National Ecosystem Services Assessment in Hungary: Framework, Process and Conceptual Questions
Abstract
:1. Introduction
- Describe the process of the national mapping and assessment of ES in Hungary (MAES-HU) from ecosystem type mapping, the selection of relevant ES and their indicators at the cascade levels to their mapping;
- Discuss the methodology and conceptual considerations in MAES-HU, in particular on the following:
- Mapping ecosystem types and their interactions;
- Choosing indicators for ecosystem condition, ecosystem services capacity and actual use;
- Relating them to the cascade framework, suggesting some extensions;
- Relating them to aspects of human well-being.
2. Methods and Process of the Hungarian Mapping and Assessment of ES
2.1. Participation
2.2. Ecosystem Type Mapping
2.3. Assessing Ecosystem Services along the Cascade
2.3.1. Selection of Ecosystem Services for Assessment
- 1.
- Number of nominations as ‘most important’ in the workshops;
- 2.
- Emphasis on regulating services and relevance for nature conservation;
- 3.
- Relevance for society and for decision makers;
- 4.
- Easy to communicate;
- 5.
- Availability of relevant data.
2.3.2. Ecosystem Condition Indicators in MAES-HU
2.3.3. Assessing Ecosystem Service Capacity and Actual Use
2.3.4. Assessing Human Well-Being
- 1.
- Material welfare;
- 2.
- Health;
- 3.
- Environmental security;
- 4.
- Community and social relations;
- 5.
- Self-fulfillment and self-esteem;
- 6.
- Participation, freedom of decision and action.
- 1.
- Health including physical, mental and social health and self-fulfillment;
- 2.
- Environmental security;
- 3.
- Participation, freedom of decision and action.
2.4. Scenario Building
2.5. Integration and Synthesis
3. Discussion of Conceptual Questions and Insights
3.1. Participation—Who to Involve and Why?
3.2. Ecosystem Types—How Can We Represent Their Interactions?
3.3. Application of the Cascade Model
3.3.1. What Are Relevant, Specific Ecosystem Condition Indicators?
3.3.2. How Can We Define Ecosystem Service Capacity Operationally?
- 1.
- The only ET assessed is that which is present at the given time. The ES capacity of other vegetation types possible at that location (e.g., potential natural vegetation (PNV)), or ET changes related to major changes in land use (e.g., forest clearing for agricultural areas or habitat restoration) are not considered;
- 2.
- No changes in geomorphology or hydrology (e.g., removal of dams and weirs, opencast mining) are considered, and only the present surface and present water flow regime are considered;
- 3.
- A change in condition affects the capacity of the ecosystem to provide this service; see Figure 3 for more detail.
3.3.3. How Much Ecosystem Services Do We Actually ’Use’?
3.3.4. How Can We Link Specific Ecosystem Services with Human Well-Being?
3.4. Scenarios—How to Plan the Future?
3.5. Integrating and Synthesising Knowledge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: A Framework for Assessment; Alcamo, J., Bennett, E.M., Eds.; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting Nature and People. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Fabrega, N.; Zulian, G.; Barbosa, A.; Vizcaino, P.; Ivits, E.; Polce, C.; Vandecasteele, I.; Rivero, I.M.; Guerra, C.; et al. Mapping and Assessment of Ecosystems and Their Services: Trends in Ecosystems and Ecosystem Services in the European Union between 2000 and 2010; Publications Office: Luxembourg, 2015. [Google Scholar]
- (EC) European Commission. The EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- EC (European Commission); Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; et al. Mapping and Assessment of Ecosystems and Their Services: Indicators for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; European Commission, Environment: Brussels, Belgium, 2014. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.C.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and Their Services: An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An Indicator Framework for Assessing Ecosystem Services in Support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Teller, A.; Erhard, M.; Grizzetti, B.; Paracchini, M.L.; Somma, F.; Orgiazzi, A.; Jones, A.; Zulian, G.; Petersen, J.