Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile
Abstract
:1. Introduction
- Water saving by the analysis of the Minimum Night Flow (MNF) evolution between the initial situation and the proposed one.
- Evolution of the Total Daily Flow (TDF)
- Level of service to the customers by the evolution of the number of occurrences, the pressure in the critical point will be below the 15 m target set by ESVAL.
2. Materials and Methods
2.1. Description of Case Study Location
2.2. WDN Description
2.3. Hydraulic Control Setup Description
- Working days, from Monday till Friday
- ○
- From 00:00 to 06:30, P2 cannot be lower than 18 m nor higher than 24 m.
- ○
- From 06:30 to 00:00, it cannot be lower than 20 m nor higher than 28 m
- Weekends, Saturday and Sunday:
- ○
- From 00:00 to 08:00, P2 cannot be lower than 18 m or higher than 24 m.
- ○
- Peak demand from 08:30 to 19:00, P2 cannot be lower than 20 m nor higher than 30 m.
- ○
- From 19:00 to 00:00, P2 cannot be lower than 20 m nor above 28.
2.4. Optimization Control Curve
2.5. Minimum Night Flow and Total Daily Flow
3. Results and Discussion
3.1. Optimization Model
3.2. Data Analysis
3.3. Minimum Night Flow and Total Daily Flow
3.4. Level of Service
4. Conclusions
- A quadratic adjustment showed the best statistical approach between the inlet flow and the headloss between the outlet of the valve and the critical points. The model was constructed with 14 days of data of former valve performance, and it was implemented immediately after.
- Pressure reduction during the night period generates a 10.12% reduction in the MNF. Since MNF is accepted as an indicator of the leakage level, this result proves the water saving achieved in La Calera city.
- TDF in La Calera kept a similar value when comparing performance under the advanced control model and the original one. The advanced PM scheme allowed a reduction in the inlet flow during the night period but increased it during the peak demand time to better satisfy customer water needs. The reduction in the TDF is only 1.5%.
- Improvement of the level of service. Implementation of the model managed to increase pressure at peak demand to increase the level of service in the area. As a result, the number of events where the pressure in the area was below the target of 15 m was reduced by 52%.
- The advanced PM scheme permits a change in the demand pattern in La Calera, adjusting it to customer consumption needs.
- PM can be used as a fast tool to generate immediate results for leakage saving and level of service improvement. It is advisable to include it within a broader long-term approach that includes activities recommended by the IWA, such as Active Leakage Control, Speed and Quality of Repairs, and Infrastructure Management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMA | District Metered Area |
DN | Nominal Diameter |
HDPE | High-density polyethylene |
IWA | International Water Association |
MNF | Minimum Night Flow |
NRW | Non-Revenue Water |
P1 | Pressure at the inlet of the pressure-reducing valve |
P2 | Pressure at the outlet of the pressure-reducing valve |
P3-1 | Critical point 1 |
P3-2 | Critical point 2 |
PM | Pressure management |
PRV | Pressure reducing valve |
PVC | Polyvinyl chloride |
TDF | Total Daily Flow |
WDN | Water distribution network |
References
- Ortega-Ballesteros, A.; Manzano-Agugliaro, F.; Perea-Moreno, A.-J. Water Utilities Challenges: A Bibliometric Analysis. Sustainability 2021, 13, 7726. [Google Scholar] [CrossRef]
- Erban, L.E.; Walker, H.A. Beyond Old Pipes and Ailing Budgets: Systems Thinking on Twenty-First Century Water Infrastructure in Chicago. Front. Built Environ. 2019, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- AL-Washali, T.; Sharma, S.; Kennedy, M. Methods of Assessment of Water Losses in Water Supply Systems: A Review. Water Resour. Manag. 2016, 30, 4985–5001. [Google Scholar] [CrossRef]
