Host Identity and Consumption Behavior: Evidence from Rural–Urban Migrants in China
Abstract
:1. Introduction
2. Literature Review
3. Data, Variable, and Empirical Strategy
3.1. Data and Variable Selection
3.2. Empirical Strategy
3.3. Endogeneity and Instrumental-Variable Approaches
4. Empirical Results
4.1. Descriptive Analysis
4.2. Main Results
4.3. Robustness Checks
4.3.1. Alternative Measures of Host Identity
4.3.2. Saving Rates
4.3.3. PSM Results
4.4. Instrumental Variable Estimation
4.5. Heterogeneous Analysis
5. Structural Equation Modeling (SEM)
5.1. Structural Equation Modeling (SEM) Theoretical Basis
5.2. Structural Equation Modeling (SEM) and Data Source
5.3. Common Method Bias (CMB)
5.4. Host Identity Measurement
5.5. Empirical Results
6. Conclusions
6.1. Theoretical Implications
6.2. Managerial Implications
6.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massey, D.S.; Akresh, I.R. Immigrant intentions and mobility in a global economy: The attitudes and behavior of recently arrived US immigrants. Soc. Sci. Q. 2006, 87, 954–971. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, M.; Zhang, J.J. Intergenerational differences in Identity of floating Population. Youth Res. 2016, 4, 9–18. [Google Scholar]
- Raijman, R.; Geffen, R. Sense of belonging and life satisfaction among post-1990 immigrants in Israel. Int. Migr. 2018, 56, 142–157. [Google Scholar] [CrossRef]
- Cai, F.; Wang, D. The contributions of sustainability and labor in China. Econ. Res. J. 1999, 10, 62–68. [Google Scholar]
- Zhang, K.H.; Shunfeng, S. Rural–urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Yao, L.R.; Li, L. Labor transfer, industrial agglomeration and regional disparities. J. Financ. Econ. 2006, 8, 135–143. [Google Scholar] [CrossRef]
- Wong, T.-C.; Yeow, M.-C.; Zhu, X. Building a global city: Negotiating the massive influx of floating population in Shanghai. J. Hous. Built Environ. 2005, 20, 21–50. [Google Scholar] [CrossRef]
- Zhang, L. Analysis of the economic contribution of floating population to cities: A case study of Shanghai. Popul. Res. 2015, 39, 57–65. [Google Scholar]
- Sun, W.K.; Li, X.D.; Wang, Y.J. The influence of Identity on household consumption of floating population in the destination. J. South Econ. 2019, 11, 131–144. [Google Scholar] [CrossRef]
- Tang, S.; Hao, P.; Feng, J. Consumer behavior of rural migrant workers in urban China. Cities 2020, 106, 102856. [Google Scholar] [CrossRef]
- Shotter, J. Becoming Someone: Identity and Belonging; Sage: Newbury Park, CA, USA, 1993. [Google Scholar]
- Tajfel, H.; Turner, J.C. Social psychology of intergroup relations. Annu. Rev. Psychol. 1982, 33, 1–39. [Google Scholar] [CrossRef]
- Jenkins, R. Social Identity; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Akerlof, G.A.; Kranton, R.E. Identity and schooling: Some lessons for the economics of education. J. Econ. Lit. 2002, 40, 1167–1201. [Google Scholar] [CrossRef]
- Wang, M.D.; Li, J.B. A review of identity economics theory and experimental research. Econ. Rev. 2019, 148–160. [Google Scholar]
- Dirksmeier, P. Resentments in the cosmopolis: Anti-immigrant attitudes in postcolonial Singapore. Cities 2020, 98, 102584. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Han, Q.; Zuo, J.; Rameezdeen, R. Perceived discrimination of displaced people in development-induced displacement and resettlement: The role of integration. Cities 2020, 101, 102692. [Google Scholar] [CrossRef]
- Rachlin, H.; Logue, A.W.; Gibbon, J.; Frankel, M. Cognition and behavior in studies of choice. Psychol. Rev. 1986, 93, 33. [Google Scholar] [CrossRef]
- Akerlof, G.A.; Kranton, R.E. Economics and identity. Q. J. Econ. 2000, 115, 715–753. [Google Scholar] [CrossRef]