-E.; et al. Mapping and Assessment of Ecosystems and Their Services an Analytical Framework for Mapping and Assessment of Ecosystem Condition in EU: Discussion Paper; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- EC (European Commission). EU Biodiversity Strategy for 2030—Bringing Nature Back into Our Lives; COM/2020/380; EU-Lex: Brussels, Belgium, 2020. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Conde, S.; Vallecillo Rodriguez, S.; Barredo Cano, J.I.; Paracchini, M.-L.; Abdul Malak, D.; Trombetti, M.; Vigiak, O.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Ecosystem Assessment; European Commission, Environment: Brussels, Belgium, 2020. [Google Scholar]
- Schröter, M.; Albert, C.; Marques, A.; Tobon, W.; Lavorel, S.; Maes, J.; Brown, C.; Klotz, S.; Bonn, A. National Ecosystem Assessments in Europe: A Review. BioScience 2016, 66, 813–828. [Google Scholar] [CrossRef] [Green Version]
- UK National Ecosystem Assessment. The UK National Ecosystem Assessment:Technical Report; UNEP-WCMC: Cambridge, UK, 2011. [Google Scholar]
- Becerra-Jurado, G.; Philipsen, C.; Kleeschulte, S. Mapping and Assessing Ecosystems and Their Services in Luxembourg–Assessment Results; European Commission, Environment: Brussels, Belgium, 2015. [Google Scholar]
- Santos-Martín, F.; Martín-López, B.; García-Llorente, M.; Aguado, M.; Benayas, J.; Montes, C. Unraveling the Relationships between Ecosystems and Human Wellbeing in Spain. PLoS ONE 2013, 8, e73249. [Google Scholar] [CrossRef] [Green Version]
- Bukvareva, E.; Zamolodchikov, D.; Kraev, G.; Grunewald, K.; Narykov, A. Supplied, Demanded and Consumed Ecosystem Services: Prospects for National Assessment in Russia. Ecol. Indic. 2017, 78, 351–360. [Google Scholar] [CrossRef]
- Grunewald, K.; Syrbe, R.-U.; Walz, U.; Richter, B.; Meinel, G.; Herold, H.; Marzelli, S. Germany’s Ecosystem Services–State of the Indicator Development for a Nationwide Assessment and Monitoring. One Ecosyst. 2017, 2, e14021. [Google Scholar] [CrossRef] [Green Version]
- Mederly, P.; Černecký, J.; Špulerová, J.; Izakovičová, Z.; Ďuricová, V.; Považan, R.; Švajda, J.; Močko, M.; Jančovič, M.; Gusejnov, S.; et al. National Ecosystem Services Assessment in Slovakia—Meeting Old Liabilities and Introducing New Methods. One Ecosyst. 2020, 5, e53677. [Google Scholar] [CrossRef]
- Kokkoris, I.P.; Mallinis, G.; Bekri, E.S.; Vlami, V.; Zogaris, S.; Chrysafis, I.; Mitsopoulos, I.; Dimopoulos, P. National Set of MAES Indicators in Greece: Ecosystem Services and Management Implications. Forests 2020, 11, 595. [Google Scholar] [CrossRef]
- Vogiatzakis, I.; Zotos, S.; Litskas, V.; Manolaki, P.; Sarris, D.; Stavrinides, M. Towards Implementing Mapping and Assessment of Ecosystems and Their Services in Cyprus: A First Set of Indicators for Ecosystem Management. One Ecosyst. 2020, 5, e47715. [Google Scholar] [CrossRef]
- Crouzat, E.; Zawada, M.; Grigulis, K.; Lavorel, S. Design and Implementation of a National Ecosystem Assessment—Insights from the French Mountain Systems’ Experience. Ecosyst. People 2019, 15, 288–302. [Google Scholar] [CrossRef]
- Laporta, L.; Domingos, T.; Marta-Pedroso, C. Mapping and Assessment of Ecosystems Services under the Proposed MAES European Common Framework: Methodological Challenges and Opportunities. Land 2021, 10, 1040. [Google Scholar] [CrossRef]
- Villoslada Peciña, M.; Ward, R.D.; Bunce, R.G.H.; Sepp, K.; Kuusemets, V.; Luuk, O. Country-Scale Mapping of Ecosystem Services Provided by Semi-Natural Grasslands. Sci. Total Environ. 2019, 661, 212–225. [Google Scholar] [CrossRef]
- Czúcz, B.; Kalóczkai, Á.; Arany, I.; Kelemen, K.; Papp, J.; Havadtői, K.; Campbell, K.; Kelemen, M.; Vári, Á. How to Design a Transdisciplinary Regional Ecosystem Service Assessment: A Case Study from Romania, Eastern Europe. One Ecosyst. 2018, 3, e26363. [Google Scholar] [CrossRef]
