Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review
Abstract
:1. Introduction
- -
- to describe the healthy characteristics of protein-rich food that can be used as an alternative to meat (Section 2) by highlighting the advantages of this food as a substitution for meat; and
- -
- to carry out a literature review on the life cycle impacts of protein-rich food alternative to meat and the potential environmental benefits of substituting meat with other food giving the same amount of proteins (Section 3).
2. Health Characteristics of Animal vs. Plant-Based, Protein-Rich Foods
3. Life Cycle Assessment of High Protein Food as Alternative to Meat
3.1. Methodology Description
3.2. Papers on Alternative High Protein Food
3.3. Methodological Aspects
3.3.1. Multiple Functional Units
3.3.2. System Boundaries
No. | Paper | Topic | Functional Unit | System Boundary |
---|---|---|---|---|
1 | Davis et al. (2010) [75] | Soybean and pea | A meal served at the household | Cradle to grave |
2 | Knudsen et al. (2010) [76] | Soybean | One tonne of soybean | Cradle to farm gate |
3 | Zhu and Ierland (2004) [77] | Pork vs. dry pea | 1000 kg of protein content | Cradle to plate |
4 | Smetana et al. (2015) [78] | Plant/animal-based diet (chicken, dairy-based, lab-grown, insect-based, gluten-based, soy meal-based, and mycoprotein-based products) | One kilogram of ready-to-eat meal at consumer 3.75 MJ energy content with corrected weight | Cradle to plate |
5 | Sturtewagen et al. (2016) [79] | Canteen/home pork vs. quorn (six meals) | A meal | Cradle to grave |
6 | Lathuillière et al. (2017) [80] | Soybean | One tonne of soybean | Cradle to farm gate |
7 | Mierlo et al. (2017) [81] | Plant/animal-based diet (chicken and beef, vegetarian: plant + animal origin—insect vegan: totally plant-based insect-based fortification-free) | One kilogram of meat replacer | Cradle to farm/factory gate Ingredient system boundary (from agricultural production to factory processing raw material into ingredients, for example, from soybean to soy flour or from chicken breeding to egg) End-product system boundary (from agricultural production to factory processing ingredients into meat replacer, for example, from soybean to chicken/beef replacers) |
8 | Cancino-Espinoza, et al. (2018) [82] | Quinoa | 500 g package of organic quinoa | Cradle to distributors |
9 | Corrado et al. (2019) [85] | Plant/animal-based diets (omnivorous, vegetarian and vegan) | One kilogram of edible food Diet to meet nutrient requirement of an average Italian man | Cradle to grave |
10 | Ilari et al.,(2019) [84] | Frozen green bean | One kilogram of frozen green bean | Cradle to factory gate |
11 | Lee and Choe (2019) [83] | Soybean | One tonne of soybean | Cradle to farm gate |
12 | Escobar et al. (2020) [99] | Soy (bean, oil, and protein cake) | One tonne of product | Cradle to factory gate |
13 | Heusala et al. (2020a) [86] | Oat protein concentrate | One kilogram of ready-to-eat product One kilogram of protein | Cradle to factory gate |
14 | Heusala, et al. (2020b) [87] | Oat and faba bean protein concentrate | One kilogram of ready-to-eat product One kilogram of protein | Cradle to factory gate |
15 | Mogensen et al. (2020) [88] | Oat protein concentrate | One kilogram of ready-to-eat product Daily intake of food and beverages for one adult | Cradle to plate |
16 | Saget et al. (2020) [90] | Wheat vs. chickpea pasta | 80 g of dry weight pasta Nutrient density unit | Cradle to fork |
