Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. About Color
1.2. Significance, Symbology, and Emotion in Relation to Color
1.3. Color and Emotion: From Computing to Deep Learning
1.4. Affective Computing
2. Materials and Methods
- a.
- Estimation of frequencies through a histogram and subsequent estimation of a kernel density function (KDE). The density function makes it possible to estimate the probability of a given function. This is relevant for combining emotions within a particular distribution.
- b.
- Color quantization based on the Itten color palette. The colors of each image are quantized in relation to the Itten palette. The composition of each group and the harmony relationships present in the palette are then analyzed. In particular, we seek relationships of the analog, complementary, split-complementary, and triad types in the previously clustered groups, among other types. Thus, it is possible to inquire about the essence of colors in the image. This type of analysis aids in finding the harmonies detected according to the frequencies of relationship, which is related to the composition and aesthetics, whether more or less harmonious, balanced, or rhythmic. For this, an angular measurement between the colors expressed in the Itten palette is used to determine the relationship between the colors that make up the color wheel.
3. Results
3.1. Color Analysis
3.2. Correlation Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, S.H.; O’Hara, J.K.; Shortt, M.T.; Thune, H.; Bronnick, K.K.; Lungu, D.A.; Roislien, J.; Wiig, S. Health authorities’ health risk communication with the public during pandemics: A rapid scoping review. BMC Public Health 2021, 21, 1401. [Google Scholar] [CrossRef] [PubMed]
- Papademetriou, C.; Anastasiadou, S.; Konteos, G.; Papalexandris, S. COVID-19 Pandemic: The Impact of the Social Media Technology on Higher Education. Educ. Sci. 2022, 12, 261. [Google Scholar] [CrossRef]
- Bond, B.J. Social and parasocial relationships during COVID-19 social distancing. J. Soc. Pers. Relationships 2021, 38, 2308–2329. [Google Scholar] [CrossRef]
- Mohamad, S.M. Creative Production of ‘COVID-19 Social Distancing’ Narratives on Social Media. Tijdschr. Voor Econ. En Soc. Geogr. 2020, 111, 347–359. [Google Scholar] [CrossRef]
- Steinert, S. Corona and value change. The role of social media and emotional contagion. Ethics Inf. Technol. 2021, 23, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, P.; Rauschnabel, P.A.; Antony, M.G.; Car, S. A cross-cultural comparison of Croatian and American social network sites: Exploring cultural differences in motives for Instagram use. Comput. Hum. Behav. 2017, 75, 643–651. [Google Scholar] [CrossRef]
- Sheldon, P.; Bryant, K. Instagram: Motives for its use and relationship to narcissism and contextual age. Comput. Hum. Behav. 2016, 58, 89–97. [Google Scholar] [CrossRef]
- Muñoz, M.C. El arte como postraducción de la pandemia por la covid-19: El caso de The Covid Art Museum. Section: Nuevos retos y perspectivas de la investigación en Literatura, Lingüística y Traducción. Chapter 113. In Nuevos Retos y Perspectivas de la Investigación en Literatura, Lingüística y Traducción; Dykinson: Madrid, Spain, 2021; pp. 2189–2210. ISBN 978–984-1377-325-4. [Google Scholar]
- Wang, S.; Han, K.; Jin, J. Review of image low-level feature extraction methods for content-based image retrieval. Sens. Rev. 2019, 39, 783–809. [Google Scholar] [CrossRef]
- Machajdik, J.; Hanbury, A. Affective image classification using features inspired by psychology and art theory. In Proceedings of the International Conference on Multimedia-MM ’10; ACM Press: Firenze, Italy, 2010; p. 83. [Google Scholar] [CrossRef]
- Schloss, K.B.; Witzel, C.; Lai, L.Y. Blue hues don’t bring the blues: Questioning conventional notions of color–emotion associations. J. Opt. Soc. Am. A 2020, 37, 813. [Google Scholar] [CrossRef]
- Kauppinen-Räisänen, H.; Luomala, H.T. Exploring consumers’ product-specific colour meanings. Qual. Mark. Res. Int. J. 2010, 13, 287–308. [Google Scholar] [CrossRef]
- Wei-ning, W.; Ying-lin, Y.; Sheng-ming, J. Image Retrieval by Emotional Semantics: A Study of Emotional Space and Feature Extraction. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; pp. 3534–3539. [Google Scholar] [CrossRef]
- Eiseman, L. The Complete Color Harmony, Pantone Edition; Rockport Publishers: Beverly, MA, USA, 2017. [Google Scholar]