- Heink, U.; Jax, K. Going Upstream—How the Purpose of a Conceptual Framework for Ecosystem Services Determines Its Structure. Ecol. Econ. 2019, 156, 264–271. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The Links between Biodiversity, Ecosystem Services and Human Well-Being. In Ecosystem Ecology; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Hein, L.; Bagstad, K.; Edens, B.; Obst, C.; de Jong, R.; Lesschen, J.P. Defining Ecosystem Assets for Natural Capital Accounting. PLoS ONE 2016, 11, e0164460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerema, A.; Rebelo, A.J.; Bodi, M.B.; Esler, K.J.; Meire, P. Are Ecosystem Services Adequately Quantified? J. Appl. Ecol. 2017, 54, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Spangenberg, J.H.; von Haaren, C.; Settele, J. The Ecosystem Service Cascade: Further Developing the Metaphor. Integrating Societal Processes to Accommodate Social Processes and Planning, and the Case of Bioenergy. Ecol. Econ. 2014, 104, 22–32. [Google Scholar] [CrossRef]
- Czúcz, B.; Haines-Young, R.; Kiss, M.; Bereczki, K.; Kertész, M.; Vári, Á.; Potschin-Young, M.; Arany, I. Ecosystem Service Indicators along the Cascade: How Do Assessment and Mapping Studies Position Their Indicators? Ecol. Indic. 2020, 118, 106729. [Google Scholar] [CrossRef]
- La Notte, A.; Liquete, C.; Grizzetti, B.; Maes, J.; Egoh, B.N.; Paracchini, M.L. An Ecological-Economic Approach to the Valuation of Ecosystem Services to Support Biodiversity Policy. A Case Study for Nitrogen Retention by Mediterranean Rivers and Lakes. Ecol. Indic. 2015, 48, 292–302. [Google Scholar] [CrossRef]
- Burkhard, B.; Maes, J.; Potschin-Young, M.; Santos-Martín, F.; Geneletti, D.; Stoev, P.; Kopperoinen, L.; Adamescu, C.; Esmail, B.A.; Arany, I.; et al. Mapping and Assessing Ecosystem Services in the EU—Lessons Learned from the ESMERALDA Approach of Integration. One Ecosyst. 2018, 3, e29153. [Google Scholar] [CrossRef]
- Brown, C.; Burns, A.; Arnell, A. A Conceptual Framework for Integrated Ecosystem Assessment. One Ecosyst. 2018, 3, e25482. [Google Scholar] [CrossRef]
- United Nations. SEEA—System of Environmental-Economic Accounting-Ecosystem Accounting. Final Draft; United Nations Statistics Division: New York, NY, USA, 2021. [Google Scholar]
- Tanács, E.; Bede-Fazekas, Á.; Csecserits, A.; Kisné Fodor, L.; Pásztor, L.; Somodi, I.; Standovár, T.; Zlinszky, A.; Zsembery, Z.; Vári, Á. Assessing Ecosystem Condition at the National Level in Hungary—Indicators, Approaches, Challenges. One Ecosyst. 2022, 7, e81543. [Google Scholar] [CrossRef]
- Tanács, E.; Belényesi, M.; Lehoczki, R.; Pataki, R.; Petrik, O.; Standovár, T.; Pásztor, L.; Laborczi, A.; Szatmári, G.; Molnár, Z.; et al. Compiling a High-Resolution Country-Level Ecosystem Map to Support Environmental Policy: Methodological Challenges and Solutions from Hungary. Geocarto Int. 2021, 1–24. [Google Scholar] [CrossRef]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: London, UK, 2014; pp. 55–74. [Google Scholar]
- Tobisch, T.; Kottek, P. Forestry-Related Databases of the Hungarian Forestry Directorate. Available online: https://portal.nebih.gov.hu/documents/10182/862096/Forestry_related_databases.pdf/3ff92716-2301-4894-a724-72fafca9d4fc (accessed on 23 June 2020).
- Csonka, B.; Mikus, G.; Martinovich, L.; László, I.; Csornai, G.; Tikasz, L.; Kocsis, A.; Bognár, E.; Szekeres, Á.; Tóth, G.L.; et al. Introduction of Two GIS-Based Applications Supporting Area-Based Agricultural Subsidies in Hungary (LPIS and VINGIS). In Land Quality and Land Use Information in the European Union; Publications Office of the European Union: Luxembourg, 2011; pp. 233–245. [Google Scholar]
- Pásztor, L.; Laborczi, A.; Takács, K.; Illés, G.; Szabó, J.; Szatmári, G. Progress in the Elaboration of GSM Conform DSM Products and Their Functional Utilization in Hungary. Geoderma Reg. 2020, 21, e00269. [Google Scholar] [CrossRef]
- Langanke, T.; Moran, A.; Dulleck, B.; Schleicher, C. Copernicus Land Monitoring Service–High Resolution Layer Water and Wetness Product Specifications Document. Copernicus Team at EEA, 2016. Available online: https://land.copernicus.eu/user-corner/technical-library/hrl-water-wetness-technical-document-prod-2015 (accessed on 1 June 2022).