17 | Costantini and Bacenetti (2021) [92] | Soybean and maize | One tonne of individual product Ha per year, GJ per ha per year, tonne of crude protein per ha per year, USD of gross margin per ha per year | Cradle to farm gate |
18 | Järviö,et al. (2021) [93] | Microbial protein | One kilogram of microbial protein product | Cradle to gate |
19 | Lie-Piang et al. (2021) [95] | Protein concentrate of oil and starch bearing crops | One tonne of the processed crop One kilogram of protein in the produced fraction | Cradle to factory gate, including processing and crop cultivation |
20 | Saget et al. (2021) [91] | Beef vs. pea protein | 100g serving of cooked protein balls | Cradle to fork, excluding packaging and recycling |
21 | Tidåker et al. (2021) [96] | Yellow peas, grey peas, faba beans, common beans, and lentils | One kilogram of dry product | Cradle to factory gate, from cultivation, processing, packaging, and transport |
22 | Üçtuğ et al. (2021) [94] | Plant/animal-based diets (omnivorous, vegetarian, and vegan diet) | 2000 kcal of daily intake per person | Cradle to grave |
3.3.3. Allocation Methods
3.3.4. Data Acquisition and Quality
3.4. Obtained Results: Environmental Impacts and Comparison with Meat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, M.; Baerlocher, K.; Bauer, J.M.; Elmadfa, I.; Heseker, H.; Leschik-Bonnet, E.; Stangl, G.; Volkert, D.; Stehle, P.; on behalf of the German Nutrition Society (DGE). Revised Reference Values for the Intake of Protein. Ann. Nutr. Metab. 2019, 74, 242–250. [Google Scholar] [CrossRef]
- Wall, B.T.; Hamer, H.M.; de Lange, A.; Kiskini, A.; Groen, B.B.L.; Senden, J.M.G.; Gijsen, A.P.; Verdijk, L.B.; van Loon, L.J.C. Leucine Co-Ingestion Improves Post-Prandial Muscle Protein Accretion in Elderly Men. Clin. Nutr. 2013, 32, 412–419. [Google Scholar] [CrossRef]
- Murphy, C.H.; Hector, A.J.; Phillips, S.M. Considerations for Protein Intake in Managing Weight Loss in Athletes. Eur. J. Sport Sci. 2015, 15, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Weigle, D.S.; Breen, P.A.; Matthys, C.C.; Callahan, H.S.; Meeuws, K.E.; Burden, V.R.; Purnell, J.Q. A High-Protein Diet Induces Sustained Reductions in Appetite, Ad Libitum Caloric Intake, and Body Weight despite Compensatory Changes in Diurnal Plasma Leptin and Ghrelin Concentrations. Am. J. Clin. Nutr. 2005, 82, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.; Kalantar-Zadeh, K.; Goldstein-Fuchs, J.; Rhee, C. Dietary Approaches in the Management of Diabetic Patients with Kidney Disease. Nutrients 2017, 9, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellissimo, N.; Fansabedian, T.; Wong, V.; Totosy de Zepetnek, J.; Brett, N.; Schwartz, A.; Cassin, S.; Suitor, K.; Rousseau, D. Effect of Increasing the Dietary Protein Content of Breakfast on Subjective Appetite, Short-Term Food Intake and Diet-Induced Thermogenesis in Children. Nutrients 2020, 12, 3025. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Westhoek, H.; Ingram, J.; Van Berkum, S.; Özay, L.; Hajer, M. A Report of the Working Group on Food Systems of the International Resource Panel. In Food Systems and Natural Resources; United Nations Environmental Programme (UNEP): Nairobi, Kenya, 2016. [Google Scholar]
- FAOSTAT Food and Agricultural Statistics. Available online: http://www.Fao.Org/Food-Agriculture-Statistics/Data-Release/Data-Release-Detail/En/c/1382110/ (accessed on 30 November 2021).