- Monsef, H.; Naghashzadegan, M.; Farmani, R.; Jamali, A. Pressure management in water distribution systems in order to reduce energy consumption and background leakage. J. Water Supply 2018, 67, 397–403. [Google Scholar] [CrossRef]
- Collins, R.; Boxall, J. Influence of Ground Conditions on Intrusion Flows through Apertures in Distribution Pipes. J. Hydraul. Eng. 2013, 139, 1052–1061. [Google Scholar] [CrossRef]
- Fontanazza, C.M.; Notaro, V.; Puleo, V.; Nicolosi, P.; Freni, G. Contaminant Intrusion through Leaks in Water Distribution System: Experimental Analysis. Procedia Eng. 2015, 119, 426–433. [Google Scholar] [CrossRef]
- Allen, M.; Clark, R.; Cotruvo, J.A.; Grigg, N. Drinking Water and Public Health in an Era of Aging Distribution Infrastructure. Public Work. Manag. Policy 2018, 23, 301–309. [Google Scholar] [CrossRef]
- Trow, S.; Farley, M. Developing a strategy for leakage management in water distribution systems. Water Sci. Technol. Water Supply 2004, 4, 149–168. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tsitsifli, S. Water Networks Management: New Perspectives. Water 2019, 11, 239. [Google Scholar] [CrossRef]
- Thornton, J.; Sturm, R.; Kunke, G. Water Loss Control, 2nd ed.; Mc-Graw Hill: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Lambert, A. What do we know about pressure/leakage relationships in distribution systems? In Proceedings of the IWA Specialised Conference, System Approach to Leakage Control and Water Distribution Systems Management, Brno, Czech Republic, 16–18 May 2001. [Google Scholar]
- Garzón, F.; Thornton, J. Nfluencia de la presión en las pérdidas de agua en sistemas de distribución. In Proceedings of the Trabajo Presentado en el XXX Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Punta del Este, Uruguay, 26–30 November 2006. [Google Scholar]
- Van Zyl, J.E.; Cassa, A.M. Modeling elastically deforming leaks in water distribution pipes. J. Hydraul. Eng. 2014, 140, 182–189. [Google Scholar] [CrossRef]
- Greyvenstein, B.; Van Zyl, J.E. An experimental investigation into the pressure-leakage relationship of some failed water pipes. J. Water Supply Res. Technol. 2007, 56, 117–124. [Google Scholar] [CrossRef]
- Jara-Arriagada, C.; Stoianov, I. Pipe breaks and estimating the impact of pressure control in water supply networks. Reliab. Eng. Syst. Saf. 2021, 210, 107525. [Google Scholar] [CrossRef]
- Garmendia, M.; Almandoz, J.; Arrizabalaga, A.; Arregui, F. Pressure management and residential consumption reduction. Water Supply 2019, 19, 236–244. [Google Scholar] [CrossRef]
- Parra, S.; Krause, S.; Krönlein, F.; Günthert, F.W.; Klunke, T. Intelligent pressure management by pumps as turbines in water distribution systems: Results of experimentation. Water Supply 2018, 18, 778–789. [Google Scholar] [CrossRef]
- Dimaano, I. Effort in reducing unaccountable water and economic consideration. Water Pract. Technol. 2015, 10, 50–58. [Google Scholar] [CrossRef]
- Wyatt, A. Case Study: Performance-Based Contract for NRW Reduction and Control -New Providence, Bahamas; Technical Note No. IDB-TN-813; Inter-American Development Bank, Water and Sanitation Division: Washington, DC, USA, 2018. [Google Scholar]
- EU Reference Document Good Practices on Leakage Management WFD CIS WG PoM; European Union: Maastricht, The Netherlands, 2015; ISBN 978-92-79-45069-3. Available online: https://circabc.europa.eu/sd/a/1ddfba34-e1ce-4888-b031-6c559cb28e47/Good%20Practices%20on%20Leakage%20Management%20-%20Main%20Report_Final.pdf (accessed on 21 March 2022).