- Fraser, R.; McLennan, D.; Ponomarenko, S.; Olthof, I. Image-Based Predictive Ecosystem Mapping in Canadian Arctic Parks. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 129–138. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Chatenoux, B.; De Bono, A.; Rodila, D.; Richard, J.-P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons Learned from the Swiss Data Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Strobl, P.; Baumann, P.; Lewis, A.; Szantoi, Z.; Killough, B.; Purss, M.; Craglia, M.; Nativi, S.; Held, A.; Dhu, T. The Six Faces of the Data Cube. In Proceedings of the Conference on Big Data from Space (BiDS’17), Toulouse, France, 28–30 November 2017; pp. 28–30. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES): Consultation on Version 4, August–December 2012; Centre for Environmental Management, University of Nottingham: Nottingham, UK, 2012. [Google Scholar]
- Van Oudenhoven, A.P.E.; Schröter, M.; Drakou, E.G.; Geijzendorffer, I.R.; Jacobs, S.; van Bodegom, P.M.; Chazee, L.; Czúcz, B.; Grunewald, K.; Lillebø, A.I.; et al. Key Criteria for Developing Ecosystem Service Indicators to Inform Decision Making. Ecol. Indic. 2018, 95, 417–426. [Google Scholar] [CrossRef]
- Meyerson, L.A.; Baron, J.; Melillo, J.M.; Naiman, R.J.; O’Malley, R.I.; Orians, G.; Palmer, M.A.; Pfaff, A.S.; Running, S.W.; Sala, O.E. Aggregate Measures of Ecosystem Services: Can We Take the Pulse of Nature? Front. Ecol. Environ. 2005, 3, 56–59. [Google Scholar] [CrossRef]
- Keith, H.; Czúcz, B.; Jackson, B.; Driver, A.; Nicholson, E.; Maes, J. A Conceptual Framework and Practical Structure for Implementing Ecosystem Condition Accounts. One Ecosyst. 2020, 5, e58216. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, C.S. From Ecosystem Integrity to Ecosystem Condition: A Continuity of Concepts Supporting Different Aspects of Ecosystem Sustainability. Curr. Opin. Environ. Sustain. 2017, 29, 63–68. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F. Landscapes‘ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A Review of Expert Knowledge Use for Mapping Ecosystem Services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Fodor, N.; Pásztor, L.; Németh, T. Coupling the 4M Crop Model with National Geo-Databases for Assessing the Effects of Climate Change on Agro-Ecological Characteristics of Hungary. Int. J. Digit. Earth 2014, 7, 391–410. [Google Scholar] [CrossRef]
- Vallecillo Rodriguez, S.; La Notte, A.; Polce, C.; Zulian, G.; Alexandris, N.; Ferrini, S.; Maes, J. Ecosystem Services Accounting: Part I—Outdoor Recreation and Crop Pollination; EUR 29024 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- IPBES. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018. [Google Scholar]
- Campagne, C.S.; Roche, P. May the Matrix Be with You! Guidelines for the Application of Expert-Based Matrix Approach for Ecosystem Services Assessment and Mapping. One Ecosyst. 2018, 3, e24134. [Google Scholar] [CrossRef]
- Tanács, E.; Kiss, M.; Endrédi, A.; Mészáros, J.; Pásztor, L.; Bede-Fazekas, Á.; Rezneki, R.; Koncz, P.; Csákvári, E.; Fabók, V.; et al. Szintézis-elemzések. In Hazai Ökoszisztéma-Szolgáltatások Értékelése és Térképezése—A Nemzeti Ökoszisztéma-Szolgáltatások Értékelése és Térképezése Projektelem (NÖSZTÉP) Eredményei; Kovács-Hostyánszki, A., Kisné, F.L., Zsembery, Z., Eds.; Agrárminisztérium: Budapest, Hungary, 2022; p. 383. [Google Scholar]
- Hauck, J.; Schmidt, J.; Werner, A. Using Social Network Analysis to Identify Key Stakeholders in Agricultural Biodiversity Governance and Related Land-Use Decisions at Regional and Local Level. Ecol. Soc. 2016, 21, 49. [Google Scholar] [CrossRef]
- Rabe, S.-E.; Koellner, T.; Marzelli, S.; Schumacher, P.; Grêt-Regamey, A. National Ecosystem Services Mapping at Multiple Scales—The German Exemplar. Ecol. Indic. 2016, 70, 357–372. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Weibel, B.; Bagstad, K.J.; Ferrari, M.; Geneletti, D.; Klug, H.; Schirpke, U.; Tappeiner, U. On the Effects of Scale for Ecosystem Services Mapping. PLoS ONE 2014, 9, e112601. [Google Scholar] [CrossRef]
- Hein, L.; van Koppen, K.; de Groot, R.S.; van Ierland, E.C. Spatial Scales, Stakeholders and the Valuation of Ecosystem Services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Kotsiras, K.; Kokkoris, I.P.; Strid, A.; Dimopoulos, P. Integrating Plant Diversity Data into Mapping and Assessment of Ecosystem and Their Services (MAES) Implementation in Greece: Woodland and Forest Pilot. Forests 2020, 11, 956. [Google Scholar] [CrossRef]
