 | 0.86 *** | 0.21 *** | −209.88 | 0.93 |
CESM1(BGC)_RCP85 | 81.42 | −38.46 | 0.99 *** | −0.5 | −1370.22 *** | 0.86 |
CESM1(CAM5)_RCP45 | 18.15 | −17.34 | 0.90 *** | −0.93 | −153.06 | 0.96 |
CESM1(CAM5)_RCP85 | 22.13 | −20.34 | 0.87 *** | −0.77 *** | −265.73 | 0.96 |
CMCC-CM_RCP45 | 5.92 | 18.26 | 0.62 *** | −0.53 | −248.50 | 0.75 |
CMCC-CM_RCP85 | 15.40 | −14.67 | 0.68 *** | −0.45 * | −235.24 | 0.87 |
MPI-ESM-MR_RCP45 | 29.52 | −24.95 | 0.88 *** | −1.02 *** | −224.86 | 0.94 |
MPI-ESM-MR_RCP85 | 24.93 | −15.04 | 0.77 *** | −0.65 ** | −348.45 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Liu, J.; Zhu, X.; Zhao, X.; Zhang, X. Estimating the Role of Climate Internal Variability and Sources of Uncertainties in Hydrological Climate-Impact Projections. Sustainability 2022, 14, 12201. https://doi.org/10.3390/su141912201
Cai W, Liu J, Zhu X, Zhao X, Zhang X. Estimating the Role of Climate Internal Variability and Sources of Uncertainties in Hydrological Climate-Impact Projections. Sustainability. 2022; 14(19):12201. https://doi.org/10.3390/su141912201
Chicago/Turabian StyleCai, Wenjun, Jia Liu, Xueping Zhu, Xuehua Zhao, and Xiaoli Zhang. 2022. "Estimating the Role of Climate Internal Variability and Sources of Uncertainties in Hydrological Climate-Impact Projections" Sustainability 14, no. 19: 12201. https://doi.org/10.3390/su141912201
APA StyleCai, W., Liu, J., Zhu, X., Zhao, X., & Zhang, X. (2022). Estimating the Role of Climate Internal Variability and Sources of Uncertainties in Hydrological Climate-Impact Projections. Sustainability, 14(19), 12201. https://doi.org/10.3390/su141912201