Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research
Abstract
:1. Introduction
- -
- outdoor air quality;
- -
- indoor activities;
- -
- indoor occupant density;
- -
- ventilation practices;
- -
- indoor intrinsic emissions (e.g., equipment/furniture/coatings).
- (i)
- to provide an overview of the recent literature on indoor air quality in healthcare facilities;
- (ii)
- to identify the major determinants of indoor air quality in healthcare facilities;
- (iii)
- to identify future research paths on this topic.
2. Methodology
3. Results and Discussion
3.1. Descriptive Bibliographic Results
3.2. Textometric Analysis
- -
- Cluster 1 is related to studies focusing on physicochemical parameters. The most impacted words (higher Chi-squared values) are: concentration (120.2), CO2 (89.6), PM2.5 (79.6), PM10 (64.7), temperature (53.2) and humidity (49.7). The analysis of the studies categorized in this cluster highlights the following issues: outdoor pollution sources should be addressed when evaluating indoor air quality [20,31,32], as should meteorological conditions [33,34,35]; isolated parameters—Radon gas [33] and CO2 [19,36,37]—could be used to assess health risks in healthcare facilities; mercury vapors and VOCs in dental clinics are important issues which are still underexplored [38,39,40]; particles and VOCs released through surgical smoke in operating rooms are a concern for IAQ [41,42,43,44]; anatomopathological activities are associated with the significant release of organic contaminants to indoor air [45,46].
- -
- Cluster 2 is related to the design and management of infrastructures. The most impacted words (higher Chi-squared values) are: design (153.9), IEQ (100.8), comfort (75.1) and build (73.2). The importance of design characteristics for adequate IAQ assurance is well established [24,47,48]. Nevertheless, there are still improvement opportunities regarding the choices of products and construction materials [10,26,49,50], as well as of daily activities’ products [5,48,51,52]; special attention needs to be given to engineering procedures and maintenance activities [5,25,36,53,54,55].
- -
- Cluster 3 is related to the environmental control of healthcare facilities. The most impacted words (higher Chi-squared values) are: infection (130.6), control (73.7), patient (53.2), ventilation (51.5), system (42.3) and hospital (42.2). These studies reveal great concern regarding air quality in operating rooms’ air flow environment [56,57,58]. The importance of adequate particle filtration systems is also highlighted in several studies [43,59,60,61,62]. The influence of ventilation on the prevalence of hospital infections has also been studied [54,62,63], including studies on SARS-CoV-2 infection [27,53,55,64,65]. Cleaning procedures also have an important role in the control of microbiological loads [14,53,66,67]. Regular monitoring of indoor environmental conditions is essential to assess the efficiency of environmental control practices [9,48,59,68].
- -
- Cluster 4 is related to studies focusing on microbiological contamination. The most impacted words (higher Chi-squared values) are: sample (151.8), CFU (146.1), isolate (131.2), aspergillus (126.3), penicillium (101.1) and staphylococcus (87.2). Relevance is given to the identification of microorganisms with antibiotic resistance [69,70,71,72], and to the detected presence of mycotoxins in HVAC filters [73]. The importance of controlling airborne particles in intensive care units is highlighted, due to the patient’s compromised immune system [70,74,75]. The influence of the outdoor environment on indoor microbiological contamination is established [49,76,77,78,79], as well as the importance of adequate indoor temperature and relative humidity control to reduce microbiological loads [17,19,68].