- Grunewald, K.; Herold, H.; Marzelli, S.; Meinel, G.; Richter, B.; Syrbe, R.-U.; Walz, U. Assessment of Ecosystem Services at the National Level in Germany—Illustration of the Concept and the Development of Indicators by Way of the Example Wood Provision. Ecol. Indic. 2016, 70, 181–195. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Alós Ortí, M.M.; Anzellotti, I.; Attorre, F.; Azzella, M.M.; Carli, E.; Copiz, R.; Garfì, V.; Manes, F.; et al. Ecosystem Mapping for the Implementation of the European Biodiversity Strategy at the National Level: The Case of Italy. Environ. Sci. Policy 2017, 78, 173–184. [Google Scholar] [CrossRef]
- Černecký, J.; Gajdoš, P.; Špulerová, J.; Halada, Ľ.; Mederly, P.; Ulrych, L.; Ďuricová, V.; Švajda, J.; Černecká, Ľ.; Andráš, P.; et al. Ecosystems in Slovakia. J. Maps 2020, 16, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Terraube, J.; Archaux, F.; Deconchat, M.; van Halder, I.; Jactel, H.; Barbaro, L. Forest Edges Have High Conservation Value for Bird Communities in Mosaic Landscapes. Ecol. Evol. 2016, 6, 5178–5189. [Google Scholar] [CrossRef]
- Staton, T.; Walters, R.J.; Smith, J.; Girling, R.D. Evaluating the Effects of Integrating Trees into Temperate Arable Systems on Pest Control and Pollination. Agric. Syst. 2019, 176, 102676. [Google Scholar] [CrossRef]
- Czúcz, B.; Keith, H.; Driver, A.; Jackson, B.; Nicholson, E.; Maes, J. A Common Typology for Ecosystem Characteristics and Ecosystem Condition Variables. One Ecosyst. 2021, 6, e58218. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D. Scale and Ecosystem Services: How Do Observation, Management, and Analysis Shift with Scale—Lessons from Québec. Ecol. Soc. 2016, 21, 16. [Google Scholar] [CrossRef] [Green Version]
- Hummel, C.; Poursanidis, D.; Orenstein, D.; Elliott, M.; Adamescu, M.C.; Cazacu, C.; Ziv, G.; Chrysoulakis, N.; van der Meer, J.; Hummel, H. Protected Area Management: Fusion and Confusion with the Ecosystem Services Approach. Sci. Total Environ. 2019, 651, 2432–2443. [Google Scholar] [CrossRef]
- Iniesta-Arandia, I.; García-Llorente, M.; Aguilera, P.A.; Montes, C.; Martín-López, B. Socio-Cultural Valuation of Ecosystem Services: Uncovering the Links between Values, Drivers of Change, and Human Well-Being. Ecol. Econ. 2014, 108, 36–48. [Google Scholar] [CrossRef]
- Albert, C.; Bonn, A.; Burkhard, B.; Daube, S.; Dietrich, K.; Engels, B.; Frommer, J.; Götzl, M.; Grêt-Regamey, A.; Job-Hoben, B.; et al. Towards a National Set of Ecosystem Service Indicators: Insights from Germany. Ecol. Indic. 2016, 61, 38–48. [Google Scholar] [CrossRef]
- Jäger, H.; Peratoner, G.; Tappeiner, U.; Tasser, E. Grassland Biomass Balance in the European Alps: Current and Future Ecosystem Service Perspectives. Ecosyst. Serv. 2020, 45, 101163. [Google Scholar] [CrossRef]
- Mandle, L.; Shields-Estrada, A.; Chaplin-Kramer, R.; Mitchell, M.G.E.; Bremer, L.L.; Gourevitch, J.D.; Hawthorne, P.; Johnson, J.A.; Robinson, B.E.; Smith, J.R.; et al. Increasing Decision Relevance of Ecosystem Service Science. Nat. Sustain. 2021, 4, 161–169. [Google Scholar] [CrossRef]
- Mononen, L.; Auvinen, A.-P.; Ahokumpu, A.-L.; Rönkä, M.; Aarras, N.; Tolvanen, H.; Kamppinen, M.; Viirret, E.; Kumpula, T.; Vihervaara, P. National Ecosystem Service Indicators: Measures of Social–Ecological Sustainability. Ecol. Indic. 2016, 61, 27–37. [Google Scholar] [CrossRef]
- Czúcz, B.; Keith, H.; Maes, J.; Driver, A.; Jackson, B.; Nicholson, E.; Kiss, M.; Obst, C. Selection Criteria for Ecosystem Condition Indicators. Ecol. Indic. 2021, 133, 108376. [Google Scholar] [CrossRef]
- La Notte, A.; Vallecillo, S.; Grammatikopoulou, I.; Polce, C.; Rega, C.; Zulian, G.; Kakoulaki, G.; Grizzetti, B.; Ferrini, S.; Zurbaran-Nucci, M.; et al. The Integrated System for Natural Capital Accounting (INCA) in Europe: Twelve Lessons Learned from Empirical Ecosystem Service Accounting. One Ecosyst. 2022, 7, e84925. [Google Scholar] [CrossRef]
- Wallace, K.J.; Jago, M. Category Mistakes: A Barrier to Effective Environmental Management. J. Environ. Manag. 2017, 199, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Kakoulaki, G.; Kamberaj, J.; Robert, N.; Dottori, F.; Feyen, L.; Rega, C.; Maes, J. Ecosystem Services Accounting—Part II. Pilot Accounts for Crop and Timber Provision, Global Climate Regulation and Flood Control; EUR 29731 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Potschin-Young, M.; Burkhard, B.; Czúcz, B.; Santos-Martín, F. Glossary of Ecosystem Services Mapping and Assessment Terminology. One Ecosyst. 2018, 3, e27110. [Google Scholar] [CrossRef]
- Tüxen, R. Die Heutige Potentielle Natürliche Vegetation Als Gegenstand Der Vegetationskartierung. In Angewandte Pflanzensoziologie; Zentralstelle für Vegetationskartierung: Stolzenau, Germany, 1956; pp. 4–42. [Google Scholar]