- Cast, A.D. Identities and behavior. In Advances in Identity Theory and Research; Springer: Berlin/Heidelberg, Germany, 2003; pp. 41–53. [Google Scholar]
- Akerlof, G.A.; Kranton, R.E. Identity economics. In Identity Economics; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Scheepers, D.; Ellemers, N. Social identity theory. In Social Psychology in Action; Springer: Cham, Switzerland, 2019; pp. 129–143. [Google Scholar]
- Liu, S.; Gallois, C. Home is Where the Heart is: Identity and Belonging Among Older Chinese Immigrants in Australia. Integr. Psychol. Behav. Sci. 2022, 56, 459–471. [Google Scholar] [CrossRef]
- Menéndez Alarcón, A.V. Identity and Belonging: Integration of Descendants of Immigrants in Marseille. J. Int. Migr. Integr. 2022, 23, 847–863. [Google Scholar] [CrossRef]
- Xie, S.; Chen, J. Housing and identity expression among in-situ urbanised rural residents in China. Popul. Space Place 2022, 28, e2548. [Google Scholar] [CrossRef]
- Kirchmaier, I.; Prüfer, J.; Trautmann, S.T. Religion, moral attitudes and economic behavior. J. Econ. Behav. Organ. 2018, 148, 282–300. [Google Scholar] [CrossRef]
- Bisin, A.; Patacchini, E.; Verdier, T.; Zenou, Y. Are Muslim immigrants different in terms of cultural integration? J. Eur. Econ. Assoc. 2008, 6, 445–456. [Google Scholar] [CrossRef]
- Coşgel, M.M.; Minkler, L. Religious identity and consumption. Rev. Soc. Econ. 2004, 62, 339–350. [Google Scholar] [CrossRef]
- Chattaraman, V.; Lennon, S.J. Ethnic identity, consumption of cultural apparel, and self-perceptions of ethnic consumers. J. Fash. Mark. Manag. Int. J. 2008, 12, 518–531. [Google Scholar] [CrossRef]
- Leung, E.; Cito, M.C.; Paolacci, G.; Puntoni, S. Preference for Material Products in Identity-Based Consumption. J. Consum. Psychol. 2021, 32, 672–679. [Google Scholar] [CrossRef]
- Rodes, J.; Rodríguez, V. Social integration and multilocality: A multivariate study on lifestyle migration. J. Int. Migr. Integr. 2021, 22, 529–551. [Google Scholar] [CrossRef]
- Chen, Z. How the choice of reference group matters: Economic integration of rural-to-urban migrants in China. J. Ethn. Migr. Stud. 2019, 47, 4428–4456. [Google Scholar] [CrossRef]
- Kaviraj, S. Religion and identity in India. Ethn. Racial Stud. 1997, 20, 325–344. [Google Scholar] [CrossRef]
- Smedley, A. “Race” and the construction of human identity. Am. Anthropol. 1998, 100, 690–702. [Google Scholar] [CrossRef]
- Carroll, C.D.; Rhee, B.-K.; Rhee, C. Does cultural origin affect saving behavior? Evidence from immigrants. Econ. Dev. Cult. Chang. 1999, 48, 33–50. [Google Scholar] [CrossRef]
- Klandermans, B.; Van der Toorn, J.; Van Stekelenburg, J. Embeddedness and identity: How immigrants turn grievances into action. Am. Sociol. Rev. 2008, 73, 992–1012. [Google Scholar] [CrossRef]
- Amit, K.; Bar-Lev, S. Immigrants’ sense of belonging to the host country: The role of life satisfaction, language proficiency, and religious motives. Soc. Indic. Res. 2015, 124, 947–961. [Google Scholar] [CrossRef]
- Jaskulowski, K.; Pawlak, M. Migration and lived experiences of racism: The case of high-skilled migrants in Wrocław, Poland. Int. Migr. Rev. 2020, 54, 447–470. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, C.; Jin, W. Integration of migrant workers: Differentiation among three rural migrant enclaves in Shenzhen. Cities 2020, 96, 102453. [Google Scholar] [CrossRef]
- Mason, P.L. Annual income, hourly wages, and identity among Mexican-Americans and other Latinos. Ind. Relat. J. Econ. Soc. 2004, 43, 817–834. [Google Scholar]
- Drydakis, N. Ethnic identity and immigrants’ wages in Greece. Int. J. Intercult. Relat. 2012, 36, 389–402. [Google Scholar] [CrossRef]