3.3. Contributions per Country
3.4. Healthcare Facilities under Study
3.5. Parameters under Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, electronic version; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240034228. [Google Scholar]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Under-5 Mortality and Adult Mortality 1950–2019; Institute for Health Metrics and Evaluation (IHME) Publisher: Seatle, WA, USA, 2020. [Google Scholar]
- World Health Organization. Combined or Multiple Exposure to Health Stressors in Indoor Built Environments: An Evidence-Based Review Prepared for the WHO Training Workshop “Multiple Environmental Exposures and Risks”: 16–18 October 2013, Bonn, Germany; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Mannan, M.; Al-Ghamdi, S.G. Indoor air quality in buildings: A comprehensive review on the factors influencing air pollution in residential and commercial structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef] [PubMed]
- Settimo, G.; Gola, M.; Capolongo, S. The Relevance of Indoor Air Quality in Hospital Settings: From an Exclusively Biological Issue to a Global Approach in the Italian Context. Atmosphere 2020, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Śmiełowska, M.; Marć, M.; Zabiegała, B. Indoor air quality in public utility environments-a review. Environ. Sci. Pollut. Res. 2017, 24, 11166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arikan, İ.; Tekin, Ö.F.; Erbas, O. Relationship between sick building syndrome and indoor air quality among hospital staff. Med. Lav. 2018, 109, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Jafakesh, S.; Mirhadian, L.; Roshan, Z.A.; Hosseini, M.J.G. Sick Building Syndrome in Nurses of Intensive Care Units and Its Associated Factors. J. Holist. Nurs. Midwifery 2019, 29, 23–30. [Google Scholar] [CrossRef]
- Lasomsri, P.; Yanbuaban, P.; Kerdpoca, O.; Ouypornkochagorn, T. A Development of Low-Cost Devices for Monitoring Indoor Air Quality in a Large-Scale Hospital. In Proceedings of the 15th International Conference Electrical Engineering Computer Telecommunications Information Technology (ECTI-CON), Chiang Rai, Thailand, 18–21 July 2018; pp. 282–285. [Google Scholar]
- Rautiainen, P.; Hyttinen, M.; Ruokolainen, J.; Saarinen, P.; Timonen, J.; Pasanen, P. Indoor air-related symptoms and volatile organic compounds in materials and air in the hospital environment. Int. J. Environ. Health Res. 2019, 29, 479. [Google Scholar] [CrossRef]
- Rollins, S.M.; Su, F.-C.; Liang, X.; Humann, M.J.; Stefaniak, A.B.; LeBouf, R.F.; Stanton, M.L.; Virji, M.A.; Henneberger, P.K. Workplace indoor environmental quality and asthma-related outcomes in healthcare workers. Am. J. Ind. Med. 2020, 63, 417–428. [Google Scholar] [CrossRef]
- Baurès, E.; Blanchard, O.; Mercier, F.; Surget, E.; le Cann, P.; Rivier, A.; Gangneux, J.-P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef]
- Gola, M.; Settimo, G.; Capolongo, S. Indoor Air Quality in Inpatient Environments: A Systematic Review on Factors that Influence Chemical Pollution in Inpatient Wards. J. Healthc. Eng. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Asif, A.; Zeeshan, M.; Hashmi, I.; Zahid, U.; Bhatti, M.F. Microbial quality assessment of indoor air in a large hospital building during winter and spring seasons. Build. Environ. 2018, 135, 68–73. [Google Scholar] [CrossRef]
- Cox-Ganser, J.M.; Rao, C.Y.; Park, J.H.; Schumpert, J.C.; Kreiss, K. Asthma and respiratory symptoms in hospital workers related to dampness and biological contaminants. Indoor Air 2009, 19, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Beggs, C.; Knibbs, L.D.; Johnson, G.R.; Morawska, L. Environmental contamination and hospital-acquired infection: Factors that are easily overlooked. Indoor Air 2015, 25, 462–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, F.; Samaei, M.R.; Manoochehri, Z.; Jalili, M.; Yazdani, E. The effect of incubation temperature and growth media on index microbial fungi of indoor air in a hospital building in Shiraz, Iran. J. Build. Eng. 2020, 31, 101294. [Google Scholar] [CrossRef]
- Awad, A.H.; Saeed, Y.; Hassan, Y.; Fawzy, Y.; Osman, M. Air microbial quality in certain public buildings, Egypt: A comparative study. Atmos. Pollut. Res. 2018, 9, 617–626. [Google Scholar] [CrossRef]
- Fonseca, A.; Abreu, I.; Guerreiro, M.J.; Abreu, C.; Silva, R.; Barros, N. Indoor air quality and sustainability management-Case study in three Portuguese healthcare units. Sustainability 2019, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- Chamseddine, A.; Alameddine, I.; Hatzopoulou, M.; El-Fadel, M. Seasonal variation of air quality in hospitals with indoor–outdoor correlations. Build. Environ. 2019, 148, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Lucialli, P.; Marinello, S.; Pollini, E.; Scaringi, M.; Zauli, S.; Marchesi, S.; Cori, L. Indoor and outdoor concentrations of benzene, toluene, ethylbenzene and xylene in some Italian schools evaluation of areas with di ff erent air pollution. Atmos. Pollut. Res. 2020, 11, 1998–2010. [Google Scholar] [CrossRef]
- Widder, S.H.; Haselbach, L. Relationship among concentrations of indoor air contaminants, their sources, and different mitigation strategies on indoor air quality. Sustainability 2017, 9, 1149. [Google Scholar] [CrossRef] [Green Version]
- Kruza, M.; Lewis, A.C.; Morrison, G.C.; Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: A modeling study. Indoor Air 2017, 27, 1001–1011. [Google Scholar] [CrossRef]
- Aalto, L.; Lappalainen, S.; Salonen, H.; Reijula, K. Usability evaluation (IEQ survey) in hospital buildings. Int. J. Work. Health Manag. 2017, 10, 265. [Google Scholar] [CrossRef]
- Cannistraro, M.; Bernardo, E. Monitoring of the indoor microclimate in hospital environments a case study the Papardo hospital in Messina. Int. J. Heat Technol. 2017, 35, 456–465. [Google Scholar] [CrossRef]
- Dixit, M.K.; Singh, S.; Lavy, S.; Yan, W. Floor finish selection in health-care facilities: A systematic literature review. Facilities 2019, 37, 897. [Google Scholar] [CrossRef]
- Capolongo, S.; Gola, M.; Brambilla, A.; Morganti, A.; Mosca, E.I.; Barach, P. COVID-19 and Healthcare Facilities: A Decalogue of Design Strategies for Resilient Hospitals. Acta Biomed. 2020, 91, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 1–11. [Google Scholar] [CrossRef]
- IRaMuTeQ. Available online: http://www.iramuteq.org/ (accessed on 21 October 2021).