- Somodi, I.; Molnár, Z.; Czúcz, B.; Bede-Fazekas, Á.; Bölöni, J.; Pásztor, L.; Laborczi, A.; Zimmermann, N.E. Implementation and Application of Multiple Potential Natural Vegetation Models—A Case Study of Hungary. J. Veg. Sci. 2017, 28, 1260–1269. [Google Scholar] [CrossRef] [Green Version]
- Nedkov, S.; Borisova, B.; Koulov, B.; Zhiyanski, M.; Bratanova-Doncheva, S.; Nikolova, M.; Kroumova, J. Towards Integrated Mapping and Assessment of Ecosystems and Their Services in Bulgaria: The Central Balkan Case Study. One Ecosyst. 2018, 3, e25428. [Google Scholar] [CrossRef]
- Schröter, M.; Barton, D.N.; Remme, R.P.; Hein, L. Accounting for Capacity and Flow of Ecosystem Services: A Conceptual Model and a Case Study for Telemark, Norway. Ecol. Indic. 2014, 36, 539–551. [Google Scholar] [CrossRef]
- Pinke, Z.; Vári, Á.; Kovács, E.T. Value Transfer in Economic Valuation of Ecosystem Services—Some Methodological Challenges. Ecosyst. Serv. 2022, 56, 101443. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Ferrini, S.; Maes, J. How Ecosystem Services Are Changing: An Accounting Application at the EU Level. Ecosyst. Serv. 2019, 40, 101044. [Google Scholar] [CrossRef] [PubMed]
- Vári, Á.; Kozma, Z.; Pataki, B.; Jolánkai, Z.; Kardos, M.; Decsi, B.; Pinke, Z.; Jolánkai, G.; Pásztor, L.; Condé, S.; et al. Disentangling the Ecosystem Service ‘Flood Regulation’: Mechanisms and Relevant Ecosystem Condition Characteristics. Ambio 2022, 51, 1855–1870. [Google Scholar] [CrossRef]
- Frélichová, J.; Vačkář, D.; Pártl, A.; Loučková, B.; Harmáčková, Z.V.; Lorencová, E. Integrated Assessment of Ecosystem Services in the Czech Republic. Ecosyst. Serv. 2014, 8, 110–117. [Google Scholar] [CrossRef]
- NEPA, NINA, ROSA, WWF Romania. Assessment of Ecosystems and Ecosystem Services in Romania; NEPA, NINA, ROSA, WWF Romania: Bucharest, Romania, 2017. [Google Scholar]
- Cruz-Garcia, G.S.; Sachet, E.; Blundo-Canto, G.; Vanegas, M.; Quintero, M. To What Extent Have the Links between Ecosystem Services and Human Well-Being Been Researched in Africa, Asia, and Latin America? Ecosyst. Serv. 2017, 25, 201–212. [Google Scholar] [CrossRef]
- Harmáčková, Z.V.; Vačkář, D. Future Uncertainty in Scenarios of Ecosystem Services Provision: Linking Differences among Narratives and Outcomes. Ecosyst. Serv. 2018, 33, 134–145. [Google Scholar] [CrossRef]
- Berg, C.; Rogers, S.; Mineau, M. Building Scenarios for Ecosystem Services Tools: Developing a Methodology for Efficient Engagement with Expert Stakeholders. Futures 2016, 81, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Sitas, N.; Harmáčková, Z.; Anticamara, J.; Arneth, A.; Badola, R.; Biggs, R.; Blanchard, R.; Brotons, L.; Cantele, M.; Coetzer, K.; et al. Exploring the Usefulness of Scenario Archetypes in Science-Policy Processes: Experience across IPBES Assessments. Ecol. Soc. 2019, 24, 35. [Google Scholar] [CrossRef]
ES Name in MAES-HU | MAES-HU Short Name | ES Definition for MAES-HU | TWG | CICES 4.3 Classes | |
---|---|---|---|---|---|
Cultivated crops for nutrition | Cultivated crops | cultivated crops (major arable crops *, fruits, vegetables and vines) and hay for nutrition | FOOD | 1.1.1.1 | Cultivated crops for nutrition |
Reared animals and their products | Reared animals | reared animals and their products used for nutrition | FOOD | 1.1.1.2 | Reared animals for nutrition |
Firewood | Firewood | timber used for fuel | CLIM | 1.3.1.1 | Plant-based resources for energy |
Filtration of water soluble pollutants | Filtration of water | filtration of diffuse pollutants (phosphorous) from agricultural effluents | HYDR | 2.1.2.1 | Filtration/sequestration/storage/accumulation by ecosystems |
Filtration of air pollutants (urban) | Filtration of air | deposition of particle pollutants in settlements | URB | 2.1.2.1 | Filtration/sequestration/storage/accumulation by ecosystems |
Control of soil erosion | Erosion control | protection against water erosion by natural or planted vegetation | HYDR | 2.2.1.1 | Mass stabilisation and control of erosion rates |
Flood regulation by water retention | Flood regulation | (rain)water retention and buffering by vegetation on slopes | HYDR | 2.2.2.2 | Flood control |
Drought mitigation | Drought mitigation | mitigation of droughts by water storage in the landscape | HYDR | 2.2.2.1 | Hydrological cycle and water flow maintenance |
Flood regulation in floodplains | Flood regulation in floodplains | flood risk mitigation and buffering by floodplains | HYDR | 2.2.2.2 | Flood control |
Management of rainwater (urban) | Urban flood regulation | (rain)water retention and buffering by vegetation in settlements | URB | 2.2.2.2 | Flood control |
Pollination | Pollination | pollination by wild bees | POLL | 2.3.1.1 | Pollination and seed dispersal |