- Vicente, D.J.; Garrote, L.; Sánchez, R.; Santillán, D. Pressure Management in Water Distribution Systems: Current Status, Proposals, and Future Trends. J. Water Resour. Plan. Manag. 2016, 142, 04015061. [Google Scholar] [CrossRef]
- Javanmard, M.E.; Ghaderi, S.; Sangari, M.S. Integrating energy and water optimization in buildings using multi-objective mixed-integer linear programming. Sustain. Cities Soc. 2020, 62, 102409. [Google Scholar] [CrossRef]
- Ortega-Ballesteros, A.; Muñoz-Rodríguez, D.; Perea-Moreno, A.-J. Advances in Leakage Control and Energy Consumption Optimization in Drinking Water Distribution Networks. Energies 2022, 15, 5484. [Google Scholar] [CrossRef]
- Gupta, A.D.; Bokde, N.; Marathe, D.; Kulat, K. Optimization techniques for leakage management in urban water distribution networks. Water Sci. Technol. Water Supply 2017, 17, 1638–1652. [Google Scholar] [CrossRef] [Green Version]
- Dai, P.D.; Cuong, L.Q.; Van Dai, B. Optimal Pump Scheduling to Pressure Management for Large-Scale Water Distribution Systems. In 2017—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application; Duy, V., Dao, T., Zelinka, I., Kim, S., Phuong, T., Eds.; AETA AETA 2017; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2018; Volume 465. [Google Scholar] [CrossRef]
- Giustolisi, O.; Laucelli, D.; Berardi, L. Operational Optimization: Water Losses versus Energy Costs. J. Hydraul. Eng. 2013, 139, 410–423. [Google Scholar] [CrossRef]
- Tricarico, C.; Morley, M.S.; Gargano, R.; Kapelan, Z.; Savić, D.; Santopietro, S.; Granata, F.; de Marinis, G. Optimal energy recovery by means of pumps as turbines (PATs) for improved WDS management. Water Supply 2018, 18, 1365–1374. [Google Scholar] [CrossRef]
- Chatzivasili, S.; Papadimitriou, K.; Kanakoudis, V. Optimizing the Formation of DMAs in a Water Distribution Network through Advanced Modelling. Water 2019, 11, 278. [Google Scholar] [CrossRef]
- Khoa Bui, X.; Marlim, M.S.; Kang, D. Water Network Partitioning into District Metered Areas: A State-Of-The-Art Review. Water 2020, 12, 1002. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, F.; Kapelan, Z.; Savic, D.; Duan, H.F.; Zhang, Q. Efficient leak localization in water distribution systems using multistage optimal valve operations and smart demand metering. Water Resour. Res. 2020, 56, e2020WR028285. [Google Scholar] [CrossRef]
- Latifi, M.; Naeeni, S.T.; Gheibi, M.A. Upgrading the reliability of water distribution networks through optimal use of pressure-reducing valves. J. Water Resour. Plan. Manag. 2018, 144, 04017086. [Google Scholar] [CrossRef]
- Mosetlhe, T.C.; Hamam, Y.; Du, S.; Monacelli, E. A Survey of Pressure Control Approaches in Water Supply Systems. Water 2020, 12, 1732. [Google Scholar] [CrossRef]
- García-Ávila, F.; Avilés-Añazco, A.; Ordoñez-Jara, J.; Guanuchi-Quezada, C.; Flores del Pino, L.; Ramos-Fernández, L. Pressure management for leakage reduction using pressure reducing valves. Case study in an Andean city. Alex. Eng. J. 2019, 58, 1313–1326. [Google Scholar] [CrossRef]
- Araujo, L.S.; Ramos, H.; Coelho, S.T. Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Gomes, R.; Sá Marques, A.; Sousa, J. Identification of the optimal entry points at District Metered Areas and implementation of pressure management. Urban Water J. 2012, 9, 365–384. [Google Scholar] [CrossRef]
- Mateos de Vicente, M. Válvulas Reductoras de Presión. Clasificación, Descripción, Errores Y Soluciones; Librería y Editorial Técnica: Madrid, Spain, 2001; ISBN 84-95279-40-1. [Google Scholar]
- Patelis, M.; Kanakoudis, V.; Kravvari, A. Pressure Regulation vs. Water Aging in Water Distribution Networks. Water 2020, 12, 1323. [Google Scholar] [CrossRef]
- Marsili, V.; Zarbo, R.; Alvisi, S.; Franchini, M. Laboratory Analysis of a Piston-Actuated Pressure-Reducing Valve under Low Flow Conditions. Water 2020, 12, 940. [Google Scholar] [CrossRef]
- Ferro, G.; Mercadier, A.C. Technical efficiency in Chile′s water and sanitation providers. Util. Policy 2016, 43, 97–106. [Google Scholar] [CrossRef]
- Market, G.W. Meeting the World’s Water and Wastewater Needs until 2020; Global Water Intelligence: Oxford, UK, 2017; Volume 1. [Google Scholar]
- Informe de Gestión del Sector Sanitario. 2020. Available online: https://www.siss.gob.cl/586/articles-19431_recurso_1.pdf (accessed on 4 January 2022).
