The Net Influence of Drought on Grassland Productivity over the Past 50 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Experimental Design and Assessment Methods
- (a)
- To simulate the grassland NPP change from 1961 to 2012, under the test of CLM, PREC, and REMP situations,
- (b)
- The interactive effect of precipitation and temperature on productivity equals CLM–PREC–TEMP, indicating that the interactive effect produced by precipitation and temperature change simultaneously,
- (c)
- The net influence on the productivity of drought equals the sum of the interactive effect and PREC, indicating that the influence of drought may be from precipitation and temperature change.
Test Designing | Test Content |
---|---|
CO2, N deposition, climate change (CLM) | The real value of CO2 concentration and N deposition in 1961 levels + the real historical value of the climate factor |
Only change the precipitation (PREC) | The real value of CO2 concentration and N deposition in 1961 levels + the average of other climate elements (temperature, vapor pressure deficit, solar radiation) + the real historical value of precipitation |
Only change the temperature (TEMP) | The real value of CO2 concentration and N deposition in 1961 levels + the average of other climate elements (precipitation, vapor pressure deficit, solar radiation) + the real historical value of temperature |
The other variables | Longitude and latitude, elevation, available depth of soil, the composition of soil particles, vegetation type |
2.3. Biome-BGC Model
2.4. Model Applicability Evaluation
3. Results and Discussion
3.1. The Spatial and Temporal Characteristics of Precipitation and Temperature Changes over the Past 50 Years
3.2. The Interaction of Precipitation and Temperature on Grassland Productivity
3.3. The Net Influence on Regional Grassland Productivity of Drought over the Past Five Decades
4. Conclusions
- On the regional scale, the current pattern of climate change plays a negative role in the grassland productivity in Inner Mongolia, aggravating the influence of drought on the grassland ecosystem to some degree. It is mainly controlled by precipitation deficit, but the temperature interferes with the precipitation during drought significantly (p > 0.05). The grassland productivity decreased slightly over the past 50 years under climate change, which reveals that the decreased impact of precipitation change is larger than the increased impact of temperature change on NPP.
- From the analysis of the overall loss level of NPP caused by drought in grassland, the total change of NPP caused by a single factor of drought ranged from −1140.30 to 15,003.30 gC/m2/52a over the past 50 years. Specifically, the regional average losses of meadow, typical, and desert steppes are 7005.73 gC/m2/52a, 8466.10 gC/m2/52a, and 4753.25 gC/m2/52a, respectively. As compared with the mixed influence of drought on grassland under the background of global change, the severity of the net impact of drought as a single factor on grassland NPP are as follows: typical grassland > meadow steppe > desert steppe. Therefore, climate change may, to a certain degree, complicate the impact of drought on grassland ecosystem productivity.
- The net influence of drought on the NPP of different types of grassland types is varied. The percentages of the study area where drought has caused severe NPP losses (the values of NPP change are greater than zero) are about 95.4%, 95.4%, and 95.4% for meadow, typical, and desert steppe, respectively, while the areas where the NPP increased (the values of NPP change are less than zero) are about 4.6%, 8.4%, and 63.2%, respectively. Therefore, climate change increases the complexity of influence on grassland productivity by drought to some extent.