- Gorinas, C. Ethnic identity, majority norms, and the native–immigrant employment gap. J. Popul. Econ. 2014, 27, 225–250. [Google Scholar]
- Adamopoulou, E.; Kaya, E. European Union Enlargement and the Consumption Behavior of Immigrant Households; The University of Sheffield: Sheffield, UK, 2017. [Google Scholar]
- Dustmann, C.; Fasani, F.; Speciale, B. Illegal migration and consumption behavior of immigrant households. J. Eur. Econ. Assoc. 2017, 15, 654–691. [Google Scholar] [CrossRef]
- Stock, J.H.; Wright, J.H.; Yogo, M. A survey of weak instruments and weak identification in generalized method of moments. J. Bus. Econ. Stat. 2002, 20, 518–529. [Google Scholar] [CrossRef]
- Islam, A.; Raschky, P.A. Genetic distance, immigrants’ identity, and labor market outcomes. J. Popul. Econ. 2015, 28, 845–868. [Google Scholar] [CrossRef]
- Casey, T.; Dustmann, C. Immigrants’ Identity, Economic Outcomes and the Transmission of Identity across Generations; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Wang, F.L. Reformed migration control and new targeted people: China’s hukou system in the 2000s. China Q. 2004, 177, 115–132. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, W. Rural migrants’ homeownership in Chinese urban destinations: Do institutional arrangements still matter after Hukou reform? Cities 2018, 79, 151–158. [Google Scholar] [CrossRef]
- Chen, X. Why do migrant households consume so little? China Econ. Rev. 2018, 49, 197–209. [Google Scholar]
- Chen, B.K.; Lu, M.; Zhong, N.H. Household consumption constrained by hukou system. Econ. Res. J. 2012, 45, 62–71. [Google Scholar]
- Han, X.; Yang, S.; Chen, Y.; Wang, Y. Urban segregation and food consumption: The impacts of China’s household registration system. China Agric. Econ. Rev. 2019, 11, 583–599. [Google Scholar] [CrossRef]
- Wen, L.; Paudel, K.P.; Chen, Y.; He, Q. Urban segregation and consumption inequality: Does hukou conversion matter in China? Rev. Dev. Econ. 2021, 25, 2298–2322. [Google Scholar] [CrossRef]
- Gu, P.; Ma, X. Investigation and analysis of a floating population’s settlement intention and environmental concerns: A case study in the Shawan River Basin in Shenzhen, China. Habitat Int. 2013, 39, 170–178. [Google Scholar] [CrossRef]
- Meng, Y.; Han, J.; Qin, S. The impact of health insurance policy on the health of the senior floating population—evidence from China. Int. J. Environ. Res. Public Health 2018, 15, 2159. [Google Scholar] [CrossRef] [Green Version]
- Hogg, M.A. Social identity theory. In Understanding Peace and Conflict through Social Identity Theory; Springer: Cham, Switzerland, 2016; pp. 3–17. [Google Scholar]
- Brown, R. Social identity theory: Past achievements, current problems and future challenges. Eur. J. Soc. Psychol. 2000, 30, 745–778. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X.; Wu, Y.; Shen, J.; Shen, L.; Xing, X. Urban land expansion and the floating population in China: For production or for living? Cities 2018, 74, 219–228. [Google Scholar] [CrossRef]
- Cao, G.; Li, K.; Wang, R.; Liu, T. Consumption structure of migrant worker families in China. China World Econ. 2017, 25, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Zhang, S. How housing rent affect migrants’ consumption and social integration?—Evidence from China Migrants Dynamic Survey. China Econ. Q. Int. 2022, 2, 165–177. [Google Scholar] [CrossRef]
- Christensen, P.N.; Rothgerber, H.; Wood, W.; Matz, D.C. Social norms and identity relevance: A motivational approach to normative behavior. Personal. Soc. Psychol. Bull. 2004, 30, 1295–1309. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Elliott, R.; Fitchett, J.A. Identity, consumption and narratives of socialization. Mark. Theory 2009, 9, 75–94. [Google Scholar] [CrossRef]