- FAO. FAO Statistical Yearbook 2013—World Food and Agriculture—Part 4: Sustainability Dimensions; Food and Agricultural Organisation of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Arneth, A.; Barbosa, H.; Benton, T.; Calvin, K.; Calvo, E.; Connors, S.; Cowie, A.; Davin, E.; Denton, F.; van Diemen, R.; et al. IPCC Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; Earthscan: London, UK, 2011. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- United Nations. United Nations Resolution Adopted by the General Assembly on 25 September 2015. In Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
- European Commission Communication from the European Commission. The European Green Deal; 11.12.2019, COM(2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission Communication from the European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; 20.5.2020 COM(2020) 381 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In Quest of Reducing the Environmental Impacts of Food Production and Consumption. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Castellani, V.; Sala, S.; Benini, L. Hotspots Analysis and Critical Interpretation of Food Life Cycle Assessment Studies for Selecting Eco-Innovation Options and for Policy Support. J. Clean. Prod. 2017, 140, 556–568. [Google Scholar] [CrossRef]
- Cellura, M.; Ardente, F.; Longo, S. From the LCA of Food Products to the Environmental Assessment of Protected Crops Districts: A Case-Study in the South of Italy. J. Environ. Manag. 2012, 93, 194–208. [Google Scholar] [CrossRef]
- Mistretta, M.; Caputo, P.; Cellura, M.; Cusenza, M.A. Energy and Environmental Life Cycle Assessment of an Institutional Catering Service: An Italian Case Study. Sci. Total Environ. 2019, 657, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Corrado, S.; Ardente, F.; Sala, S.; Saouter, E. Modelling of Food Loss within Life Cycle Assessment: From Current Practice towards a Systematisation. J. Clean. Prod. 2017, 140, 847–859. [Google Scholar] [CrossRef]
- Diaz-Ruiz, R.; Costa-Font, M.; López-i-Gelats, F.; Gil, J.M. Food Waste Prevention along the Food Supply Chain: A Multi-Actor Approach to Identify Effective Solutions. Resour. Conserv. Recycl. 2019, 149, 249–260. [Google Scholar] [CrossRef]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural Anaerobic Digestion Plants: What LCA Studies Pointed out and What Can Be Done to Make Them More Environmentally Sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef] [Green Version]
- Brancoli, P.; Rousta, K.; Bolton, K. Life Cycle Assessment of Supermarket Food Waste. Resour. Conserv. Recycl. 2017, 118, 39–46. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Longo, S.; Guarino, F.; Cellura, M. Energy and Environmental Assessment of Residual Bio-Wastes Management Strategies. J. Clean. Prod. 2021, 285, 124815. [Google Scholar] [CrossRef]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.-W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Carr, P.R.; Walter, V.; Brenner, H.; Hoffmeister, M. Meat Subtypes and Their Association with Colorectal Cancer: Systematic Review and Meta-Analysis: Meat Subtypes and Colorectal Cancer. Int. J. Cancer 2016, 138, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. International Agency for Research on Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- WCRF/AICR—World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Colorectal Cancer. 2017. Available online: https://www.Wcrf.Org/Colorectal-Cancer-2017 (accessed on 9 August 2021).
- Kim, S.R.; Kim, K.; Lee, S.A.; Kwon, S.O.; Lee, J.K.; Keum, N.; Park, S.M. Effect of Red, Processed, and White Meat Consumption on the Risk of Gastric Cancer: An Overall and Dose–Response Meta-Analysis. Nutrients 2019, 11, 826. [Google Scholar] [CrossRef] [Green Version]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Cheung, K.; Milio, K.; Zworth, M.; Bartoszko, J.J.; Valli, C.; et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-Analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupoli, R.; Vitale, M.; Calabrese, I.; Giosuè, A.; Riccardi, G.; Vaccaro, O. White Meat Consumption, All-Cause Mortality, and Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 676. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Wirbel, J.; Pyl, P.T.; Kartal, E.; Zych, K.; Kashani, A.; Milanese, A.; Fleck, J.S.; Voigt, A.Y.; Palleja, A.; Ponnudurai, R.; et al. Meta-Analysis of Fecal Metagenomes Reveals Global Microbial Signatures That Are Specific for Colorectal Cancer. Nat. Med. 2019, 25, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.J.; Park, Y.M.; Sinha, R.; Sandler, D.P. Association between Meat Consumption and Risk of Breast Cancer: Findings from the Sister Study. Int. J. Cancer 2020, 146, 2156–2165. [Google Scholar] [CrossRef]
- Tantamango-Bartley, Y.; Jaceldo-Siegl, K.; Fan, J.; Fraser, G. Vegetarian Diets and the Incidence of Cancer in a Low-Risk Population. Cancer Epidemiol. Biomark. Prev. 2013, 22, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Yin, Z.; Zhao, Q. Red and Processed Meat Consumption and Gastric Cancer Risk: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 30563–30575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, C.; Bouamra-Mechemache, Z.; Réquillart, V.; Treich, N. Viewpoint: Regulating Meat Consumption to Improve Health, the Environment and Animal Welfare. Food Policy 2020, 97, 101847. [Google Scholar] [CrossRef]
- WCRFI—World Cancer Research Fund International. Limit Red and Processed Meat. 2018. Available online: https://www.Wcrf.Org/Dietandcancer/Limit-Red-and-Processed-Meat/ (accessed on 17 November 2021).