Author Contributions
Funding
Conflicts of Interest
References
- Wu, G.-L.; Cheng, Z.; Alatalo, J.M.; Zhao, J.; Liu, Y. Climate Warming Consistently Reduces Grassland Ecosystem Productivity. Earths Future 2021, 9, e2020EF001837. [Google Scholar] [CrossRef]
- Wang, X.; Lang, X.; Jiang, D. Linkage of future regional climate extremes to global warming intensity. Clim. Res. 2020, 81, 43–54. [Google Scholar] [CrossRef]
- Van der Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.L.; Reichstein, M.; et al. Drought and ecosystem carbon cycling. Agric. For. Meteorol. 2011, 151, 765–773. [Google Scholar] [CrossRef]
- Battipaglia, G.; De Micco, V.; Brand, W.A.; Saurer, M.; Aronne, G.; Linke, P.; Cherubini, P. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant Cell Environ. 2014, 37, 382–391. [Google Scholar] [CrossRef]
- Acharya, B.S.; Rasmussen, J.; Eriksen, J. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agric. Ecosyst. Environ. 2012, 153, 33–39. [Google Scholar] [CrossRef]
- Kemp, D.R.; Han, G.; Hou, X.; Michalk, D.L.; Hou, F.; Wu, J.; Zhang, Y. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [Google Scholar] [CrossRef]
- Craine, J.M.; Nippert, J.B.; Elmore, A.J.; Skibbe, A.M.; Hutchinson, S.L.; Brunsell, N.A. Timing of climate variability and grassland productivity. Proc. Natl. Acad. Sci. USA 2012, 109, 3401–3405. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate Variability and Vulnerability to Climate Change: A Review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Mei, X.; Huang, X.; Cui, X.; Zhou, X.; Niu, H. CO(2)H(2)O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol. 2008, 33, 133–143. [Google Scholar] [CrossRef]
- Kongstad, J.; Schmidt, I.K.; Riis-Nielsen, T.; Arndal, M.F.; Mikkelsen, T.N.; Beier, C. High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment. Ecosystems 2012, 15, 269–283. [Google Scholar] [CrossRef]
- Willem, L. Climate change 2007: The physical science basis. S. Afr. Geogr. J. 2010, 92, 86–87. [Google Scholar] [CrossRef]
- Ofipcc, W. Climate Change 2013: The Physical Science Basis. Contrib. Work. 2013, 43, 866–871. [Google Scholar] [CrossRef]
- Smith, M.D.; Knapp, A.K.; Collins, S.L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 2009, 90, 3279–3289. [Google Scholar] [CrossRef]
- Heimann, M.; Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 2008, 451, 289–292. [Google Scholar] [CrossRef]
- Thompson, J.R.; Gavin, H.; Refsgaard, A.; Sorenson, H.R.; Gowing, D.J. Modelling the hydrological impacts of climate change on UK lowland wet grassland. Wetl. Ecol. Manag. 2009, 17, 503–523. [Google Scholar] [CrossRef]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef]
- Shaw, M.R.; Zavaleta, E.S.; Chiariello, N.R.; Cleland, E.E.; Mooney, H.A.; Field, C.B. Grassland responses to global environmental changes suppressed by elevated CO2. Science 2002, 298, 1987–1990. [Google Scholar] [CrossRef]
- Suttle, K.B.; Thomsen, M.A.; Power, M.E. Species interactions reverse grassland responses to changing climate. Science 2007, 315, 640–642. [Google Scholar] [CrossRef]
- Thuiller, W. Biodiversity—Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef]
- Melillo, J.M.; Mcguire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Sitch, S.; Cox, P.M.; Collins, W.J.; Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 2007, 448, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A.; LeCain, D.R.; Pendall, E.; Blumenthal, D.M.; Kimball, B.A.; Carrillo, Y.; Williams, D.G.; Heisler-White, J.; Dijkstra, F.A.; West, M. C-4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 2011, 476, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Maestre, F.T.; Quero, J.L.; Gotelli, N.J.; Escudero, A.; Ochoa, V.; Delgado-Baquerizo, M.; Garcia-Gomez, M.; Bowker, M.A.; Soliveres, S.; Escolar, C.; et al. Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science 2012, 335, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E.W.; Borer, E.T.; Reich, P.B. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 2015, 348, 336–340. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Madsen, H.; Clausen, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci. J. Des. Sci. Hydrol. 1997, 42, 15–33. [Google Scholar] [CrossRef]
- Bayazit, M. Return period and risk of hydrologic events. I: Mathematical formulation. J. Hydrol. Eng. 2001, 6, 358–361. [Google Scholar] [CrossRef]