- Scheepers, P.; Van Wel, L.; Beckmann, G.; Anzion, R. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants. Int. J. Environ. Res. Public Health 2017, 14, 497. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Fu, H.; Hu, Q.; Li, C.; Zhang, L.; Chen, J.; Mellouki, A.W. Physiochemical characteristics of aerosol particles in the typical microenvironment of hospital in Shanghai, China. Sci. Total Environ. 2017, 580, 651–659. [Google Scholar] [CrossRef]
- Kazemi, K.V.; Mansouri, N.; Moattar, F.; Khezri, S.M. Characterization of indoor/outdoor PM10, PM2.5, PM1 and radon concentrations in Imam Khomeini hospital. Bulg. Chem. Commun. 2016, 48, 345–350. [Google Scholar]
- Lee, H.-J.; Lee, K.H.; Kim, D.-K. Evaluation and comparison of the indoor air quality in different areas of the hospital. Medicine 2020, 99, e23942. [Google Scholar] [CrossRef]
- Shi, Z.; Qian, H.; Zheng, X.; Lv, Z.; Li, Y.; Liu, L.; Nielsen, P. V Seasonal variation of window opening behaviors in two naturally ventilated hospital wards. Build. Environ. 2018, 130, 85–93. [Google Scholar] [CrossRef]
- Dedesko, S.; Stephens, B.; Gilbert, J.A.; Siegel, J.A. Methods to assess human occupancy and occupant activity in hospital patient rooms. Build. Environ. 2015, 90, 136–145. [Google Scholar] [CrossRef]
- Hwang, S.H.; Roh, J.; Park, W.M. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 2018, 242, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Loto, A.O.; Oyapero, A.; Awotile, A.O.; Adenuga-Taiwo, A.O.; Enone, L.L.; Menakaya, I.N. Managing amalgam phase down: An evaluation of mercury vapor levels in a dental center in Lagos, Nigeria. J. Dent. Res. Rev. 2017, 4, 4–8. [Google Scholar] [CrossRef]
- Liu, M.-H.; Tung, T.-H.; Chung, F.-F.; Chuang, L.-C.; Wan, G.-H. High total volatile organic compounds pollution in a hospital dental department. Environ. Monit. Assess. 2017, 189, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.-J.; Huang, Y.-C.; Lee, I.-L.; Chiang, C.-M.; Lin, C.; Jeng, H.A. Assessment of volatile organic compounds and particulate matter in a dental clinic and health risks to clinic personnel. J. Environ. Sci. Health Part A 2015, 50, 1205. [Google Scholar] [CrossRef]
- Buonanno, G.; Capuano, R.; Cortellessa, G.; Stabile, L. Airborne particle emission rates and doses received in operating rooms from surgical smoke. Build. Environ. 2019, 151, 168–174. [Google Scholar] [CrossRef]
- Choi, D.H.; Choi, S.H.; Kang, D.H. Influence of Surgical Smoke on Indoor Air Quality in Hospital Operating Rooms. Aerosol Air Qual. Res. 2017, 17, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Ereth, M.H.; Hess, D.H.; Driscoll, A.; Hernandez, M.; Stamatatos, F. Particle control reduces fine and ultrafine particles greater than HEPA filtration in live operating rooms and kills biologic warfare surrogate. Am. J. Infect. Control 2020, 48, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Moslem, A.R.; Rezaei, H.; Yektay, S.; Miri, M. Comparing BTEX concentration related to surgical smoke in different operating rooms. Ecotoxicol. Environ. Saf. 2020, 203, 111027. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, M.; Izzotti, A.; Ansaldi, F.; Durando, P.; Piccardo, M.T. Volatile Organic Compounds in Anatomical Pathology Wards: Comparative and Qualitative Assessment of Indoor Airborne Pollution. Int. J. Environ. Res. Public Health 2017, 14, 609. [Google Scholar] [CrossRef]