- Satija, A.; Hu, F.B. Plant-Based Diets and Cardiovascular Health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, Vegan Diets and Multiple Health Outcomes: A Systematic Review with Meta-Analysis of Observational Studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef] [PubMed]
- Ajala, O.; English, P.; Pinkney, J. Systematic Review and Meta-Analysis of Different Dietary Approaches to the Management of Type 2 Diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibsen, D.B.; Warberg, C.K.; Würtz, A.M.L.; Overvad, K.; Dahm, C.C. Substitution of Red Meat with Poultry or Fish and Risk of Type 2 Diabetes: A Danish Cohort Study. Eur. J. Nutr. 2019, 58, 2705–2712. [Google Scholar] [CrossRef]
- Li, R.; Yu, K.; Li, C. Dietary Factors and Risk of Gout and Hyperuricemia: A Meta-Analysis and Systematic Review. Asia Pac. J. Clin. Nutr. 2018, 27, 1344–1356. [Google Scholar] [CrossRef]
- Al-Shaar, L.; Satija, A.; Wang, D.D.; Rimm, E.B.; Smith-Warner, S.A.; Stampfer, M.J.; Hu, F.B.; Willett, W.C. Red Meat Intake and Risk of Coronary Heart Disease among US Men: Prospective Cohort Study. BMJ 2020, 371, m4141. [Google Scholar] [CrossRef] [PubMed]
- Applegate, C.; Rowles, J.; Ranard, K.; Jeon, S.; Erdman, J. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Lv, J.; Guo, Y.; Bian, Z.; Gao, M.; Du, H.; Yang, L.; Chen, Y.; Zhang, X.; Wang, T.; et al. Soy Intake and Breast Cancer Risk: A Prospective Study of 300,000 Chinese Women and a Dose–Response Meta-Analysis. Eur. J. Epidemiol. 2020, 35, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Nachvak, S.M.; Moradi, S.; Anjom-shoae, J.; Rahmani, J.; Nasiri, M.; Maleki, V.; Sadeghi, O. Soy, Soy Isoflavones, and Protein Intake in Relation to Mortality from All Causes, Cancers, and Cardiovascular Diseases: A Systematic Review and Dose–Response Meta-Analysis of Prospective Cohort Studies. J. Acad. Nutr. Diet. 2019, 119, 1483–1500.e17. [Google Scholar] [CrossRef] [PubMed]
- Patisaul, H.B.; Jefferson, W. The Pros and Cons of Phytoestrogens. Front. Neuroendocrinol. 2010, 31, 400–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, K.E.; Camargo, J.; Hamilton-Reeves, J.; Kurzer, M.; Messina, M. Neither Soy nor Isoflavone Intake Affects Male Reproductive Hormones: An Expanded and Updated Meta-Analysis of Clinical Studies. Reprod. Toxicol. 2021, 100, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Feng, H.; Qluwakemi, B.; Wang, J.; Yao, S.; Cheng, G.; Xu, H.; Qiu, H.; Zhu, L.; Yuan, M. Phytoestrogens and Risk of Prostate Cancer: An Updated Meta-Analysis of Epidemiologic Studies. Int. J. Food Sci. Nutr. 2017, 68, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Brzostek, T.; Gniadek, A.; Favari, C.; Mena, P.; Libra, M.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Phytoestrogens and Biomarkers of Their Intake in Relation to Cancer Survival and Recurrence: A Comprehensive Systematic Review with Meta-Analysis. Nutr. Rev. 2021, 79, 42–65. [Google Scholar] [CrossRef] [PubMed]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Brandon, D.L. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Liu, J.; Klebach, M.; Visser, M.; Hofman, Z. Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial. Nutrients 2019, 11, 2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, R.; Zaragoza, J.; Purpura, M.; Iametti, S.; Marengo, M.; Tinsley, G.M.; Anzalone, A.J.; Oliver, J.M.; Fiore, W.; Biffi, A.; et al. Probiotic Administration Increases Amino Acid Absorption from Plant Protein: A Placebo-Controlled, Randomized, Double-Blind, Multicenter, Crossover Study. Probiotics Antimicrob. Prot. 2020, 12, 1330–1339. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein Intake and Exercise for Optimal Muscle Function with Aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa Protein: Composition, Structure and Functional Properties. Food Chem. 2019, 299, 125161. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Chung, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Shi, J.; Wallace, T.C.; et al. Animal versus Plant Protein and Adult Bone Health: A Systematic Review and Meta-Analysis from the National Osteoporosis Foundation. PLoS ONE 2018, 13, e0192459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein Content and Amino Acids Profile of Pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guérin-Deremaux, L. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Vangsoe, M.; Thogersen, R.; Bertram, H.; Heckmann, L.-H.; Hansen, M. Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial. Nutrients 2018, 10, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangsoe, M.; Joergensen, M.; Heckmann, L.-H.; Hansen, M. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men. Nutrients 2018, 10, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermans, W.J.H.; Senden, J.M.; Churchward-Venne, T.A.; Paulussen, K.J.M.; Fuchs, C.J.; Smeets, J.S.J.; van Loon, J.J.A.; Verdijk, L.B.; van Loon, L.J.C. Insects Are a Viable Protein Source for Human Consumption: From Insect Protein Digestion to Postprandial Muscle Protein Synthesis in Vivo in Humans: A Double-Blind Randomized Trial. Am. J. Clin. Nutr. 2021, 114, 934–944. [Google Scholar] [CrossRef]
- Kamemura, N.; Sugimoto, M.; Tamehiro, N.; Adachi, R.; Tomonari, S.; Watanabe, T.; Mito, T. Cross-Allergenicity of Crustacean and the Edible Insect Gryllus Bimaculatus in Patients with Shrimp Allergy. Mol. Immunol. 2019, 106, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, Y.; Buffière, C.; Cohade, B.; Vauris, M.; Liebermann, K.; Hafnaoui, N.; Lopez, M.; Souchon, I.; Dupont, D.; Rémond, D. True Ileal Amino Acid Digestibility and Digestible Indispensable Amino Acid Scores (DIAASs) of Plant-Based Protein Foods. Food Chem. 2021, 338, 128020. [Google Scholar] [CrossRef]
- Tarrega, A.; Rizo, A.; Murciano, A.; Laguna, L.; Fiszman, S. Are Mixed Meat and Vegetable Protein Products Good Alternatives for Reducing Meat Consumption? A Case Study with Burgers. Curr. Res. Food Sci. 2020, 3, 30–40. [Google Scholar] [CrossRef]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for Digestible Indispensable Amino Acid Scores (DIAAS) for Some Dairy and Plant Proteins May Better Describe Protein Quality than Values Calculated Using the Concept for Protein Digestibility-Corrected Amino Acid Scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.W.; Jakeman, P.M. Separating the Wheat from the Chaff: Nutritional Value of Plant Proteins and Their Potential Contribution to Human Health. Nutrients 2020, 12, 2410. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture FoodData Central. Available online: https://Fdc.Nal.Usda.Gov/ (accessed on 9 December 2021).