- Chung, C.-h.; Salas, J.D. Drought occurrences probabilities and risks of dependent hydrologic processes. J. Hydrol. Eng. 2000, 5, 259–268. [Google Scholar] [CrossRef]
- Cancelliere, A.; Salas, J.D. Drought length properties for periodic-stochastic hydrologic data. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Reddy, M.J.; Ganguli, P. Application of copulas for derivation of drought severity-duration-frequency curves. Hydrol. Processes 2012, 26, 1672–1685. [Google Scholar] [CrossRef]
- Chen, G.; Tian, H.; Zhang, C.; Liu, M.; Ren, W.; Zhu, W.; Chappelka, A.H.; Prior, S.A.; Lockaby, G.B. Drought in the Southern United States over the 20th century: Variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim. Chang. 2012, 114, 379–397. [Google Scholar] [CrossRef]
- He, M.; Dijkstra, F.A. Drought effect on plant nitrogen and phosphorus: A metaanalysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Luo, Y.; Gerten, D.; Le Maire, G.; Parton, W.J.; Weng, E.; Zhou, X.; Keough, C.; Beier, C.; Ciais, P.; Cramer, W.; et al. Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Glob. Chang. Biol. 2008, 14, 1986–1999. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.; Lu, C.; Kicklighter, D.; Liu, M.; Ren, W.; Xu, X.; Chen, G.; Zhang, C.; Pan, S.; et al. China’s terrestrial carbon balance: Contributions from multiple global change factors. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Ma, J.; Ji, C.; Han, M.; Zhang, T.; Yan, X.; Hu, D.; Zeng, H.; He, J. Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands. Sci. China Life Sci. 2012, 55, 68–79. [Google Scholar] [CrossRef]
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol Grassland, China, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, B.; Yang, X.; Xia, L.; Jin, Y.; Li, J.; Zhang, W.; Guo, J.; Shen, G. Modelling and analysis of net primary productivity and its response mechanism to climate factors in temperate grassland, northern China. Int. J. Remote Sens. 2019, 40, 2259–2277. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Liu, M.; Sun, G.; Chappelka, A.; Ren, W.; Xu, X.; Lu, C.; Pan, S.; et al. Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States. Ecosystems 2012, 15, 674–694. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus Ser. B Chem. Phys. Meteorol. 1999, 51, 414–452. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W.; Liu, M.; Tian, H. Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Sui, X.; Zhou, G. Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007: An analysis with a process-based biogeochemistry model. Environ. Earth Sci. 2013, 68, 521–533. [Google Scholar] [CrossRef]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Twine, T.E.; Kucharik, C.J. Climate impacts on net primary productivity trends in natural and managed ecosystems of the central and eastern United States. Agric. For. Meteorol. 2009, 149, 2143–2161. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Wever, L.A.; Carlson, P.J. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob. Chang. Biol. 2002, 8, 599–615. [Google Scholar] [CrossRef]
- Niu, S.; Yang, H.; Zhang, Z.; Wu, M.; Lu, Q.; Li, L.; Han, X.; Wan, S. Non-Additive Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Temperate Steppe. Ecosystems 2009, 12, 915–926. [Google Scholar] [CrossRef]
- Wever, L.A.; Flanagan, L.B.; Carlson, P.J. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol. 2002, 112, 31–49. [Google Scholar] [CrossRef]
- Signarbieux, C.; Feller, U. Effects of an extended drought period on physiological properties of grassland species in the field. J. Plant Res. 2012, 125, 251–261. [Google Scholar] [CrossRef]
- Scott, R.L.; Hamerlynck, E.P.; Jenerette, G.D.; Moran, M.S.; Barron-Gafford, G.A. Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Soussana, J.F.; Luescher, A. Temperate grasslands and global atmospheric change: A review. Grass Forage Sci. 2007, 62, 127–134. [Google Scholar] [CrossRef]
- Christensen, L.; Coughenour, M.B.; Ellis, J.E.; Chen, Z.Z. Vulnerability of the Asian typical steppe to grazing and climate change. Clim. Chang. 2004, 63, 351–368. [Google Scholar] [CrossRef]
- Stocker, T.F.; Dahe, Q.; Plattner, G.K. Climate Change 2013: The Physical Science Basis. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 29 April 2022).