- Ogawa, M.; Kabe, I.; Terauchi, Y.; Tanaka, S. A strategy for the reduction of formaldehyde concentration in a hospital pathology laboratory. J. Occup. Health 2019, 61, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Eijkelenboom, A.; Bluyssen, P.M. Profiling outpatient staff based on their self-reported comfort and preferences of indoor environmental quality and social comfort in six hospitals. Build. Environ. 2020, 184. [Google Scholar] [CrossRef]
- Gola, M.; Settimo, G.; Capolongo, S. Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms. Int. J. Environ. Res. Public Health 2019, 16, 4388. [Google Scholar] [CrossRef] [Green Version]
- Fujiyoshi, S.; Tanaka, D.; Maruyama, F. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review. Front. Microbiol. 2017, 8, 2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, D. A Material World: A Comparative Study of Flooring Material Influence on Patient Safety, Satisfaction, and Quality of Care. J. Int. Des. 2017, 42, 85. [Google Scholar] [CrossRef]
- Ramos, T.; Dedesko, S.; Siegel, J.A.; Gilbert, J.A.; Stephens, B. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building. PLoS ONE 2015, 10, e0118207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Kowal, S.F.; Carslaw, N.; Kahan, T.F. Photolysis-driven indoor air chemistry following cleaning of hospital wards. Indoor Air 2020, 30, 1241. [Google Scholar] [CrossRef]
- Gola, M.; Caggiano, G.; De Giglio, O.; Napoli, C.; Diella, G.; Carlucci, M.; Carpagnano, L.F.; D’Alessandro, D.; Joppolo, C.M.; Capolongo, S.; et al. SARS-CoV-2 indoor contamination: Considerations on anti-COVID-19 management of ventilation systems, and finishing materials in healthcare facilities. Ann. Ig. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.; Noakes, C.; Hodgson, M.J. Engineering control of respiratory infection and low-energy design of healthcare facilities. Sci. Technol. Built Environ. 2015, 21, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, Y.; Dong, J.; Cheng, X.; Feng, G. The Status of Research on Clean Air Conditioning System in Hospital Operation Room. Procedia Eng. 2017, 205, 4129–4134. [Google Scholar] [CrossRef]
- Feng, Y.; Geng, X.; Zhou, F.; Fu, Y. Clinical evaluation of nursing management of laminar flow operating room in controlling hospital infection. Biomed. Res. 2017, 28, 7354–7357. [Google Scholar]
- Shaw, L.F.; Chen, I.H.; Chen, C.S.; Wu, H.H.; Lai, L.S.; Chen, Y.Y.; Wang, F. Der Factors influencing microbial colonies in the air of operating rooms. BMC Infect. Dis. 2018, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Licina, D.; Bhangar, S.; Brooks, B.; Baker, R.; Firek, B.; Tang, X.; Morowitz, M.J.; Banfield, J.F.; Nazaroff, W.W. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit. PLoS ONE 2016, 11, e0154991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomboy, M.F.T.C.; Quirit, L.L.; Molina, V.B.; Dalmacion, G.V.; Schwartz, J.D.; Suh, H.H.; Baja, E.S. Characterization of particulate matter 2.5 in an urban tertiary care hospital in the Philippines. Build. Environ. 2015, 92, 432–439. [Google Scholar] [CrossRef]
- Mousavi, M.S.; Hadei, M.; Majlesi, M.; Hopke, P.K.; Yarahmadi, M.; Emam, B.; Kermani, M.; Shahsavani, A. Investigating the effect of several factors on concentrations of bioaerosols in a well-ventilated hospital environment. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef]
- Stockwell, R.E.; Ballard, E.L.; O’Rourke, P.; Knibbs, L.D.; Morawska, L.; Bell, S.C. Indoor hospital air and the impact of ventilation on bioaerosols: A systematic review. J. Hosp. Infect. 2019, 103, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Vergeire-Dalmacion, G.R.; Itable, J.R.; Baja, E.S. Hospital-acquired infection in public hospital buildings in the Philippines: Is the type of ventilation increasing the risk? J. Infect. Dev. Ctries 2016, 10, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Yu, C.W.; Cao, S.-J. HVAC systems for environmental control to minimize the COVID-19 infection. Indoor Built Environ. 2020, 29, 1195. [Google Scholar] [CrossRef]
- Mousavi, E.S.; Kananizadeh, N.; Martinello, R.A.; Sherman, J.D. COVID-19 Outbreak and Hospital Air Quality: A Systematic Review of Evidence on Air Filtration and Recirculation. Environ. Sci. Technol. 2021, 55, 4134–4147. [Google Scholar] [CrossRef]
- Adhikari, A.; Kurella, S.; Banerjee, P.; Mitra, A. Aerosolized bacteria and microbial activity in dental clinics during cleaning procedures. J. Aerosol Sci. 2017, 114, 209–218. [Google Scholar] [CrossRef]
- Dehghani, M.; Sorooshian, A.; Nazmara, S.; Baghani, A.N.; Delikhoon, M. Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol. Environ. Saf. 2018, 164, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef]
- Solomon, F.B.; Wadilo, F.W.; Arota, A.A.; Abraham, Y.L. Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Morgado-Gamero, W.B.; Hernandez, M.M.; Ramirez, M.C.; Medina-altahona, J.; Hoz, S.D. La Antibiotic Resistance of Airborne Viable Bacteria and Size Distribution in Neonatal Intensive Care Units. Int. J. Environ. Res. Public Health 2019, 16, 3340. [Google Scholar] [CrossRef] [Green Version]
- Tsay, M.-D.; Tseng, C.-C.; Wu, N.-X.; Lai, C.-Y. Size distribution and antibiotic-resistant characteristics of bacterial bioaerosol in intensive care unit before and during visits to patients. Environ. Int. 2020, 144, 106024. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; BaseriSalehi, M.; Bahador, N.; Taherikalani, M. Antibiotic Resistance Patterns and Virulence Determinants of Different SCCmec and Pulsotypes of Staphylococcus Aureus Isolated from a Major Hospital in Ilam, Iran. Open Microbiol. J. 2017, 11, 211–223. [Google Scholar] [CrossRef]
- Viegas, C.; Almeida, B.; Monteiro, A.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Twarużek, M.; Kosicki, R.; Marchand, G.; Viegas, S. Bioburden in health care centers: Is the compliance with Portuguese legislation enough to prevent and control infection? Build. Environ. 2019, 160. [Google Scholar] [CrossRef]
- Rasmey, A.-H.M.; Aboseidah, A.A.; El-Bealy, E.M. Occurrence and Frequency of Outdoor and Indoor Airborne Fungi of Suez General Hospital, Suez, Egypt. Catrina Int. J. Environ. Sci. 2018, 17, 15–23. [Google Scholar] [CrossRef]
- He, C.; Mackay, I.M.; Ramsay, K.; Liang, Z.; Kidd, T.; Knibbs, L.D.; Johnson, G.; McNeale, D.; Stockwell, R.; Coulthard, M.G.; et al. Particle and bioaerosol characteristics in a paediatric intensive care unit. Environ. Int. 2017, 107, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, F.; Samaei, M.R. The effect of temperature on airborne filamentous fungi in the indoor and outdoor space of a hospital. Environ. Sci. Pollut. Res. Int. 2019, 26, 16868–16876. [Google Scholar] [CrossRef]
- Abbasi, F.; Jalili, M.; Samaei, M.R.; Mokhtari, A.M.; Azizi, E. Effect of land use on cultivable bioaerosols in the indoor air of hospital in southeast Iran and its determination of the affected radius around of hospital. Environ. Sci. Pollut. Res. 2021, 28, 12707–12713. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Myong, J.-P.; Kim, W.-B.; Park, C.; Lee, S.J.; Lee, S.H.; Lee, D.-G. Profiles of Environmental Mold: Indoor and Outdoor Air Sampling in a Hematology Hospital in Seoul, South Korea. Int. J. Environ. Res. Public Health 2018, 15, 2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimpour Roshan, S.; Godini, H.; Nikmanesh, B.; Bakhshi, H.; Charsizadeh, A. Study on the relationship between the concentration and type of fungal bio-aerosols at indoor and outdoor air in the Children’s Medical Center, Tehran, Iran. Environ. Monit. Assess. 2019, 191, 1. [Google Scholar] [CrossRef]