Global climate regulation | Global climate regulation | global climate regulation by reducing the amount of greenhouse gases | CLIM | 2.3.5.1 | Global climate regulation by reduction of greenhouse gas concentrations |
Microclimate regulation at landscape level | Regional microclimate regulation | regional climate regulation at landscape level outside settlements | CLIM | 2.3.5.2 | Micro and regional climate regulation |
Microclimate regulation (urban) | Microclimate regulation | mitigation of summer heat stress in settlements | URB | 2.3.5.2 | Micro and regional climate regulation |
Recreational use of nature | Recreation | recreational use of nature by hiking | CULT | 3.1.1.2 | Use of nature for recreation |
Cultural heritage | Cultural heritage | aggregation of activities, knowledge, norms and elements of identity related to mushroom picking | CULT | 3.1.2.3 | Cultural heritage |
Indicators for Each ES at Each Cascade Level (Name [Unit]) | |||
---|---|---|---|
MAES-HU Short Name | Cascade Level 1 | Cascade Level 2 | Cascade Level 3 |
Cultivated crops | soil fertility (relative scale) | potential yield (crops, hay); maximum long-term yield (fruits, vegetables) (t/ha) | actual yield (crops) (t/ha) |
Reared animals | soil fertility (relative scale) | yield (livestock; products) based on potential fodder production (from crops) (t/ha) | actual yield (livestock units); actual production (meat, milk, eggs) (aggregated numbers) |
Firewood | forestry stocks [m3/ha]; naturalness of forests | mean annual increment (m3/ha/y) | harvested amount of firewood (m3/ha/y) |
Filtration of water | soil hydrologic capacity; for water bodies: biotic water quality (relative scale) | relative filtering capacity of the ecosystem (relative scale) | - |
Filtration of air | share of green spaces and water surfaces | leaf area index (plant surface available for deposition and filtration) | amount of air pollutants removed (g/m2) |
Erosion control | soil erodibility (t × ha × h × ha−1 × MJ−1 × mm−1) | prevented soil erosion in an optimal ecosystem state (t/ha/year) | prevented soil erosion in the actual state of ecosystems (t/ha/year) |
Flood regulation | soil hydrologic capacity (relative scale) | relative water-retention capacity of the ecosystem (relative scale) | amount of precipitation retained by the ecosystem (mm/y) |
Drought mitigation | soil water storage capacity (in top 2 m) [mm/2 m] | potential areas of water storage (inland-water prone areas) | - |
Flood regulation in floodplains | 100-year return flood areas compared to actually floodable area | artificial storage areas (flood retention basins) (m3) | demand: 1000 year return flood areas |
Urban flood regulation | share of green spaces and water surfaces | runoff retention potential of the vegetation (CN parameter and Leaf Area Index) (relative scale) | amount of water intercepted on leaves (m3/ha) |
Pollination | amount of foraging resources (flowers) and nesting suitability for wild bees | relative pollination potential of wild bees in an area (relative scale) | relation between demand (insect pollination need of different crops) to pollination potential; non-cropland: flower availability (relative scale) |
Global climate regulation | carbon stocks (above and below ground biomass, soil C) (tC/ha) | gross greenhouse gas balance (without losses, e.g., due to timber harvesting) (t CO2 eqv/ha/y) | net greenhouse gas balance: recorded maximum of net C sequestration; recorded minimum of greenhouse gas emission (t CO2 eqv/ha/y) |
(Regional) microclimate regulation | local climate index (relative scale) | potential evapotranspiration (mm/y) | effective precipitation (mm/y) |
Microclimate regulation | share of green spaces and water surfaces | evapotranspiration coefficient + Leaf Area Index (LAI) (relative scale) | bioclimatic index |
Recreation | natural attractions: naturalness index, protection status, water proximity and landscape heterogeneity (relative scale) | natural and built attractions: hiking trails, (built) points of interest and accessibility (relative scale) | touristic use intensity: visitor and guest numbers for sample areas in national parks and accommodations |
Cultural heritage | site suitablility for mushrooms (relative scale) | potential mushroom picking areas | actual sites for picking mushrooms; number of people visiting the sites |
MAES-HU Short Name | Level 1—Type of Input | Level 2—Model Type | Level 3—Assessment Type |
---|---|---|---|
Cultivated crops | existing data (national soil database) | biophysical model for crop and grassland (Biome-BGC); long-term statistical data for fruit and vegetable | statistical data—national databases on crop production; expert judgement on hay production |
Reared animals | existing data (national soil database) | expert judgement (grasslands) + calculated from crop biophysical model (cropland) | statistical data—national databases on animal production |
