Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review
Abstract
:1. Introduction
2. Technosols Regulations
3. Technology and Sustainability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoang, A.T.; Nižetić, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef] [PubMed]
- Chofreh, A.G.; Goni, F.A.; Klemeš, J.J.; Moosavi, S.M.S.; Davoudi, M.; Zeinalnezhad, M. COVID-19 shock: Development of strategic management framework for global energy. Renew. Sustain. Energy Rev. 2021, 139, 110643. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nguyen, T.H.; Nguyen, H.P. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–18. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; da Silva, K.A.; Rios, E.C.; Crispim, M.M.; Dotto, G.L.; de Almeida Pinto, L.A. Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int. J. Biol. Macromol. 2020, 142, 85–93. [Google Scholar] [CrossRef]
- Silva, L.F.; Lozano, L.P.; Oliveira, M.L.; da Boit, K.; Gonçalves, J.O.; Neckel, A. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 2021, 168, 112425. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.O.; Crissien, T.J.; Sampaio, C.H.; Oliveira, M.L.; Silva, L.F. The role of roots plants and soil characteristics in coal mining areas: Geochemical and nanomineralogy information still without details. J. Environ. Chem. Eng. 2021, 9, 106539. [Google Scholar] [CrossRef]
- Andrade, G.R.P.; Furquim, S.A.C.; Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [Google Scholar] [CrossRef]
- Bujor, L.; Benciu, F.; Vilcu, D.M.; Bogan, E.; Constantin, D.; Grigore, E. Evaluation of the Anthropic Impact on the Environmental–Soil Factor Case Study: Alba Iulia Forest District, Romania. Int. J. Acad. Res. Environ. Geogr. 2021, 8, 11–29. [Google Scholar]
- Zamulina, I.V.; Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Bauer, T.V.; Burachevskaya, M.V. The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicol. Environ. Saf. 2021, 208, 111471. [Google Scholar] [CrossRef] [PubMed]
- Firpo, B.A.; Weiler, J.; Schneider, I.A. Technosol made from coal waste as a strategy to plant growth and environmental control. Energy Geosci. 2021, 2, 160–166. [Google Scholar] [CrossRef]
- Bolaños-Guerrón, D.; Capa, J.; Flores, L.C. Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles. Heliyon 2021, 7, e07631. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group. WRB World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports N; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, ISBN 978-92-5-108369-7. [Google Scholar]
- Asensio, V.; Guala, S.; Vega, F.A.; Covelo, E.F. A soil quality index for reclaimed mine soils. Environ. Toxicol. Chem. 2013, 32, 2240–2248. [Google Scholar] [CrossRef]
- Hafeez, F.; Spor, A.; Breuil, M.-C.; Schwartz, C.; Martin-Laurent, F.; Philippot, L. Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J. Hazard. Mater. 2012, 231–232, 88–97. [Google Scholar] [CrossRef]
- Xunta de Galicia. 2008. Available online: https://www.xunta.gal/dog/Publicados/2008/20080125/Anuncio58E2_es.html (accessed on 10 October 2021).
- Macias, F. Recuperación de Suelos Degradados, Reutilización de Residuos Y Secuestro de Carbono. Una Alternativa Integral de Mejora de la Calidad Ambiental; Recursos Rurais Serie Cursos 1; Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER): Lugo, Spain, 2004; pp. 49–56. [Google Scholar]
- Macías, F.; Macías-García, F.; Bao, M.; Camps, M. Tecnosoles, Biocarbones Y Humedales Reactivos Diseñados, Formulados Y Elaborados “A la Carta Y a Imagen de Suelos Naturales” Para la Recuperación de Suelos, Aguas Y Ecosistemas Degradados O Contaminados; Laboratorio de Tecnología Ambiental, Instituto de Investigaciones Tecnológicas, USC. Dpto. Ingeniería Química, USC. Centro de Valorización Ambiental del Norte, Massey University: Palmerston, New Zealand, 2016. [Google Scholar]
- VATOP. 2020. Available online: https://cvatop.es/restauracion-mina-touro (accessed on 12 October 2021).
- Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Villenave, C.; Séré, G.; Schwartz, C.; Watteau, F.; Jimenez, A.; Cortet, J. Rapid Changes in Soil Nematodes in the First Years after Technosol Construction for the Remediation of an Industrial Wasteland. Eurasian Soil Sci. 2018, 51, 1266–1273. [Google Scholar] [CrossRef]
- Asensio, V.; Flórido, F.G.; Ruiz, F.; Perlatti, F.; Otero, X.L.; Oliveira, D.P.; Ferreira, T.O. The potential of a Technosol and tropical native trees for reclamation of copper-polluted soils. Chemosphere 2019, 220, 892–899. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2006. [Google Scholar]
- Martinat, S.; Dvorak, P.; Frantal, B.; Klusacek, P.; Kunc, J.; Navratil, J.; Osman, R.; Tureckova, K.; Reed, M. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic. J. Clean. Prod. 2016, 118, 78–87. [Google Scholar] [CrossRef]
- Kozłowski, M.; Otremba, K.; Tatuśko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The effect of an extended agricultural reclamation on changes in physical properties of technosols in post-lignite-mining areas: A case study from central Europe. Geoderma 2022, 410, 115664. [Google Scholar] [CrossRef]
- Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the Nutrient Content in a Mine Soil Through the Application of Technosol and Biochar and Grown with Brassica juncea L. Waste Biomass Valorization 2019, 10, 103–119. [Google Scholar] [CrossRef]
- Soria, R.; González-Pérez, J.A.; de la Rosa, J.M.; Emeterio, L.M.S.; Domene, M.A.; Ortega, R.; Miralles, I. Effects of technosols based on organic amendments addition for the recovery of the functionality of degraded quarry soils under semiarid Mediterranean climate: A field study. Sci. Total Environ. 2021, 151572. [Google Scholar] [CrossRef] [PubMed]
- Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Morev, D.V.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Kremenetskaya, I.P. Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. Int. Soil Water Conserv. Res. 2019, 7, 297–307. [Google Scholar] [CrossRef]
- Vidal-Beaudet, L.; Rokia, S.; Nehls, T.; Schwartz, C. Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. J. Soils Sediments 2018, 18, 456–466. [Google Scholar] [CrossRef]
- Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [Google Scholar] [CrossRef]
- Fourvel, G.J.; Vidal-Beaudet, L.; Le Bocq, A.; Thery, F.; Brochier, V.; Cannavo, P. Fertilidad de tecnosoles construidos con sedimentos de presas para el enverdecimiento urbano y la recuperación de tierras. J. Soils Sediments 2019, 19, 3178–3192. [Google Scholar] [CrossRef]
- Cortinhas, A.; Caperta, A.D.; Teixeira, G.; Carvalho, L.; Abreu, M.M. Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation. J. Environ. Manag. 2020, 261, 109907. [Google Scholar] [CrossRef]
- Ruiz, F.; Cherubin, M.R.; Ferreira, T.O. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. J. Environ. Manag. 2020, 276, 111344. [Google Scholar] [CrossRef] [PubMed]
- Uzarowicz, Ł.; Wolińska, A.; Błońska, E.; Szafranek-Nakonieczna, A.; Kuźniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [Google Scholar] [CrossRef]
- Santorufo, L.; Joimel, S.; Auclerc, A.; Deremiens, J.; Grisard, G.; Hedde, M.; Nahmani, J.; Pernin, C.; Cortet, J. Early colonization of constructed technosol by microarthropods. Ecol. Eng. 2021, 162, 106174. [Google Scholar] [CrossRef]
- Pruvost, C.; Mathieu, J.; Nunan, N.; Gigon, A.; Pando, A.; Lerch, T.Z.; Blouin, M. Tree growth and macrofauna colonization in Technosols constructed from recycled urban wastes. Ecol. Eng. 2020, 153, 105886. [Google Scholar] [CrossRef]
- Foti, L.; Dubs, F.; Gignoux, J.; Lata, J.-C.; Lerch, T.Z.; Mathieu, J.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci. Total Environ. 2017, 598, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Benhabylès, L.; Djebbar, R.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environ. Sci. Pollut. Res. 2020, 27, 30133–30144. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar Application Rate: Improving Soil Fertility and Linum usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. Int. J. Environ. Res. 2021, 15, 125–134. [Google Scholar] [CrossRef]
- Bodlák, L.; Kŕováková, K.; Kobesová, M.; Štástnŷ, J.; Pecharová, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [Google Scholar] [CrossRef]
- Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 2016, 23, 17840–17849. [Google Scholar] [CrossRef] [PubMed]