- De Vries, F.T.; Liiri, M.E.; Bjornlund, L.; Bowker, M.A.; Christensen, S.; Setala, H.M.; Bardgett, R.D. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2012, 2, 276–280. [Google Scholar] [CrossRef]
- Zavalloni, C.; Gielen, B.; Lemmens, C.M.H.M.; De Boeck, H.J.; Blasi, S.; Van den Bergh, S.; Nijs, I.; Ceulemans, R. Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought? Plant Soil 2008, 308, 119–130. [Google Scholar] [CrossRef]
- Seastedt, T.; Coxwell, C.; Ojima, D.; Parton, W. Controls of plant and soil carbon in a semihumid temperate grassland. Ecol. Appl. 1994, 4, 344–353. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, G.; Fan, J.; Zhong, H.; Wang, S.; Li, S. Precipitation-use efficiency along a 4500-km grassland transect. Glob. Ecol. Biogeogr. 2010, 19, 842–851. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Wang, S. Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. J. Veg. Sci. 2002, 13, 361–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G. Exploring the effects of water on vegetation change and net primary productivity along the IGBP Northeast China Transect. Environ. Earth Sci. 2011, 62, 1481–1490. [Google Scholar] [CrossRef]
Input Data | Content | Spatial Resolution | Temporal Resolution | Output Data |
---|---|---|---|---|
Meteorological data | Daily maximum, minimum, and average temperature; precipitation; vapor pressure deficit; shortwave radiation, and day length | From the site scale to the regional global scale | Day-month-year | Max LAI, annual evaporation, annual runoff, annual net primary productivity, annual net biomes productivity |
Site initialization | Latitude and longitude, altitude, available depth of soil, quality of material, atmospheric CO2 concentration, vegetation types, and the setting of the input and output files | |||
Physiological ecology parameters | Including 44 parameters, such as leaf C:N, radicula C:N, stomatal conductance, canopy extinction coefficient, canopy leaf area, and the percentage of nitrogen in leaf tissue carboxylase |
Grassland Type | Site Name | Site Location | Elevation (m) | Time Scale | Data Source | Application |
---|---|---|---|---|---|---|
Meadow steppe | Tongyu flux station | 44.42 N, 122.87 E | 184 | 2004–2007 | COIRAS | Calibration models |
Xing’an League experimental site | 46.10 N, 123.00 E | 191 | 1981–1990 | ORNL (Oak Ridge National Laboratory) | Validation of drought assessment results | |
Hailar pilot site | 49.22 N, 119.75 E | 610.2 | 1989–2005 | Literature biomass (Ma, R.F., 2007) | Calibration models | |
Typical steppe | Xilinhot flux station | 43.55 N, 116.67 E | 1125 | 2003–2007 | ChinaFLUXAN and Literature biomass (Hao et al., 2010; Wu et al., 2008) | Calibration models |
Xilingole flux station | 43.63 N, 116.70 E | 1100 | 2004–2005 | ChinaFLUX and Literature biomass (Zhenqing Li et al., 2003) | Validation of drought assessment results | |
Xilinhot experimental Station | 43.72 N, 116.63 E | 1200 | 1980–1989 | ORNL (Oak Ridge National Laboratory) | Validation of drought assessment results | |
Xilinhot pilot site | 43.95 N, 116.12 E | 1063 | 1982–2006 | Literature biomass (Ma, R.F., 2007) | Calibration models | |
Desert steppe | Sunit Zuqi flux station | 44.08 N, 113.57 E | 970 | 2008–2009 | COIRAS and Literature biomass (Yang et al., 2011; Zhang et al., 2012a) | Calibration models |
Inner Mongolia Ummeng Damao Banner pilot site | 42.09 N, 110.61 E | 1210 | 1983–1994 | China Grassland Resource Information System (GRIS) | Verification of drought assessment results | |
Pilot site in Ulaat Central Banner | 41.56 N, 08.52 E | 1288 | 1980–2006 | Literature biomass (Ma, R.F., 2007) | Calibration models |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, T.; Wu, J.; Wang, J.; Shao, C.; Wang, W.; Chen, D.; Li, X. The Net Influence of Drought on Grassland Productivity over the Past 50 Years. Sustainability 2022, 14, 12374. https://doi.org/10.3390/su141912374
Lei T, Wu J, Wang J, Shao C, Wang W, Chen D, Li X. The Net Influence of Drought on Grassland Productivity over the Past 50 Years. Sustainability. 2022; 14(19):12374. https://doi.org/10.3390/su141912374
Chicago/Turabian StyleLei, Tianjie, Jianjun Wu, Jiabao Wang, Changliang Shao, Weiwei Wang, Dongpan Chen, and Xiangyu Li. 2022. "The Net Influence of Drought on Grassland Productivity over the Past 50 Years" Sustainability 14, no. 19: 12374. https://doi.org/10.3390/su141912374
APA StyleLei, T., Wu, J., Wang, J., Shao, C., Wang, W., Chen, D., & Li, X. (2022). The Net Influence of Drought on Grassland Productivity over the Past 50 Years. Sustainability, 14(19), 12374. https://doi.org/10.3390/su141912374