- Soman, D.; Cheema, A. The effect of credit on spending decisions: The role of the credit limit and credibility. Mark. Sci. 2002, 21, 32–53. [Google Scholar] [CrossRef]
- Koivu, T. Monetary policy, asset prices and consumption in China. Econ. Syst. 2012, 36, 307–325. [Google Scholar] [CrossRef]
- Aron, J.; Duca, J.V.; Muellbauer, J.; Murata, K.; Murphy, A. Credit, housing collateral, and consumption: Evidence from Japan, the UK, and the US. Rev. Income Wealth 2012, 58, 397–423. [Google Scholar] [CrossRef]
- Pendakur, K.; Pendakur, R. Language as both human capital and ethnicity. Int. Migr. Rev. 2002, 36, 147–177. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Xu, X.X.; Xiao, Z.K. Dialect and economic growth. China J. Econ. 2015, 2, 1–32. [Google Scholar]
- Dai, Y.Y.; Xiao, J.L.; Pan, Y. Can “local accent” reduce agency costs. Econ. Res. J. 2016, 51, 147–160. [Google Scholar]
- Guven, C. Reversing the question: Does happiness affect consumption and savings behavior? J. Econ. Psychol. 2012, 33, 701–717. [Google Scholar] [CrossRef]
- Kiran, T.; Dhawan, S. The impact of family size on savings and consumption expenditure of industrial workers: A cross-sectional study. Am. J. Econ. Bus. Adm. 2015, 7, 177–184. [Google Scholar] [CrossRef]
- Simpson, N.B.; Sparber, C. Estimating the determinants of remittances originating from US households using CPS data. East. Econ. J. 2020, 46, 161–189. [Google Scholar] [CrossRef]
- Meyer, B.D.; Mok, W.K.C. Disability, earnings, income and consumption. J. Public Econ. 2019, 171, 51–69. [Google Scholar] [CrossRef]
- Alan, S.; Browning, M.; Ejrnæs, M. Income and consumption: A micro semistructural analysis with pervasive heterogeneity. J. Political Econ. 2018, 126, 1827–1864. [Google Scholar] [CrossRef]
- Milanovic, B. Economic integration and income convergence: Not such a strong link? Rev. Econ. Stat. 2006, 88, 659–670. [Google Scholar] [CrossRef]
- Stephens, M., Jr.; Yang, D.Y. Compulsory education and the benefits of schooling. Am. Econ. Rev. 2014, 104, 1777–1792. [Google Scholar] [CrossRef]
- Song, Y. What should economists know about the current Chinese hukou system? China Econ. Rev. 2014, 29, 200–212. [Google Scholar] [CrossRef]
- Afridi, F.; Li, S.X.; Ren, Y. Social identity and inequality: The impact of China’s hukou system. J. Public Econ. 2015, 123, 17–29. [Google Scholar] [CrossRef]
- Gross, T.; Layton, T.J.; Prinz, D. The liquidity sensitivity of healthcare consumption: Evidence from social security payments. Am. Econ. Rev. Insights 2022, 4, 175–190. [Google Scholar] [CrossRef]
- Chen, C.; Fan, C.C. China’s hukou puzzle: Why don’t rural migrants want urban hukou? China Rev. 2016, 16, 9–39. [Google Scholar]
- Liao, Y.; Zhang, J. Hukou status, housing tenure choice and wealth accumulation in urban China. China Econ. Rev. 2021, 68, 101638. [Google Scholar] [CrossRef]
- Bocean, C.G.; Rotea, C.C.; Vărzaru, A.A.; Ploscaru, A.N.; Rotea, C.Ș. A Two-Stage SEM—Artificial Neural Network Analysis of the Rewards Effects on Self Perceived Performance in Healthcare. Int. J. Environ. Res. Public Health 2021, 18, 12387. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ardura, I.; Meseguer-Artola, A. How to prevent, detect and control common method variance in electronic commerce research. J. Theor. Appl. Electron. Commer. Res. 2020, 15, I–V. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef]
- Bocean, C.G.; Vărzaru, A.A. A Two-Stage SEM–Artificial Neural Network Analysis of Integrating Ethical and Quality Requirements in Accounting Digital Technologies. Systems 2022, 10, 121. [Google Scholar] [CrossRef]