- Halecki, W.; Klatka, S. Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environ. Manag. 2021, 67, 822–832. [Google Scholar] [CrossRef]
- Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Environ. Sci. Pollut. Res. 2018, 25, 19713–19727. [Google Scholar] [CrossRef] [PubMed]
- Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [Google Scholar] [CrossRef] [PubMed]
- Uzarowicz, Ł. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 2013, 197, 137–150. [Google Scholar] [CrossRef]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [Google Scholar] [CrossRef]
- Huot, H.; Simonnot, M.-O.; Morel, J.L. Pedogenetic Trends in Soils Formed in Technogenic Parent Materials. Soil Sci. 2015, 180, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Rennert, T.; Kaufhold, S.; Händel, M.; Schuth, S.; Meißner, S.; Totsche, K.U. Characterization of a Technosol developed from deposited flue-dust slurry and release of inorganic contaminants. J. Plant Nutr. Soil Sci. 2011, 174, 721–731. [Google Scholar] [CrossRef]
- Huot, H.; Simonnot, M.-O.; Watteau, F.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci. 2014, 65, 470–484. [Google Scholar] [CrossRef] [Green Version]
- Scalenghe, R.; Ferraris, S. The First Forty Years of a Technosol. Pedosphere 2009, 19, 40–52. [Google Scholar] [CrossRef]
- 5Hoang, A.T.; Nižetić, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959. [Google Scholar]
- Weiler, J.; Firpo, B.A.; Schneider, I.A. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. [Google Scholar] [CrossRef]
- Pereira, H.A.; Hernandes, P.R.T.; Netto, M.S.; Reske, G.D.; Vieceli, V.; Oliveira, L.F.S.; Dotto, G.L. Adsorbents for glyphosate removal in contaminated waters: A review. Environ. Chem. Lett. 2020, 19, 1525–1543. [Google Scholar] [CrossRef]
- Streit, A.F.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 2021, 262, 128322. [Google Scholar] [CrossRef] [PubMed]
- Sellaoui, L.; Hessou, E.P.; Badawi, M.; Netto, M.S.; Dotto, G.L.; Silva, L.F.O.; Tielens, F.; Ifthikar, J.; Bonilla-Petriciolet, A.; Chen, Z. Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 2021, 420, 127712. [Google Scholar] [CrossRef]
- Ferrari, V.; Taffarel, S.R.; Espinosa-Fuentes, E.; Oliveira, M.L.; Saikia, B.K.; Oliveira, L.F. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 2019, 208, 297–306. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [Google Scholar] [CrossRef]
- Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.; da Boit, K.; Tutikian, B.; Crissien, T.J.; Pinto, D.; Serrano, I.D.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Sehn, J.L.; De Leão, F.B.; Da Boit, K.; Oliveira, M.; Hidalgo, G.E.; Sampaio, C.H.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Martinello, K.; Oliveira, M.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [Google Scholar] [CrossRef]
Name | Total Publication | Name | Total Publication |
---|---|---|---|
Schwartz, C. | 22 | Banov, M. | 9 |
Morel, J.L. | 14 | Charzyński, P. | 9 |
Séré, G. | 14 | Atanassova, I. | 8 |
Watteau, F. | 14 | Greinert, A. | 8 |
Macías, F. | 12 | Nehls, T. | 8 |
Pietrzykowski, M. | 12 | Woś, B. | 8 |
Uzarowicz, Ł. | 11 | Abreu, M.M. | 7 |
Minkina, T. | 10 | Ouvrard, S. | 7 |
Journals | Number of Publications |
---|---|
Journal of Soils and Sediments | 52 |
Geoderma | 31 |
Eurasian Soil Science | 22 |
Catena | 17 |
Soil Science Annual | 14 |
Ecological Engineering | 11 |
Environmental Geochemistry and Health | 11 |
Chemosphere | 10 |
Journal of Environmental Management | 9 |
Applied Soil Ecology | 8 |
Science of the Total Environment | 8 |
Springer Geography | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability 2022, 14, 993. https://doi.org/10.3390/su14020993
Gonçalves JO, Fruto CM, Barranco MJ, Oliveira MLS, Ramos CG. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability. 2022; 14(2):993. https://doi.org/10.3390/su14020993
Chicago/Turabian StyleGonçalves, Janaína Oliveira, Carolina Moreno Fruto, Mauricio Jaraba Barranco, Marcos Leandro Silva Oliveira, and Claudete Gindri Ramos. 2022. "Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review" Sustainability 14, no. 2: 993. https://doi.org/10.3390/su14020993
APA StyleGonçalves, J. O., Fruto, C. M., Barranco, M. J., Oliveira, M. L. S., & Ramos, C. G. (2022). Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability, 14(2), 993. https://doi.org/10.3390/su14020993