- Bailey, H.M.; Mathai, J.K.; Berg, E.P.; Stein, H.H. Most Meat Products Have Digestible Indispensable Amino Acid Scores That Are Greater than 100, but Processing May Increase or Reduce Protein Quality. Br. J. Nutr. 2020, 124, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Sonesson, U.; Baumgartner, D.U.; Nemecek, T. Environmental Impact of Four Meals with Different Protein Sources: Case Studies in Spain and Sweden. Food Res. Int. 2010, 43, 1874–1884. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Yu-Hui, Q.; Yan, L.; Halberg, N. Environmental Assessment of Organic Soybean (Glycine max.) Imported from China to Denmark: A Case Study. J. Clean. Prod. 2010, 18, 1431–1439. [Google Scholar] [CrossRef]
- Zhu, X.; van Ierland, E.C. Protein Chains and Environmental Pressures: A Comparison of Pork and Novel Protein Foods. Environ. Sci. 2014, 1, 254–276. [Google Scholar] [CrossRef]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat Alternatives: Life Cycle Assessment of Most Known Meat Substitutes. Int. J. Life Cycle Assess 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- Sturtewagen, L.; Soete, W.D.; Dewulf, J.; Lachat, C.; Lauryssen, S.; Heirman, B.; Rossi, F.; Schaubroeck, T. Resource Use Profile and Nutritional Value Assessment of a Typical Belgian Meal, Catered or Home Cooked, with Pork or Quorn™ as Protein Source. J. Clean. Prod. 2016, 112, 196–204. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Miranda, E.J.; Bulle, C.; Couto, E.G.; Johnson, M.S. Land Occupation and Transformation Impacts of Soybean Production in Southern Amazonia, Brazil. J. Clean. Prod. 2017, 149, 680–689. [Google Scholar] [CrossRef]
- Mierlo, K.V.; Rohmer, S.; Gerdessen, J.C. A Model for Composing Meat Replacers: Reducing the Environmental Impact of Our Food Consumption Pattern While Retaining Its Nutritional Value. J. Clean. Prod. 2017, 165, 930–950. [Google Scholar] [CrossRef]
- Cancino-Espinoza, E.; Vázquez-Rowe, I.; Quispe, I. Organic Quinoa (Chenopodium quinoa L.) Production in Peru: Environmental Hotspots and Food Security Considerations Using Life Cycle Assessment. Sci. Total Environ. 2018, 637–638, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Choe, Y.C. Environmental Performance of Organic Farming: Evidence from Korean Small-Holder Soybean Production. J. Clean. Prod. 2019, 211, 742–748. [Google Scholar] [CrossRef]
- Ilari, A.; Duca, D.; Toscano, G.; Pedretti, E.F. Evaluation of Cradle to Gate Environmental Impact of Frozen Green Bean Production by Means of Life Cycle Assessment. J. Clean. Prod. 2019, 236, 117638. [Google Scholar] [CrossRef]
- Corrado, S.; Luzzani, G.; Trevisan, M.; Lamastra, L. Contribution of Different Life Cycle Stages to the Greenhouse Gas Emissions Associated with Three Balanced Dietary Patterns. Sci. Total Environ. 2019, 660, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Heusala, H.; Sinkko, T.; Mogensen, L.; Knudsen, M.T. Carbon Footprint and Land Use of Food Products Containing Oat Protein Concentrate. J. Clean. Prod. 2020, 276, 122938. [Google Scholar] [CrossRef]
- Heusala, H.; Sinkko, T.; Sözer, N.; Hytönen, E.; Mogensen, L.; Knudsen, M.T. Carbon Footprint and Land Use of Oat and Faba Bean Protein Concentrates Using a Life Cycle Assessment Approach. J. Clean. Prod. 2020, 242, 118376. [Google Scholar] [CrossRef]