- Liemberger, R. Quantifying the Global Non-Revenue Water Problem. Water Sci. Technol. Water Supply 2018, 19, 831–837. Available online: https://iwaponline.com/ws/article/19/3/831/41417/Quantifying-the-global-non-revenue-water-problem (accessed on 30 January 2022). [CrossRef]
- Rivera, D.; Godoy-Faúndez, A.; Lillo, M.; Costumero, R.; García-Pedrero, Á. Legal disputes as a proxy for regional conflicts over water rights in Chile. J. Hydrol. 2016, 535, 36–45. [Google Scholar] [CrossRef]
- Bórquez, R.; Fuster, R. Energy and Water Policies in Chile, Two Different Endings with Implications in the Water-Energy Nexus. Energies 2021, 14, 3286. [Google Scholar] [CrossRef]
- National Water Stress Ranking. Available online: www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress (accessed on 4 January 2022).
- Lajaunie, M.-L.; Scheierling, S.; Zuleta, J.; Chinarro, L.; Vazquez, V. Diagnóstico de la Gestión de los Recursos Hídricos (Spanish); World Bank Group: Washington, DC, USA, 2011; Available online: http://documents.worldbank.org/curated/en/452181468216298391/Chile-Diagn-243-stico-de-la-gesti-243-n-de-los-recursos-h-237-dricos (accessed on 2 July 2022).
- Muñoz, A.A.; Klock-Barría, K.; Alvarez-Garreton, C.; Aguilera-Betti, I.; González-Reyes, Á.; Lastra, J.A.; Chávez, R.O.; Barría, P.; Christie, D.; Rojas-Badilla, M.; et al. Water Crisis in Petorca Basin, Chile: The Combined Effects of a Mega-Drought and Water Management. Water 2020, 12, 648. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Aldunce, P.; Araya, D.; Sapiain, R.; Ramos, I.; Lillo, G.; Urquiza, A.; Garreaud, R. Local Perception of Drought Impacts in a Changing Climate: The Mega-Drought in Central Chile. Sustainability 2017, 9, 2053. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Fuster, R.; Avilés, D.; Vervoort, W. Water scarcity in central Chile: The effect of climate and land cover changes on hydrologic resources. Hydrol. Sci. J. 2021, 66, 1028–1044. [Google Scholar] [CrossRef]
- Memoria ESVAL. Available online: https://www.ESVAL.cl/media/l4cbiu3d/memoria-anual-ESVAL-2020-%C3%BAltima.pdf (accessed on 20 January 2022).
- Zhang, X.; Chen, N.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.Y.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 133536. [Google Scholar] [CrossRef]
- Donoso, G. Chile. In ‘Global Issues in Water Policy’ Series; Springer: Berlin/Heidelberg, Germany, 2018; 224p, ISBN 978-3-319-76701-7. [Google Scholar]
- Sotomayor Abarzúa, G. Optimización de los Sistemas de Producción, Transferencia y Distribución de Agua Potable en la Localidad de la Calera; Universidad Técnica Federico Santa María: Valparaiso, Chile, 2012. [Google Scholar]
- Center for Climate and Resilience Research. Available online: https://www.cr2.cl/eng/ (accessed on 10 January 2022).
- Dirección General de Agua. Decretos Declaración Zona de Escasez Vigentes. Available online: https://dga.mop.gob.cl/administracionrecursoshidricos/decretosZonasEscasez/Paginas/default.aspx (accessed on 20 January 2022).
- Davis, P.; Silva, D.D.; Marlow, D.; Moglia, M.; Gould, S.; Burn, S. Failure prediction and optimal scheduling of replacements in asbestos cement water pipes. J. Water Supply Res. Technol. Aqua 2008, 57, 239–252. [Google Scholar] [CrossRef]
- McKenzie, R.; Wegelin, W. Implementation of Pressure Management in Municipal Water Supply Systems; IWA Water Press: London, UK, 2009. [Google Scholar]
- Hoaglin, D.C.; Iglewicz, B.; Tukey, J.W. Performance of some resistant rules for outlier labeling. J. Amer. Statist. Assoc. 1986, 81, 991–999. [Google Scholar] [CrossRef]