- Sivo, S.A.; Fan, X.; Witta, E.L.; Willse, J.T. The search for “optimal” cutoff properties: Fit index criteria in structural equation modeling. J. Exp. Educ. 2006, 74, 267–288. [Google Scholar] [CrossRef]
Variable | Definition | N | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Consumption | Average monthly household expenditure (yuan RMB). | 13,636 | 3085.075 | 3067.3 | 20 | 200,000 |
Saving Rate | Average monthly household savings rate. | 13,636 | 0.486 | 0.193 | −0.5 | 0.992 |
Identity | Whether the migrants think they are city locals. Yes = 1, No = 0. | 13,636 | 0.224 | 0.417 | 0 | 1 |
Rev_identity | Whether the migrants think they are member of hometown. Yes = 1, No = 0. | 13,636 | 0.874 | 0.332 | 0 | 1 |
Part_identity | Whether the migrants think they are a part of the city. Yes = 1, No = 0. | 13,636 | 0.909 | 0.287 | 0 | 1 |
Memb_identity | Whether the migrants think they are a member of the city. Yes = 1, No = 0. | 13,636 | 0.882 | 0.323 | 0 | 1 |
Income | Average monthly household earning (yuan RMB). | 13,636 | 6432.261 | 6944.518 | 800 | 300,000 |
Family_size (FZ) | Total family population. | 13,636 | 2.825 | 1.232 | 1 | 9 |
Age | Age(years) | 13,636 | 32.871 | 8.656 | 15 | 60 |
Hukou | Registered residence, Agricultural Hukou = 0, Non-agricultural Hukou = 1. | 13,636 | 0.138 | 0.345 | 0 | 1 |
Bachibaozhu (BZ) | Whether the migrants get free shelter and food from work, Yes = 1, No = 0. | 13,636 | 0.198 | 0.398 | 0 | 1 |
Education | Educational attainment, 4 dummy variables: 1. with no school education and elementary school 2. middle school and high school 3. college degree in specialty and general college degree 4. Postgraduate. | 13,636 | 1. 9.3% 2. 76% 3. 14.2% 4. 0.5% | |||
Ethnic | 13,636 | 0.965 | 0.183 | 0 | 1 | |
Male | Male = 1, Female = 0. | 13,636 | 0.581 | 0.493 | 0 | 1 |
Marriage | Married = 1, Other situations = 0. | |||||
Medicinsur (MI) | 13,636 | 0.89 | 0.312 | 0 | 1 | |
Socialsecur (SS) | Whether the floating population have any social insurance, Yes = 1, No = 0. | 13,636 | 0.764 | 0.425 | 0 | 1 |
Health | Health status, 5 dummy variables:1. Very good 2. Good 3. Well 4. Not bad 5. Very bad | 13,636 | 1. 26.8% 2. 35.3% 3. 27.0% 4. 10.6% 5. 3% | |||
Neighborhood type (NT) | Composition of neighbors, 4 dummy variables: 1. mostly migrants 2. mostly local residents 3. balanced shares of migrants and local residents 4. not sure. | 13,636 | 1. 42.7% 2. 21.5% 3. 29.8% 4. 6.1% | |||
Vocation | Denoting the major occupation, 18 dummy variables. | 13,636 | ||||
Work_unit | Denoting the type of work unit, 20 dummy variables. | 13,636 | ||||
City | Cities, 8 dummy variables: 1. Zhongshan 2. Xiamen 3. Jiaxing 4. Beijing 5. Chengdu 6. Shenzhen 7. Zhengzhou 8. Qingdao. | 13,636 | ||||
Dialect distance | Expressed from 0 to 3. | 13,631 | 1.9551 | 0.91026 | 0 | 3 |
Distance | Distance from hometown to city (KM) | 13,624 | 558.422 | 475.391 | 0 | 3515.2 |
Mean | Difference | t-Test | ||
---|---|---|---|---|
Host Identity (1) | Without Host Identity (0) | Mean (1)-Mean (0) | ||
Consumption (RMB) | 3518.460 | 3033.478 | 484.982 *** (0.000) | 8.391 |
Saving rate | 0.460 | 0.482 | −0.022 *** (0.000) | −5.810 |
Dependent Variable: ln(Cons) | |||
---|---|---|---|
(1) | (2) | (3) | |
Identity | 0.143 *** | 0.056 *** | 0.044 *** |
(0.013) | (0.008) | (0.008) | |
ln (Income) | 0.724 *** | 0.654 *** | |
(0.011) | (0.019) | ||
ln (FZ) | 0.181 *** | 0.147 *** | |
(0.020) | (0.015) | ||
Age | −0.003 *** | −0.002 *** | |
(0.001) | (0.001) | ||
Hukou | 0.119 *** | 0.071 *** | |
(0.010) | (0.011) | ||
BZ | YES | YES | |
Education | YES | YES | |
Nation | YES | YES | |
Married | YES | YES | |
Male | YES | YES | |
MI | YES | YES | |
SS | YES | YES | |
Health | YES | YES | |
NT | YES | YES | |
Vocation | YES | YES | |
Job | YES | YES | |