- White, A.R.; Martinez, L.M.; Martinez, L.F.; Rando, B. Color in web banner advertising: The influence of analogous and complementary colors on attitude and purchase intention. Electron. Commer. Res. Appl. 2021, 50, 101100. [Google Scholar] [CrossRef]
- Pridmore, R.W. Complementary colors: A literature review. Color Res. Appl. 2021, 46, 482–488. [Google Scholar] [CrossRef]
- Gorn, G.J.; Chattopadhyay, A.; Yi, T.; Dahl, D.W. Effects of Color as an Executional Cue in Advertising: They’re in the Shade. Manag. Sci. 1997, 43, 1387–1400. [Google Scholar] [CrossRef] [Green Version]
- Baptista, I.; Valentin, D.; Saldaña, E.; Behrens, J. Effects of packaging color on expected flavor, texture, and liking of chocolate in Brazil and France. Int. J. Gastron. Food Sci. 2021, 24, 100340. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Chiu, H.C.; Tang, Y.C.; Lee, M. Do Colors Change Realities in Online Shopping? J. Interact. Mark. 2018, 41, 14–27. [Google Scholar] [CrossRef]
- Reece, A.G.; Danforth, C.M. Instagram photos reveal predictive markers of depression. EPJ Data Sci. 2017, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Egger, R. Color and engagement in touristic Instagram pictures: A machine learning approach. Ann. Tour. Res. 2021, 89, 103204. [Google Scholar] [CrossRef]
- O’Connor, Z. Color Psychology. In Encyclopedia of Color Science and Technology; Luo, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Caivano, J.L. Color and semiotics: A two-way street. Color Res. Appl. 1998, 23, 390–401. [Google Scholar] [CrossRef]
- Kauppinen-Räisänen, H.; Jauffret, M.N. Using colour semiotics to explore colour meanings. Qual. Mark. Res. Int. J. 2018, 21, 101–117. [Google Scholar] [CrossRef]
- Retter, T.L.; Gao, Y.; Jiang, F.; Rossion, B.; Webster, M.A. Early, color-specific neural responses to object color knowledge. Neuroscience 2021, preprint. [Google Scholar] [CrossRef]
- Elliot, A.J.; Maier, M.A. Color and Psychological Functioning. Curr. Dir. Psychol. Sci. 2007, 16, 250–254. [Google Scholar] [CrossRef]
- Manav, B. Color-emotion associations and color preferences: A case study for residences. Color Res. Appl. 2007, 32, 144–150. [Google Scholar] [CrossRef]
- Schloss, K.B.; Palmer, S.E. An ecological framework for temporal and individual differences in color preferences. Vis. Res. 2017, 141, 95–108. [Google Scholar] [CrossRef]
- Palmer, S.E.; Schloss, K.B. An ecological valence theory of human color preference. Proc. Natl. Acad. Sci. USA 2010, 107, 8877–8882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.; Franklin, A. The relationship between color–object associations and color preference: Further investigation of ecological valence theory. Psychon. Bull. Rev. 2012, 19, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Schloss, K.B. Color Preferences Differ with Variations in Color Perception. Trends Cogn. Sci. 2015, 19, 554–555. [Google Scholar] [CrossRef]
- Schloss, K.B.; Hawthorne-Madell, D.; Palmer, S.E. Ecological influences on individual differences in color preference. Atten. Percept. Psychophys 2015, 77, 2803–2816. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y. Instagram user characteristics and the color of their photos: Colorfulness, color diversity, and color harmony. Inf. Process. Manag. 2019, 56, 1494–1505. [Google Scholar] [CrossRef]
- Wilms, L.; Oberfeld, D. Color and emotion: Effects of hue, saturation, and brightness. Psychol. Res. 2018, 82, 896–914. [Google Scholar] [CrossRef]
- Ou, L.C.; Luo, M.R.; Woodcock, A.; Wright, A. A study of colour emotion and colour preference. Part II: Colour emotions for two-colour combinations. Color Res. Appl. 2004, 29, 292–298. [Google Scholar] [CrossRef]
- Valdez, P.; Mehrabian, A. Effects of Color on Emotions; American Psychological Association: Washington, DC, USA, 1994; Volume 123, pp. 394–409. [Google Scholar] [CrossRef]
- Gilbert, A.N.; Fridlund, A.J.; Lucchina, L.A. The color of emotion: A metric for implicit color associations. Food Qual. Prefer. 2016, 52, 203–210. [Google Scholar] [CrossRef]
- Ou, L.C.; Luo, M.R.; Sun, P.L.; Hu, N.C.; Chen, H.S. Age effects on colour emotion, preference, and harmony. Color Res. Appl. 2012, 37, 92–105. [Google Scholar] [CrossRef]
- Ou, L.C.; Luo, M.R.; Woodcock, A.; Wright, A. A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Res. Appl. 2004, 29, 232–240. [Google Scholar] [CrossRef]
- Xin, J.H.; Cheng, K.M.; Taylor, G.; Sato, T.; Hansuebsai, A. Cross-regional comparison of colour emotions Part I: Quantitative analysis. Color Res. Appl. 2004, 29, 451–457. [Google Scholar] [CrossRef]
- Xin, J.H.; Cheng, K.M.; