Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model
Abstract
:1. Introduction
- (1)
- We establish the CNN-Attention-LSTM model based on FL to forecast multi-energy load.
- (2)
- We simulate and evaluate the prediction performance of individual, central, and federated models with four strategies. The prediction accuracy of federated models is comparable to or even better than that of the central model.
- (3)
- We simulate and compare the performance of four types of FL (FedAvg, FedAdagrad, FedYogi, and FedAdam) under FDIA. The experiment results indicate that FedAdagrad has better forecasting results than others, whether a regular operation or suffering from FDIA.
2. Related Work
2.1. Multi-Energy Load Forecasting
2.2. Federated Learning in Energy Systems
3. Methodology
3.1. Federated Learning
Algorithm 1: FedOpt framework |
1: Initialize the global model |
2: for each round = 1,2… do |
3: The server sends to all clients |
4: Each client performs epochs at local |
5: Each client has an individual model and sends to the server. |
6: The server computes a pseudo-gradient and updates its model via |
3.2. CNN-Attention-LSTM Model
4. Simulation
4.1. Federated Learning-Based Multi-Energy Load Forecasting Framework
4.2. Data Preprocessing
4.2.1. Data Cleaning
4.2.2. Data Normalization
4.2.3. Selection of Input Data
4.3. Evaluation Criteria
4.4. Hyperparameters
Algorithm 2: Bayesian optimization |
1: Input: function to be maximized g, parameter space , initial observations |
2: for each round = 1,2… do |
3: Select |
4: Evaluate at |
5: Add to |
6: Update GP model |
7: end for |
8: Output: |
4.5. Comparison of Forecasting Results
- Individual model: each campus uses individual data for model training separately
- Central model: a server centralizes the data of the campuses for model training
- FedAvg: server and campuses use FedAvg for model training
- FedAdagrad: server and campuses use FedAdagrad for model training
- FedYogi: server and campuses use FedYogi for model training
- FedAdam: server and campuses use FedAdam for model training
4.5.1. Forecasting Accuracy under Regular Operation
4.5.2. Forecasting Accuracy under FDIA
4.5.3. Training Time Evaluation of Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Zhang, N.; Lu, Z.; Kang, C. Planning multiple energy systems toward low-carbon society: A decentralized approach. IEEE Trans. Smart Grid 2018, 10, 4859–4869. [Google Scholar] [CrossRef]
- Quelhas, A.; Gil, E.; McCalley, J.D.; Ryan, S.M. A Multiperiod Generalized Network Flow Model of the U.S. Integrated Energy System: Part I—Model Description. IEEE Trans. Power Syst. 2007, 22, 829–836. [Google Scholar] [CrossRef]
- Taïk, A.; Cherkaoui, S. Electrical load forecasting using edge computing and federated learning. In Proceedings of the 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Subramanya, T.; Riggio, R. Centralized and Federated Learning for Predictive VNF Autoscaling in Multi-Domain 5G Networks and Beyond. IEEE Trans. Netw. Serv. Manag. 2021, 18, 63–78. [Google Scholar] [CrossRef]
- Li, J.; Ren, Y.; Fang, S.; Li, K.; Sun, M. Federated Learning-Based Ultra-Short term load forecasting in power Internet of things. In Proceedings of the IEEE International Conference on Energy Internet (ICEI), Sydney, NSW, Australia, 24–28 August 2020; pp. 63–68. [Google Scholar]
- Jiang, Y.; Ma, M.; Bennis, M.; Zheng, F.-C.; You, X. User Preference Learning-Based Edge Caching for Fog Radio Access Network. EEE Trans. Commun. 2019, 67, 1268–1283. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fang, F.; Wang, J. Probabilistic Solar Irradiation Forecasting Based on Variational Bayesian Inference With Secure Federated Learning. IEEE Trans. Ind. Inform. 2021, 17, 7849–7859. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Artificial Intelligence and Statistics; PMLR: Seattle, WA, USA, 2016. [Google Scholar]
- Messaoud, S.; Bradai, A.; Bukhari, S.H.R.; Quang, P.T.A.; Ben Ahmed, O.; Atri, M. A survey on machine learning in Internet of Things: Algorithms, strategies, and applications. Internet Things 2020, 12, 100314. [Google Scholar] [CrossRef]
- Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018, 32, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Pathan, A.S.K. False data injection attack (FDIA): An overview and new metrics for fair evaluation of its countermeasure. Complex Adapt. Syst. Model. 2020, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Wang, Y.; Huang, Y. Short-term Forecast of Multi-load of Electrical Heating and Cooling in Regional Integrated Energy System Based on Deep LSTM RNN. In Proceedings of the IEEE Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 15 February 2020; pp. 2994–2998. [Google Scholar]
- Zhu, R.; Guo, W.; Gong, X. Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning. Energies 2019, 12, 3308. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, S.; Chen, H.; Gu, Q. Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics. Energy 2020, 195, 116964. [Google Scholar] [CrossRef]
- Tan, Z.; De, G.; Li, M.; Lin, H.; Yang, S.; Huang, L.; Tan, Q. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine. J. Clean. Prod. 2020, 248, 119252. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Z. Cooling, Heating and Electrical Load Forecasting Method for Integrated Energy System based on SVR Model. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 24 May 2021; pp. 1753–1758. [Google Scholar]
- Li, Q.; Tang, X.; Luo, Y.; Liu, W.; Chen, Q.; Hu, J. Integrated Energy System Load Forecast Based on Information Entropy and Stacked Auto-Encoders. In Proceedings of the 2021 IEEE IAS Industrial and Commercial Power System Asia, Chengdu, China, 18–21 July 2021; pp. 385–390. [Google Scholar]
- Wang, Y.; Ma, K.; Li, X.; Liang, Y.; Hu, Y.; Li, J.; Liu, H. Multi-type Load Forecasting of IES Based on Load Correlation and Stacked Auto-Encode Extreme Learning Machine. In Proceedings of the IEEE International Conference on Power and Energy Systems (ICPES), Chengdu, China, 25–27 December 2020; pp. 585–589. [Google Scholar]
- Wang, Y.; Ma, Y.; Song, F.; Ma, Y.; Qi, C.; Huang, F.; Xing, J.; Zhang, F. Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response. Energy 2020, 205, 118022. [Google Scholar] [CrossRef]
- Chuang, L.; Guojie, L.; Keyou, W.; Han, B. A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems. Energy 2022, 259, 124967. [Google Scholar]
- Guo, Y.; Li, Y.; Qiao, X.; Zhang, Z.; Zhou, W.; Mei, Y.; Lin, J.; Zhou, Y.; Nakanishi, Y. BiLSTM Multitask Learning-Based Combined Load Forecasting Considering the Loads Coupling Relationship for Multienergy System. IEEE Trans. Smart Grid 2022, 13, 3481–3492. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Ding, Z.; Zheng, T.; Hu, J.; Zhang, K. A Transformer-Based Method of Multienergy Load Forecasting in Integrated Energy System. IEEE Trans. Smart Grid 2022, 13, 2703–2714. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Q. A New Calendar Effect and Weather Conditions based Day-ahead Load Forecasting Model. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, X.Y.; Li, B.J.; Shi, J.; Hua, L.; Guojing, L. A Novel Forecasting Method for Short-term Load based on TCN-GRU Model. In Proceedings of the 2021 IEEE International Conference on Energy Internet (ICEI), Southampton, UK, 27–29 September 2021; pp. 79–83. [Google Scholar] [CrossRef]
- Shingi, G. A federated learning based approach for loan defaults prediction. In Proceedings of the IEEE International Conference on Data Mining Workshops (ICDM Workshops), Sorrento, Italy, 17–20 November 2020; pp. 362–368. [Google Scholar]
- Zeng, T.; Guo, J.; Kim, K.J.; Parsons, K.; Orlik, P.; Di Cairano, S.; Saad, W. Multi-Task Federated Learning for Traffic Prediction and Its Application to Route Planning. In Proceedings of the IEEE Symposium on Intelligent Vehicle, Nagoya, Japan, 11–17 July 2021; pp. 451–457. [Google Scholar]
- Liu, Y.; James, J.Q.; Kang, J.; Niyato, D.; Zhang, S. Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach. IEEE Internet Things J. 2020, 7, 7751–7763. [Google Scholar] [CrossRef]
- Jiang, F.; Cheng, W.; Gao, Y.; Sun, C. Caching Strategy Based on Content Popularity Prediction Using Federated Learning for F-RAN. In Proceedings of the IEEE International Conference on Communications in China Workshops (ICCC), Xiamen, China, 28–30 July 2021; pp. 19–24. [Google Scholar]
- Thorgeirsson, A.T.; Scheubner, S.; Fünfgeld, S.; Gauterin, F. Probabilistic Prediction of Energy Demand and Driving Range for Electric Vehicles With Federated Learning. IEEE Open J. Veh. Technol. 2021, 2, 151–161. [Google Scholar] [CrossRef]
- Cheng, X.; Luo, Q.; Pan, Y.; Li, Z.; Zhang, J.; Chen, B. Predicting the APT for Cyber Situation Comprehension in 5G-Enabled IoT Scenarios Based on Differentially Private Federated Learning. Secur. Commun. Netw. 2021, 2021, 8814068. [Google Scholar] [CrossRef]
- Mitra, A.; Ngoko, Y.; Trystram, D. Impact of Federated Learning On Smart Buildings. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems, Coimbatore, India, 25–27 March 2021; pp. 93–99. [Google Scholar]
- Savi, M.; Olivadese, F. Short-Term Energy Consumption Forecasting at the Edge: A Federated Learning Approach. IEEE Access 2021, 9, 95949–95969. [Google Scholar] [CrossRef]
- Fekri, M.N.; Grolinger, K.; Mir, S. Distributed load forecasting using smart meter data: Federated learning with Recurrent Neural Networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107669. [Google Scholar] [CrossRef]
- Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.; Konečný, J.; Kumar, S.; McMahan, H.B. Adaptive federated optimization, ICRL. arXiv 2021, arXiv:2003.00295. [Google Scholar]
- Charles, Z.; Garrett, Z.; Huo, Z.; Shmulyian, S.; Smith, V. On Large-Cohort Training for Federated Learning. In Proceedings of the 35th Conference on Neural Information Processing Systems, Sydney, Australia, 6–14 December 2021. [Google Scholar]
- McMahan, H.B.; Streeter, M. Adaptive Bound Optimization for Online Convex Optimization. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), Haifa, Israel, 27–29 June 2010. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhang, G.; Bai, X.; Wang, Y. Short-time multi-energy load forecasting method based on CNN-Seq2Seq model with attention mechanism. Mach. Learn. Appl. 2021, 5, 100064. [Google Scholar] [CrossRef]
- Campus Metabolism. 2021. Available online: http://cm.asu.edu/ (accessed on 1 May 2021).
- National Centers for Environmental Information (NCEI). 2021. Available online: https://www.ncei.noaa.gov/ (accessed on 1 May 2021).
- Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks. IEEE Access 2020, 8, 52588–52608. [Google Scholar] [CrossRef]
- Shin, S.; Lee, Y.; Kim, M.; Park, J.; Lee, S.; Min, K. Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Eng. Appl. Artif. Intell. 2020, 94, 103761. [Google Scholar] [CrossRef]
- Mode, G.R.; Calyam, P.; Hoque, K.A. False Data Injection Attacks in Internet of Things and Deep Learning enabled Predictive Analytics. arXiv 2019, arXiv:10.48550. [Google Scholar]
- Fekri M, N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [Google Scholar] [CrossRef]
Downtown | Polytechnic | Tempe | West | |
---|---|---|---|---|
α1 | 0.4 | 0.5 | 0.7 | 0.7 |
α2 | 0.6 | 0.5 | 0.3 | 0.3 |
(a) Downtown | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
Individual | 15.13 | 13.79 | 8.69 | 103.65 | 88.73 |
Central | 14.50 | 17.19 | 7.11 | 109.45 | 89.94 |
FedAvg | 12.50 | 12.42 | 5.76 | 72.91 | 91.54 |
FedAdagrad | 11.74 | 12.22 | 5.78 | 72.12 | 91.84 |
FedYogi | 13.65 | 14.29 | 5.93 | 76.57 | 90.98 |
FedAdam | 15.42 | 15.54 | 5.31 | 72.58 | 90.65 |
(b) Polytechnic | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
Individual | 27.35 | 37.61 | 10.61 | 229.39 | 81.02 |
Central | 23.66 | 27.65 | 6.26 | 162.85 | 85.04 |
FedAvg | 26.78 | 30.24 | 7.58 | 161.52 | 82.82 |
FedAdagrad | 23.91 | 28.35 | 6.40 | 141.68 | 84.85 |
FedYogi | 27.70 | 34.20 | 6.72 | 151.62 | 82.79 |
FedAdam | 24.85 | 28.59 | 6.43 | 146.70 | 84.36 |
(c) Tempe | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
Individual | 11.31 | 682.65 | 4.03 | 917.23 | 90.87 |
Central | 6.79 | 400.49 | 2.93 | 719.94 | 94.36 |
FedAvg | 9.10 | 531.36 | 3.60 | 820.49 | 92.55 |
FedAdagrad | 7.87 | 425.15 | 3.74 | 821.08 | 93.37 |
FedYogi | 9.08 | 468.76 | 3.36 | 775.60 | 92.63 |
FedAdam | 8.95 | 468.22 | 3.60 | 819.17 | 92.65 |
(d) West | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
Individual | 25.35 | 189.27 | 17.76 | 293.80 | 76.93 |
Central | 27.51 | 175.43 | 10.60 | 189.71 | 77.56 |
FedAvg | 21.03 | 156.02 | 11.73 | 211.20 | 81.76 |
FedAdagrad | 19.51 | 123.20 | 12.46 | 205.27 | 82.60 |
FedYogi | 19.87 | 122.33 | 13.81 | 234.64 | 81.95 |
FedAdam | 22.02 | 159.05 | 12.04 | 217.89 | 80.97 |
(a) Downtown | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
FedAvg | 15.35 | 16.44 | 4.69 | 58.43 | 91.05 |
FedAdagrad | 13.94 | 15.13 | 5.13 | 66.58 | 91.35 |
FedYogi | 15.08 | 15.65 | 6.25 | 83.62 | 90.22 |
FedAdam | 15.29 | 14.76 | 6.48 | 98.88 | 89.99 |
(b) Polytechnic | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
FedAvg | 27.62 | 31.29 | 8.08 | 173.69 | 82.15 |
FedAdagrad | 26.13 | 0.26 | 6.52 | 143.44 | 83.68 |
FedYogi | 30.63 | 42.83 | 7.69 | 187.41 | 80.84 |
FedAdam | 31.23 | 31.02 | 6.71 | 165.41 | 81.03 |
(c) Tempe | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE (%) | RMSE (Tons) | MAPE (%) | RMSE (kW) | ||
FedAvg | 10.67 | 567.61 | 3.71 | 917.69 | 91.42 |
FedAdagrad | 10.26 | 527.35 | 3.92 | 859.08 | 91.64 |
FedYogi | 11.41 | 571.13 | 3.31 | 810.36 | 91.02 |
FedAdam | 11.27 | 617.29 | 3.69 | 870.25 | 91.01 |
(d) West | |||||
Type | Cooling | Electricity | WMA (%) | ||
MAPE(%) | RMSE(Tons) | MAPE(%) | RMSE(kW) | ||
FedAvg | 22.40 | 156.28 | 13.22 | 215.08 | 80.36 |
FedAdagrad | 20.91 | 147.21 | 11.35 | 197.21 | 81.96 |
FedYogi | 23.39 | 173.17 | 9.87 | 176.56 | 80.66 |
FedAdam | 22.16 | 136.31 | 12.57 | 217.80 | 80.72 |
Type | Rounds | Clients | Epochs | Time (s) |
---|---|---|---|---|
Individual | - | - | 100 | 140.21 |
Central | - | 8 | 100 | 350.42 |
FedAvg | 20 | 8 | 5 | 229.04 |
FedAdagrad | 20 | 8 | 5 | 214.09 |
FedYogi | 20 | 8 | 5 | 210.35 |
FedAdam | 20 | 8 | 5 | 238.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Zhu, S.; Bai, X. Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model. Sustainability 2022, 14, 12843. https://doi.org/10.3390/su141912843
Zhang G, Zhu S, Bai X. Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model. Sustainability. 2022; 14(19):12843. https://doi.org/10.3390/su141912843
Chicago/Turabian StyleZhang, Ge, Songyang Zhu, and Xiaoqing Bai. 2022. "Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model" Sustainability 14, no. 19: 12843. https://doi.org/10.3390/su141912843
APA StyleZhang, G., Zhu, S., & Bai, X. (2022). Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model. Sustainability, 14(19), 12843. https://doi.org/10.3390/su141912843