- Jung, C.-C.; Wu, P.-C.; Tseng, C.-H.; Su, H.-J. Indoor air quality varies with ventilation types and working areas in hospitals. Build. Environ. 2015, 85, 190–195. [Google Scholar] [CrossRef]
- Aziz, N.A.; Husain, N.R.N.; Abdullah, M.R.; Ismail, N.; Ismail, Z. Indoor Air Quality in a Northeast Coast Malaysian Medical School. Environ. Asia 2018, 11, 67. [Google Scholar] [CrossRef]
- Chung, F.-F.; Lin, H.-L.; Liu, H.-E.; Shin-Yu Lien, A.; Hsiao, H.-F.; Chou, L.-T.; Wan, G.-H. Aerosol Distribution During Open Suctioning and Long-Term Surveillance of Air Quality in a Respiratory Care Center Within a Medical Center. Respir. Care 2015, 60, 30–37. [Google Scholar] [CrossRef]
- Groulx, N.; Movahhedinia, H.; Edwards, P.; Qureshi, F.; Yip, L.; Katz, K.; Mubareka, S.; Evans, G. Medical air in healthcare institutions: A chemical and biological study. Atmos. Environ. 2019, 219, 117031. [Google Scholar] [CrossRef]
- Ling, S.; Hui, L. Evaluation of the complexity of indoor air in hospital wards based on PM2.5, real-time PCR, adenosine triphosphate bioluminescence assay, microbial culture and mass spectrometry. BMC Infect. Dis. 2019, 19, 646. [Google Scholar] [CrossRef]
- Chien, T.-Y.; Liang, C.-C.; Wu, F.-J.; Chen, C.-T.; Pan, T.-H.; Wan, G.-H. Comparative Analysis of Energy Consumption, Indoor Thermal–Hygrometric Conditions, and Air Quality for HVAC, LDAC, and RDAC Systems Used in Operating Rooms. Appl. Sci. 2020, 10, 3721. [Google Scholar] [CrossRef]
- Bozic, J.; Ilic, P.; Ilic, S. Indoor Air Quality in the Hospital: The Influence of Heating, Ventilating and Conditioning Systems. Braz. Arch. Biol. Technol. 2019, 62. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Available online: https://data.worldbank.org/indicator/IP.JRN.ARTC.SC (accessed on 27 November 2021).
- Gola, M.; Settimo, G.; Capolongo, S. Indoor air in healing environments: Monitoring chemical pollution in inpatient rooms. Facilities 2019, 37, 600. [Google Scholar] [CrossRef]
- Chang, C.-J.; Yang, H.-H.; Wang, Y.-F.; Li, M.-S. Prevalence of Sick Building Syndrome-Related Symptoms among Hospital Workers in Confined and Open Working Spaces. Aerosol Air Qual. Res. 2015, 15, 2378–2384. [Google Scholar] [CrossRef] [Green Version]
- Montagna, M.T.; Cristina, M.L.; De Giglio, O.; Spagnolo, A.M.; Napoli, C.; Cannova, L.; Deriu, M.G.; Delia, S.A.; Giuliano, A.; Guida, M.; et al. Serological and molecular identification of Legionella spp. isolated from water and surrounding air samples in Italian healthcare facilities. Environ. Res. 2016, 146, 47–50. [Google Scholar] [CrossRef]
- Ayodele, C.O.; Fakinle, B.S.; Jimoda, L.A.; Sonibare, J.A. Investigation on the ambient air quality in a hospital environment. Cogent Environ. Sci. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Afra, A.; Mollaei Pardeh, M.; Saki, H.; Farhadi, M.; Geravandi, S.; Mehrabi, P.; Dobaradaran, S.; Momtazan, M.; Dehkordi, Z.; Mohammadi, M.J. Anesthetic toxic isoflurane and health risk assessment in the operation room in Abadan, Iran during 2018. Clin. Epidemiol. Glob. Health 2020, 8, 251–256. [Google Scholar] [CrossRef]
- Neisi, A.; Albooghobeish, M.; Geravandi, S.; Adeli Behrooz, H.R.; Mahboubi, M.; Omidi Khaniabad, Y.; Valipour, A.; Karimyan, A.; Mohammadi, M.J.; Farhadi, M.; et al. Investigation of health risk assessment sevoflurane on indoor air quality in the operation room in Ahvaz city, Iran. Toxin Rev. 2019, 38, 151. [Google Scholar] [CrossRef]