- Mogensen, L.; Heusale, H.; Sinkko, T.; Poutanen, K.; Sözer, N.; Hermansen, J.E.; Knudsen, M.T. Potential to Reduce GHG Emissions and Land Use by Substituting Animal-Based Proteins by Foods Containing Oat Protein Concentrate. J. Clean. Prod. 2020, 274, 122914. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.H.J.; Löfgren, P.; Börner, J.; Godar, J. Spatially-Explicit Footprints of Agricultural Commodities: Mapping Carbon Emissions Embodied in Brazil’s Soy Exports. Glob. Environ. Chang. 2020, 62, 102067. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.; Barilli, E.; de Vasconcelos, M.W.; Santos, C.S.; Styles, D.; Williams, M. Substituting Wheat with Chickpea Flour in Pasta Production Delivers More Nutrition at a Lower Environmental Cost. Sustain. Prod. Consum. 2020, 24, 26–38. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.; Santos, C.S.; Vasconcelos, M.W.; Gibbons, J.; Styles, D.; Williams, M. Substitution of Beef with Pea Protein Reduces the Environmental Footprint of Meat Balls Whilst Supporting Health and Climate Stabilisation Goals. J. Clean. Prod. 2021, 297, 126447. [Google Scholar] [CrossRef]
- Costantini, M.; Bacenetti, J. Soybean and Maize Cultivation in South America: Environmental Comparison of Different Cropping Systems. Clean. Environ. Syst. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Järviö, N.; Maljanen, N.-L.; Kobayashi, Y.; Ryynänen, T.; Tuomisto, H.L. An Attributional Life Cycle Assessment of Microbial Protein Production: A Case Study on Using Hydrogen-Oxidizing Bacteria. Sci. Total Environ. 2021, 776, 145764. [Google Scholar] [CrossRef]
- Üçtuğ, F.G.; Günaydin, D.; Hünkar, B.; Öngelen, C. Carbon Footprints of Omnivorous, Vegetarian, and Vegan Diets Based on Traditional Turkish Cuisine. Sustain. Prod. Consum. 2021, 26, 597–609. [Google Scholar] [CrossRef]
- Lie-Piang, A.; Braconi, N.; Boom, R.M.; van der Padt, A. Less Refined Ingredients Have Lower Environmental Impact—A Life Cycle Assessment of Protein-Rich Ingredients from Oil- and Starch-Bearing Crops. J. Clean. Prod. 2021, 292, 126046. [Google Scholar] [CrossRef]
- Tidåker, P.; Potter, H.K.; Carlsson, G.; Röös, E. Towards Sustainable Consumption of Legumes: How Origin, Processing and Transport Affect the Environmental Impact of Pulses. Sustain. Prod. Consum. 2021, 27, 496–508. [Google Scholar] [CrossRef]
- Saarinen, M.; Fogelholm, M.; Tahvonen, R.; Kurppa, S. Taking Nutrition into Account within the Life Cycle Assessment of Food Products. J. Clean. Prod. 2017, 149, 828–844. [Google Scholar] [CrossRef]
- van Dooren, C. Proposing the Nutrient Density Unit as the Functional Unit in LCAs of Foods. In Proceedings of the 10th International Conference on Life Cycle Assessment of Food: LCA Food, Dublin, Ireland, 19–27 October 2016. [Google Scholar]
- Escobar, N.; Manrique-de-Lara-Penate, C.; Sanjuan, N.; Clemente, G.; Rozakis, S. An Agro-Industrial Model for the Optimization of Biodiesel Production in Spain to Meet the European GHG Reduction Targets. Energy 2017, 120, 619–631. [Google Scholar] [CrossRef]
- Chen, X.; Wilfart, A.; Puillet, L.; Aubin, J. A New Method of Biophysical Allocation in LCA of Livestock Co-Products: Modeling Metabolic Energy Requirements of Body-Tissue Growth. Int. J. Life Cycle Assess 2017, 22, 883–895. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A Review of Life Cycle Assessment (LCA) on Some Food Products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Sonesson, U.; Davis, J.; Flysjö, A.; Gustavsson, J.; Witthöft, C. Protein Quality as Functional Unit—A Methodological Framework for Inclusion in Life Cycle Assessment of Food. J. Clean. Prod. 2017, 140, 470–478. [Google Scholar] [CrossRef]