City FE | YES | ||
Constant | 7.825 *** | 1.577 *** | 2.327 *** |
(0.013) | (0.109) | (0.175) | |
N | 13,636 | 13,636 | 13,636 |
R2 | 0.0735 | 0.617 | 0.626 |
Dependent Variable: ln(Cons) | |||
---|---|---|---|
(1) | (2) | (3) | |
Part_identity | 0.027 ** | ||
(0.012) | |||
Memb_identity | 0.019 * | ||
(0.011) | |||
Rev_identity | −0.037 *** | ||
(0.010) | |||
ln (Income) | 0.655 *** | 0.655 *** | 0.655 *** |
(0.019) | (0.019) | (0.019) | |
ln (FZ) | 0.149 *** | 0.149 *** | 0.147 *** |
(0.015) | (0.015) | (0.015) | |
Age | −0.002 *** | −0.002 *** | −0.002 *** |
(0.001) | (0.001) | (0.001) | |
Hukou | 0.074 *** | 0.074 *** | 0.073 *** |
(0.011) | (0.011) | (0.011) | |
Control | YES | YES | YES |
City FE | YES | YES | YES |
Constant | 2.310 *** | 2.315 *** | 2.365 *** |
(0.176) | (0.175) | (0.175) | |
N | 13,636 | 13,636 | 13,636 |
R2 | 0.626 | 0.626 | 0.626 |
Dependent Variable: Saving Rates | ||||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Identity | −0.017 *** | |||
(0.004) | ||||
Part_identity | −0.007 | |||
(0.005) | ||||
Memb_identity | −0.008 * | |||
(0.004) | ||||
Rev_identity | 0.018 *** | |||
(0.005) | ||||
ln (Income) | 0.125 *** | 0.125 *** | 0.125 *** | 0.125 *** |
(0.004) | (0.004) | (0.004) | (0.004) | |
ln (FZ) | −0.057 *** | −0.057 *** | −0.057 *** | −0.057 *** |
(0.006) | (0.006) | (0.006) | (0.006) | |
Age | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(0.000) | (0.000) | (0.000) | (0.000) | |
Hukou | −0.032 *** | −0.034 *** | −0.034 *** | −0.033 *** |
(0.005) | (0.005) | (0.005) | (0.005) | |
Control | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Constant | −0.635 *** | −0.630 *** | −0.630 *** | −0.654 *** |
(0.049) | (0.049) | (0.049) | (0.049) | |
N | 13,636 | 13,636 | 13,636 | 13,636 |
R2 | 0.217 | 0.215 | 0.215 | 0.216 |
Matching Rules | |||
---|---|---|---|
Nearest Neighbor (1: 4) (1) | Kernel (2) | Local Linear (3) | |
ln (Consumption) | 0.045 ** (0.030) | 0.041 *** (0.000) | 0.046 *** (0.012) |
N | 13,623 | 13,623 | 13,623 |
Savings Rate | −0.017 *** (0.000) | −0.017 *** (0.000) | −0.016 *** (0.000) |
N | 13,623 | 13,623 | 13,623 |
First-Stage | Second-Stage | First-Stage | Second-Stage | |||
---|---|---|---|---|---|---|
Identity (1) | ln(Cons) (2) | Saving Rate (3) | Identity (4) | ln(Cons) (5) | Saving Rate (6) | |
Dial_distance | −0.046 *** | |||||
(0.006) | ||||||
Distance | −0.043 *** | |||||
(0.008) | ||||||
Identity | 0.391 *** | −0.258 *** | 0.430 ** | −0.289 *** | ||
(0.136) | (0.064) | (0.197) | (0.094) | |||
ln (Income) | 0.026 *** | 0.646 *** | 0.131 *** | 0.025 *** | 0.647 *** | 0.131 *** |
(0.008) | (0.008) | (0.004) | (0.008) | (0.009) | (0.004) | |
ln (Members) | 0.030 ** | 0.137 *** | −0.049 *** | 0.031 ** | 0.132 *** | −0.047 *** |
(0.014) | (0.015) | (0.007) | (0.014) | (0.016) | (0.008) | |
Age | 0.002 *** | −0.003 *** | 0.001 *** | 0.002 *** | −0.003 *** | 0.001 *** |
(0.001) | (0.001) | (0.000) | (0.001) | (0.001) | (0.000) | |
Hukou | 0.082 *** | 0.042 *** | −0.013 * | 0.085 *** | 0.040 * | −0.010 |
(0.012) | (0.016) | (0.008) | (0.011) | (0.020) | (0.010) | |
Control | YES | YES | YES | YES | YES | YES |
City FE | YES | YES | YES | YES | YES | YES |
Constant | 0.074 | 2.324 *** | −0.632 *** | 0.010 | 2.326 *** | −0.633 *** |
(0.107) | (0.106) | (0.050) | (0.107) | (0.103) | (0.048) | |
N | 13,631 | 13,631 | 13,631 | 13,624 | 13,624 | 13,624 |
R2 | 0.089 | 0.581 | 0.597 | 0.0828 | 0.570 | 0.5716 |
Cragg-Donald Wald F | 60.352 | - | - | 29.248 | - | - |
Panel A | Inter-Provincial Migration | Intra-Provincial Migration | ||
---|---|---|---|---|
ln (Cons) (1) | Saving Rate (2) | ln (Cons) (3) | Saving Rate (4) | |
Identity | 0.057 *** | −0.018 *** | 0.043 *** | −0.022 *** |