- Boudehane, A.; Lounas, A.; Moussaoui, Y.; Balducci, C.; Cecinato, A. Levels of organic compounds in interiors (school, home, university and hospital) of Ouargla city, Algeria. Atmos. Environ. 2016, 144, 266–273. [Google Scholar] [CrossRef]
- Wang, X.; Song, M.; Guo, M.; Chi, C.; Mo, F.; Shen, X. Pollution levels and characteristics of phthalate esters in indoor air in hospitals. J. Environ. Sci. 2015, 37, 67–74. [Google Scholar] [CrossRef]
- Loupa, G.; Zarogianni, A.-M.; Karali, D.; Kosmadakis, I.; Rapsomanikis, S. Indoor/outdoor PM2.5 elemental composition and organic fraction medications, in a Greek hospital. Sci. Total Environ. 2016, 550, 727–735. [Google Scholar] [CrossRef]
- Shokri, S.; Nikpey, A.; Varyani, A.S. Evaluation of hospital wards indoor air quality: The particles concentration. J. Air Pollut. Health 2016, 1, 205–214. [Google Scholar]
- World Health Organization. WHO New Guidelines for Selected Indoor Chemicals Establish Targets at Which Health Risks are Significantly Reduced; WHO Regional Office for Europe: Copenhagen, Denmark, 2010. [Google Scholar]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO Regional Office for Europe: Copenhagen, Denmark, 2010; ISBN 978-92-890-0213-4. [Google Scholar]
- World Health Organization. WHO Air Quality Guidelines. Global Update 2005; WHO Regional Office for Europe: Copenhagen, Denmark, 2006; ISBN 92-890-2192-6. [Google Scholar]
- Chakrawarti, M.K.; Singh, M.; Yadav, V.P.; Mukhopadhyay, K. Temporal Dynamics of Air Bacterial Communities in a University Health Centre Using Illumina MiSeq Sequencing. Aerosol Air Qual. Res. 2020, 20, 966–980. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, F.; Jalili, M.; Samaei, M.R.; Mokhtari, A.M.; Azizi, E. The Monitoring of Fungal Contamination in Indoor Air of Two Hospitals in Shiraz. J. Environ. Health Sustain. Dev. 2019, 4, 879–884. [Google Scholar] [CrossRef]
- Guimera, D.; Trzil, J.; Joyner, J.; Hysmith, N.D. Effectiveness of a shielded ultraviolet C air disinfection system in an inpatient pharmacy of a tertiary care children’s hospital. Am. J. Infect. Control 2018, 46, 223–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.; Almeida, B.; Monteiro, A.; Paciência, I.; Rufo, J.; Aguiar, L.; Lage, B.; Diogo Gonçalves, L.M.; Caetano, L.A.; Carolino, E.; et al. Exposure assessment in one central hospital: A multi-approach protocol to achieve an accurate risk characterization. Environ. Res. 2020, 181, 108947. [Google Scholar] [CrossRef]
- Hamed, S.; Mojtaba, M.; Majid, D. Indoor exposure to airborne bacteria and fungi in sensitive wards of an academic pediatric hospital. Aerobiologia 2020, 36, 225–232. [Google Scholar] [CrossRef]
- Kiasat, N.; Fatahinia, M.; Mahmoudabadi, A.Z.; Shokri, H. Qualitative and Quantitative Assessment of Airborne Fungal Spores in the Hospitals Environment of Ahvaz City (2016). Jundishapur J. Microbiol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.E.; Ibrahim, H.Y.; Yousef, F.A.; Elnasr, A.A.A.; Saeed, Y.; Hameed, A.A.A. A study on microbiological contamination on air quality in hospitals in Egypt. Indoor Built Environ. 2018, 27, 953. [Google Scholar] [CrossRef]
- Fekadu, S.; Getachewu, B. Microbiological assessment of indoor air of teaching hospital wards: A case of Jimma university specialized hospital. Ethiop. J. Health Sci. 2015, 25, 117–122. [Google Scholar] [CrossRef]