- Falcone, G.; Iofrida, N.; Stillitano, T.; Luca, A.I.D. Impacts of Food and Diets’ Life Cycle: A Brief Review. Curr. Opin. Environ. Sci. Health 2020, 13, 75–79. [Google Scholar] [CrossRef]
Topics | Number of Case Studies 1 |
---|---|
Various types of plant-based products to replace meat | 4 |
Soy/soybean | 6 |
Bean | 4 |
Pea/Chickpea | 5 |
Protein concentrate | 5 |
Quorn 2 | 1 |
Quinoa | 1 |
Lentils | 1 |
Paper | GWP (kg CO2eq) | Per kg of Product | Per kg of Protein | Per Meal/Diet 3 |
---|---|---|---|---|
Cancino-Espinoza et al. (2018) [82] | Quinoa | 0.88 | 6.47 | |
Rice | 34.1 | |||
Costantini and Bacenetti (2021) [92] | Maize | 0.18 | ||
Zhu and Ierland (2004) [77] | Dry pea | 12.23 | ||
Ilari et al. (2019) [84] | Frozen green bean | 0.7 | ||
Escobar et al., (2020) [89] | Soybean (Brazil) | 0.69 | ||
Costantini and Bacenetti (2021) [92] | Soybean | 0.28–0.59 | ||
Smetana et al. (2015) [78] | Soy meal product | 2.65–2.78 | ||
Lee and Choe (2019) [83] | Conventional soybean (Korean) | 1.65 | ||
Organic soybean (Korean) | 2.04 | |||
Knudsen et al. (2010) [76] | Conventional soybean (at Chinese farm gate) | 0.26 | ||
Organic soybean (at Chinese farm gate) | 0.15 | |||
Organic soybean (from China imported to Denmark) | 0.42 | |||
Tidåker et al. (2021) [96] | Dry pulses (Sweden) | 0.18–0.44 | ||
Cooked pulses at home (Sweden) | 0.1 | |||
Canned beans (Sweden) | 0.8 | |||
(Heusala et al., 2020a) [86] | Wheat flour | 0.5 | 4.8 | |
Durum wheat semolina | 1 | 7.8 | ||
Oat starch | 1 | 12.4 | ||
Oat protein concentrate | 3.3 | 8.8 | ||
Heusala et al. (2020b) [87] | Faba bean protein concentrate | 1.1–2 | 1.9–3.4 | |
Lie-Piang et al. (2021) [95] | Yellow pea protein concentrate | 0.67–1.5 | 1.58–5.33 | |
Lupine protein concentrate | 0.75–2.1 | 1.3–5.78 | ||
Smetana et al., (2015) [78] | Mycoprotein based product | 5.55–6.15 | ||
Järviö et al. (2021) [93] | Microbial protein product | 8.38 | ||
Saget et al. (2020) [90] | Wheat pasta | 2.45–2.58 | ||
Chickpea pasta (Bulgaria) | 2.03 | |||
Chickpea pasta (Spain) | 1.42 | |||
Cooked pea protein ball | 0.5–1.1 | |||
Mierlo et al. (2017) [81] | Vegetarian/vegan ingredient product in replacement of chicken | 0.62–1.35 | ||
Vegetarian/vegan ingredient product in replacement of beef | 0.59–1.31 | |||
Vegetarian/vegan end product in replacement of chicken | 0.62–0.73 | |||
Vegetarian/vegan end product in replacement of beef | 0.59–0.7 | |||
Üçtuğ et al. (2021) [94] | Vegetarian diet | 3.97 | ||
Vegan diet | 2.64 | |||
Corrado et al. (2019) [85] | Vegetarian | 2.76–3.2 | ||
Vegan | 2.61–3.13 | |||
Mogensen et al. (2020) [88] | Diet with OPC bread, pasta, and oatgurt | 3.95 | ||
Diet with OPC in replacement of meat | 3.34 | |||
Davis et al. (2010) [75] | Pea sausage (Sweden) | 1.22 | ||
Pea burger (Sweden) | 0.54 | |||
Pea sausage (Spanish) | 1.74 | |||
Pea burger (Spanish) | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cellura, M.; Cusenza, M.A.; Longo, S.; Luu, L.Q.; Skurk, T. Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review. Sustainability 2022, 14, 979. https://doi.org/10.3390/su14020979
Cellura M, Cusenza MA, Longo S, Luu LQ, Skurk T. Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review. Sustainability. 2022; 14(2):979. https://doi.org/10.3390/su14020979
Chicago/Turabian StyleCellura, Maurizio, Maria Anna Cusenza, Sonia Longo, Le Quyen Luu, and Thomas Skurk. 2022. "Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review" Sustainability 14, no. 2: 979. https://doi.org/10.3390/su14020979