(0.015) | (0.006) | (0.013) | (0.006) | |
Control and City FE | YES | YES | YES | YES |
Constant | 2.810 *** | −0.311 ** | 1.238 *** | −0.270 ** |
(0.841) | (0.132) | (0.298) | (0.125) | |
N | 7364 | 7364 | 6272 | 6272 |
R2 | 0.576 | 0.260 | 0.688 | 0.208 |
Panel B | City population < 5 million | City population > 5 million | ||
Identity | 0.036 ** | −0.012 * | 0.061 *** | −0.027 *** |
(0.015) | (0.006) | (0.013) | (0.005) | |
Control and City FE | YES | YES | YES | YES |
Constant | 2.566 *** | −0.223 | 1.687 *** | −0.434 *** |
(0.941) | (0.140) | (0.292) | (0.105) | |
N | 6919 | 6919 | 6717 | 6717 |
R2 | 0.572 | 0.283 | 0.659 | 0.206 |
Panel A | Male | Female | ||
---|---|---|---|---|
ln(Cons) (1) | Saving Rate (2) | ln(Cons) (3) | Saving Rate (4) | |
Identity | 0.045 *** | −0.019 *** | 0.049 *** | −0.021 *** |
(0.013) | (0.006) | (0.015) | (0.006) | |
Control and City FE | YES | YES | YES | YES |
Constant | 1.790 *** | −0.429 *** | 2.553 ** | −0.177 |
(0.304) | (0.107) | (1.010) | (0.143) | |
N | 7927 | 7927 | 5709 | 5709 |
R2 | 0.643 | 0.216 | 0.609 | 0.271 |
Panel B | ≥Senior middle school | <Senior middle school | ||
Identity | 0.048 *** | −0.022 *** | 0.048 *** | −0.018 *** |
(0.014) | (0.006) | (0.013) | (0.006) | |
Control and City FE | YES | YES | YES | YES |
Constant | 2.523 *** | −0.760 *** | 2.113 ** | −0.086 |
(0.325) | (0.104) | (0.874) | (0.131) | |
N | 5400 | 5400 | 8236 | 8236 |
R2 | 0.686 | 0.249 | 0.571 | 0.230 |
Panel C | Age ≥ 30 | Age < 30 | ||
Identity | 0.057 *** | −0.026 *** | 0.032 ** | −0.011 |
(0.012) | (0.005) | (0.016) | (0.007) | |
Control and City FE | YES | YES | YES | YES |
Constant | 2.356 *** | −0.265 ** | 2.386 *** | −0.720 *** |
(0.767) | (0.115) | (0.337) | (0.133) | |
N | 8101 | 8101 | 5535 | 5535 |
R2 | 0.574 | 0.239 | 0.644 | 0.258 |
Variable | Define | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Local_feel | The feeling of being local | 1.224 | 0.417 | 1 | 2 | 1. Don’t have. 2. Have |
Part_feel | The feeling of being a part of the city | 3.26 | 0.649 | 1 | 4 | 1–4, The intensity of feeling increases with the numbers |
Memb_feel | The feeling of being a number of the city | 3.215 | 0.679 | 1 | 4 | 1–4, The intensity of feeling increases with the numbers |
INC | Gross monthly income level | 5.287 | 2.767 | 1 | 10 | 1–10, Income increases with the numbers |
CONS | Total monthly consumption level | 5.269 | 2.902 | 1 | 10 | 1–10, Consumption increases with the numbers |
Family size | Total household population | 2.869 | 1.226 | 1 | 9 | |
Health | Health status | 3.764 | 0.974 | 1 | 5 | 1–5, Health improves as numbers increase |
Education | Education | 3.484 | 0.988 | 1 | 7 | 1. No school education. 2. Elementary school. 3. middle school. 4. High school. 5. College degree in specialty. 6. General college degree. 7. Postgraduate. |
Gender | 1.448 | 0.497 | 1 | 2 | 1. Female. 2. Male | |
Age | 32.87 | 8.72 | 15 | 60 | ||
Hukou | Household registration ageattributes | 0.139 | 0.346 | 0 | 1 | Agricultural Hukou = 0, Non-agricultural Hukou = 1. |
Married | Marital status | 0.741 | 0.438 | 0 | 1 | Married = 1, Other situations = 0. |
Medicinsur | Medical insurance program | 0.879 | 0.326 | 0 | 1 | Participate in any medical insurance program, yes = 1, No = 0. |
Socialsecur | Social insurance program | 0.751 | 0.433 | 0 | 1 | Participate in any social insurance program, yes = 1, No = 0. |
Factor | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
Factor1 | 1.926 | 0.375 | 0.473 | 0.473 |
Factor2 | 1.551 | 0.673 | 0.381 | 0.854 |
Factor3 | 0.878 | 0.345 | 0.216 | 1.069 |
Factor4 | 0.533 | 0.430 | 0.131 | 1.200 |
Factor5 | 0.103 | 0.047 | 0.025 | 1.226 |
Factor6 | 0.056 | 0.067 | 0.014 | 1.239 |
Factor7 | −0.011 | 0.111 | −0.003 | 1.237 |