- Nimra, A.; Ali, Z.; Khan, M.N.; Gulshan, T.; Sidra, S.; Gardezi, J.R.; Tarar, M.R.; Saleem, M.; Nasir, Z.A.; Colbeck, I. Comparative ambient and indoor particulate matter analysis of operation theatres of government and private (trust) hospitals of Lahore, Pakistan. J. Anim. Plant Sci. 2015, 25, 628–635. [Google Scholar] [CrossRef]
- Mohammadyan, M.; Keyvani, S.; Bahrami, A.; Yetilmezsoy, K.; Heibati, B.; Godri Pollitt, K.J. Assessment of indoor air pollution exposure in urban hospital microenvironments. Air Qual. Atmos. Health 2019, 12, 151. [Google Scholar] [CrossRef]
- Lawrence, I.D.; Jayabal, S.; Thirumal, P. Indoor air quality investigations in hospital patient room. Int. J. Biomed. Eng. Technol. 2018, 27, 124–138. [Google Scholar] [CrossRef]
- Nimlyat, P.S.; Kandar, M.Z.; Sediadi, E. Empirical investigation of indoor environmental quality (IEQ) performance in hospital buildings in Nigeria. J. Teknol. 2015, 77, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.H.; Park, W.M. Indoor air concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) in multiple healthcare facilities. Environ. Geochem. Health 2020, 42, 1487–1496. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, K.; Choi, J.H.; Soh, J.S.; Hong, J.Y.; Baik, G.H.; Kim, D.J. Ambient air pollution in gastrointestinal endoscopy unit; rationale and design of a prospective study. Medicine 2018, 97, e13600. [Google Scholar] [CrossRef]
IAQ Parameter | Minimum Reported Value | Maximum Reported Value | WHO Recommended Guidelines [1,98,99,100] |
---|---|---|---|
Temperature (n = 64) | 12 °C [18] | 35 °C [101] | -- |
Relative Humidity (n = 63) | 14% [37] | 90% [81] | -- |
CO2 (n = 48) | 28 ppm [7] | 5826 ppm [9] | -- |
Fungi (n = 54) | 0 [14,78,79,102,103,104,105] | 5147 CFU/m3 [106] | -- |
Bacteria (n = 60) | 0 [103,104,107] | 9733 CFU/m3 [108] | -- |
PM (generic, n = 6) | 6 µg/m3 [18] | 967 µg/m3 [109] | -- |
PM 1 (n = 7) | 0.15 µg/m3 [85] | 757 µg/m3 [109] | -- |
PM 2.5 (n = 33) | 0.35 µg/m3 [85] | 810 µg/m3 [109] | 15 μg/m3 (24 h) a |
PM 10 (n = 27) | 0.5 µg/m3 [78] | 2396 µg/m3 [110] | 45 μg/m3 (24 h) a |
TVOCs (n = 18) | 0 [9] | 7190 ppb [40] | -- |
CO (n = 16) | 0 [42,111] | 10.25 ppm [112] (11.94 mg/m3) b | 100 mg/m3 (15 min) 35 mg/m3 (1 h) 10 mg/m3 (8 h) 4 mg/m3 (24 h) a |
Benzene (n = 9) | <0.1 µg/m3 [31] | 13 ppb [40] (130 µg/m3) b | no safe level of exposure can be recommended |
Toluene (n = 8) | 0.1 µg/m3 [12] | 34 ppb [40] (130 µg/m3) b | -- |
Ethylbenzene (n = 6) | 0.1 µg/m3 [12] | 850 µg/m3 [10] | -- |
Xylene (n = 7) | 0 [42] | 3397 µg/m3 [10] | -- |
Formaldehyde (n = 4) | 0.9 µg/m3 [12] | 810 ppb [40] (1.01 mg/m3) b | 0.1 mg/m3 (30 min) |
Ozone (n = 6) | 2 ppb [113] (4.0 µg/m3) b | 42 ppb [113] (84 µg/m3) b | 100 µg/m3 (8 h) a |
NO2 (n = 6) | 0 [91] | 371 ppb [114] (710 µg/m3) b | 200 μg/m3 (1 h) 25 μg/m3 (24 h) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, A.; Abreu, I.; Guerreiro, M.J.; Barros, N. Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research. Sustainability 2022, 14, 967. https://doi.org/10.3390/su14020967
Fonseca A, Abreu I, Guerreiro MJ, Barros N. Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research. Sustainability. 2022; 14(2):967. https://doi.org/10.3390/su14020967
Chicago/Turabian StyleFonseca, Ana, Isabel Abreu, Maria João Guerreiro, and Nelson Barros. 2022. "Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research" Sustainability 14, no. 2: 967. https://doi.org/10.3390/su14020967
APA StyleFonseca, A., Abreu, I., Guerreiro, M. J., & Barros, N. (2022). Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research. Sustainability, 14(2), 967. https://doi.org/10.3390/su14020967