- Carling, K. Resistant outlier rules and the non-Gaussian case. Comput. Statist. Data Anal. 2000, 33, 249–258. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Dominguez, I.C.; Celis, J.; Blanco, L.C.; Cotes, I.; Ward, S.; Kapelan, Z. Water-loss management under data scarcity: Case study in a small municipality in a developing country. J. Water Resour. Plan. Manag. 2020, 146, 05020001. [Google Scholar] [CrossRef]
- Marzola, I.; Alvisi, S.; Franchini, M. Minimum Night Flow Analysis and Application of the Fixed and Variable Area Discharges Model for Characterizing Leakage in the Gorino Ferrarese (FE-Italy) District. Environ. Sci. Proc. 2020, 2, 2008. [Google Scholar] [CrossRef]
- Lambert, A. Water Losses Management and Techniques, 1st ed.; Water Supply, IWA Publishing: London, UK, 2002; Volume 2, pp. 1–20. [Google Scholar]
- Alvisi, S.; Franchini, M.; Marinelli, A. A short-term, pattern-based model for water-demand forecasting. J. Hydroinform. 2007, 9, 39–50. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Real-time control of pressure for leakage reduction in water distribution network: Field experiments. J. Water Resour. Plan. Manag. 2018, 144, 04017096. [Google Scholar] [CrossRef]
Model | Coefficient and Standard Error | Equation | R2 |
---|---|---|---|
Linear | b0 = 2.066 ± 0.008 | Y = b0 + b1·X | 0.905 |
b1 = −0.007 ± 0.000 | |||
Logarithmic | b0 = 5.648 ± 0.029 | Y = b0 + b1·Ln(X) | 0.940 |
b1 = −0.916 ± 0.006 | |||
Quadratic | b0 = 3.705 ± 0.020 | Y = b0 + b1·X + b2·X2 | 0.982 |
b1 = −0.031 ± 0.000 | |||
b2 = 8.759 × 10−5 ± 0.000 | |||
Potential | b0 = 50.152 ± 1.166 | Ln(Y) = Ln(b0) + b1·Ln(X) | 0.951 |
b1 = −0.779 ± 0.005 | |||
Exponential | b0 = 2.478 ± 0.015 | Ln(Y) = Ln(b0) + b1·X | 0.920 |
b1 = −0.006 ± 0.000 |
Phase 1 | Phase 2 | |||||
---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | |
P1 (m) | 48.23 | 43.56 | 46.36 | 47.35 (−0.88; −1.9%) | 42.72 (−0.84; −2.0%) | 45.54 (−0.82; −1.8%) |
P2 (m) | 26.78 | 17.80 | 25.57 | 30.33 (+3.55; +11.7%) | 17.65 (−0.15; −0.80%) | 20.60 (−4.97; −24.1%) |
Flow (L/s) | 193.33 | 96.67 | 142.06 | 204.44 (+11.11; +5.4%) | 87.78 (−8.89; −10.1%) | 140.48 (−1.58; −1.1%) |
P3-1 (m) | 27.36 | 19.16 | 25.92 | 28.70 (+1.34; +4.7%) | 17.90 (−1.26; −7.0%) | 20.92 (−5.0; −23.9%) |
P3-2 (m) | 37.75 | 9.46 | 26.29 | 33.79 (−3.96; −11.7%) | 9.65 (+0.19; +2.0%) | 23.26 (−3.03; −13.0%) |
Night Timeframe | Number of Occurrences | % |
---|---|---|
01:00–02:00 | 1 | 3.3% |
02:00–03:00 | 9 | 30.0% |
03:00–04:00 | 10 | 33.3% |
04:00–05:00 | 9 | 30.0% |
05:00–06:00 | 1 | 3.3% |
TDF (m3/Day) | MNF (L/s) | |
---|---|---|
Phase 1 | 12,279.62 | 103.17 |
Phase 2 | 12,094.43 | 93.61 |
Average reduction | 185.20 (1.5%) | 9.56 (10.12%) |
Phase 1 | Phase 2 | |
---|---|---|
P3-1 | 0 | 0 |
P3-2 | 82 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Ballesteros, A.; Iturriaga-Bustos, F.; Perea-Moreno, A.-J.; Muñoz-Rodríguez, D. Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile. Sustainability 2022, 14, 12463. https://doi.org/10.3390/su141912463
Ortega-Ballesteros A, Iturriaga-Bustos F, Perea-Moreno A-J, Muñoz-Rodríguez D. Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile. Sustainability. 2022; 14(19):12463. https://doi.org/10.3390/su141912463
Chicago/Turabian StyleOrtega-Ballesteros, Andrés, Francisco Iturriaga-Bustos, Alberto-Jesus Perea-Moreno, and David Muñoz-Rodríguez. 2022. "Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile" Sustainability 14, no. 19: 12463. https://doi.org/10.3390/su141912463
APA StyleOrtega-Ballesteros, A., Iturriaga-Bustos, F., Perea-Moreno, A.-J., & Muñoz-Rodríguez, D. (2022). Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile. Sustainability, 14(19), 12463. https://doi.org/10.3390/su141912463