Factor8 | −0.121 | 0.040 | −0.030 | 1.207 |
Factor9 | −0.161 | 0.008 | −0.040 | 1.167 |
Factor10 | −0.169 | 0.073 | −0.042 | 1.126 |
Factor11 | −0.242 | 0.028 | −0.059 | 1.066 |
Factor12 | −0.270 | −0.066 | 1.000 |
RMSEA | CFI | TLI | SRMR | |
---|---|---|---|---|
Basic model | 0.040 | 0.977 | 0.960 | 0.025 |
CMB model | 0.114 | 0.812 | 0.720 | 0.083 |
Threshold value | <0.05 | >0.9 | >0.9 | <0.05 |
Part A | Factor Analysis Test | |||
Bartlett Test | Bartlett (p Value) | KMO | Cronbach’sAlpha | |
1,092,749.96 | 0.000 | 0.700 | 0.7127 | |
Part B | Factor Analysis | |||
Factor | Eigenvalue | Difference | Proportion | Cumulative |
Factor1 | 1.473 | 1.490 | 1.145 | 1.145 |
Factor2 | −0.017 | 0.152 | −0.013 | 1.132 |
Factor3 | −0.169 | −0.132 | 1.000 | |
Part C | Host City Identity Measurement | |||
Measurement (Standardized) | Coefficient | std. err.(OIM) | z | p > |z| |
IDENTITY | ||||
local_feel | 0.276 *** | 0.008 | 33.90 | 0.000 |
part_feel | 0.869 *** | 0.010 | 90.28 | 0.000 |
memb_feel | 0.896 *** | 0.010 | 91.08 | 0.000 |
RMSEA = 0.000 CFI = 0.996 TLI = 0.991 SRMR = 0.000 CD = 0.879 ρ = 0.846 |
Standardized Coefficient | Unstandardized Coefficient | z | p > |z| | |
---|---|---|---|---|
Structural | ||||
CONS | ||||
IDENTITY | 0.052 *** | 1 *** | 8.710 | 0.000 |
education | 0.084 *** | 0.247 *** | 12.880 | 0.000 |
hukou | 0.048 *** | 0.401 *** | 7.850 | 0.000 |
medicinsur | −0.019 *** | −0.165 *** | −2.820 | 0.005 |
socialsecur | 0.021 *** | 0.143 *** | 3.200 | 0.001 |
INC | 0.657 *** | 0.689 *** | 126.600 | 0.000 |
health_well | −0.029 *** | −0.087 *** | −5.180 | 0.000 |
familysize | 0.106 *** | 0.251 *** | 11.890 | 0.000 |
gender | 0.012 ** | 0.070 ** | 2.170 | 0.030 |
age | −0.016 ** | −0.005 ** | −2.260 | 0.024 |
married | 0.027 *** | 0.182 ** | 3.010 | 0.003 |
_cons | 0.080 | 0.234 | 1.590 | 0.111 |
IDENTITY | ||||
INC | 0.016 | 0.009 | 1.590 | 0.111 |
education | 0.056 *** | 0.019 *** | 5.560 | 0.000 |
hukou | 0.043 *** | −0.003 *** | 4.560 | 0.000 |
medicinsur | −0.006 | 0.023 | −0.590 | 0.555 |
socialsecur | 0.067 *** | 0.001 *** | 6.410 | 0.000 |
familysize | 0.014 | 0.002 | 1.320 | 0.186 |
RMSEA = 0.040 SRMR = 0.025 CFI = 0.977 TLI = 0.960 SRMR = 0.025 |
Path | Direct Effects | Indirect Effects | Total Effects |
---|---|---|---|
IDENTITY-> CONS | 0.052 *** (0.000) | 0.052 *** (0.000) | |
Education-> CONS | 0.084 *** (0.000) | 0.003 *** (0.000) | 0.087 *** (0.000) |
Education-> IDENTITY | 0.056 *** (0.000) | 0.056 *** (0.000) | |
INC-> CONS | 0.657 *** (0.000) | 0.001 (0.117) | 0.658 *** (0.000) |
INC-> IDENTITY | 0.016 (0.117) | 0.016 (0.117) | |
hukou-> CONS | 0.048 *** (0.000) | 0.002 *** (0.000) | 0.050 *** (0.000) |
hukou-> IDENTITY | 0.043 *** (0.000) | 0.043 *** (0.000) | |
socialsecur-> CONS | 0.021 *** (0.001) | 0.003 *** (0.000) | 0.024 *** (0.000) |
socialsecur-> IDENTITY | 0.067 *** (0.000) | 0.067 *** (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Sun, W.; Wang, Z. Host Identity and Consumption Behavior: Evidence from Rural–Urban Migrants in China. Sustainability 2022, 14, 12462. https://doi.org/10.3390/su141912462
Ma N, Sun W, Wang Z. Host Identity and Consumption Behavior: Evidence from Rural–Urban Migrants in China. Sustainability. 2022; 14(19):12462. https://doi.org/10.3390/su141912462
Chicago/Turabian StyleMa, Nianzhai, Weizeng Sun, and Zhen Wang. 2022. "Host Identity and Consumption Behavior: Evidence from Rural–Urban Migrants in China" Sustainability 14, no. 19: 12462. https://doi.org/10.3390/su141912462
APA StyleMa, N., Sun, W., & Wang, Z. (2022). Host Identity and Consumption Behavior: Evidence from Rural–Urban Migrants in China. Sustainability, 14(19), 12462. https://doi.org/10.3390/su141912462