Firewood | existing data (national forestry database); general EC indicator | expert judgement based on timber harvesting tables from national forestry database | statistical data—national databases and national survey on use ratio of harvested timber |
Filtration of water | biophysical model | rule-based matrix model (expert judgement) + biophysical model for EC; for water: existing data (components of the Water Framework Directive monitoring) | * InVEST, SWAT |
Filtration of air | general EC | existing data (remote sensing) | * modelled (EMEP-MSC-W model) |
Erosion control | existing data | rule-based (empirical) matrix model with expert judgement for vegetation factor (USLE based) | rule-based (empirical) matrix model with expert judgement for vegetation factor (USLE based) |
Flood regulation | biophysical model | rule-based matrix model (expert judgement) + biophysical model for EC | * InVEST, SWAT |
Drought mitigation | hydrological model | existing model with expert judgement | - |
Flood regulation in floodplains | existing data | existing data | demand: existing data/map |
Urban flood regulation | general EC | basic matrix (expert assessment); existing data (remote sensing) | * modelled (i-Tree) |
Pollination | expert judgement | rule-based matrix model (expert judgement based on ESTIMAP) | literature data and statistical data on crops; rule-based matrix model |
Global climate regulation | existing data (for soils, forests); biogeophysical models (for grass—& croplands) | biophysical model (Biome-BGC); rule-based model (IPCC method—National Greenhouse Gas Inventory (NGHGI)) | biophysical model (Biome-BGC); rule-based model (IPCC method—National Greenhouse Gas Inventory (NGHGI)) |
(Regional) microclimate regulation | expert judgement | biophysical (meteorological) model | meteorological model based on soil data |
Microclimate regulation | general EC | basic matrix (expert assessment); existing data (remote sensing) | * modelled (InVEST Urban) |
Recreation | ESTIMAP-based expert evaluation | rule-based matrix model (expert judgement based on ESTIMAP) | * statistical data for case study |
Cultural heritage | rule-based matrix model (expert judgement biophysical model) | rule-based matrix model (expert judgement + questionnaire data); biophysical modelling | questionnaire data |
Scenarios | Main Tendencies |
---|---|
Business as usual | Current economic, social and technological trends continue unchanged (reference scenario). |
The market solves everything | Scenario based on economic growth and technological solution to environmental problems. |
National sovereignty | Due to the growing disparities in economic development, global development trends based on international cooperation are coming to a halt. The world is falling apart into independent regions, among which mistrust is growing. |
Self-determination of local communities | Society’s awareness is growing towards environmental and social sustainability at the regional level around the world. |
Centralized sustainability | Both the public and leaders show a proactive attitude towards environmental problems, which are addressed through global cooperation and strong regulation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vári, Á.; Tanács, E.; Tormáné Kovács, E.; Kalóczkai, Á.; Arany, I.; Czúcz, B.; Bereczki, K.; Belényesi, M.; Csákvári, E.; Kiss, M.; et al. National Ecosystem Services Assessment in Hungary: Framework, Process and Conceptual Questions. Sustainability 2022, 14, 12847. https://doi.org/10.3390/su141912847
Vári Á, Tanács E, Tormáné Kovács E, Kalóczkai Á, Arany I, Czúcz B, Bereczki K, Belényesi M, Csákvári E, Kiss M, et al. National Ecosystem Services Assessment in Hungary: Framework, Process and Conceptual Questions. Sustainability. 2022; 14(19):12847. https://doi.org/10.3390/su141912847
Chicago/Turabian StyleVári, Ágnes, Eszter Tanács, Eszter Tormáné Kovács, Ágnes Kalóczkai, Ildikó Arany, Bálint Czúcz, Krisztina Bereczki, Márta Belényesi, Edina Csákvári, Márton Kiss, and et al. 2022. "National Ecosystem Services Assessment in Hungary: Framework, Process and Conceptual Questions" Sustainability 14, no. 19: 12847. https://doi.org/10.3390/su141912847
APA StyleVári, Á., Tanács, E., Tormáné Kovács, E., Kalóczkai, Á., Arany, I., Czúcz, B., Bereczki, K., Belényesi, M., Csákvári, E., Kiss, M., Fabók, V., Kisné Fodor, L., Koncz, P., Lehoczki, R., Pásztor, L., Pataki, R., Rezneki, R., Szerényi, Z., Török, K., ... Kovács-Hostyánszki, A. (2022). National Ecosystem Services Assessment in Hungary: Framework, Process and Conceptual Questions. Sustainability, 14(19), 12847. https://doi.org/10.3390/su141912847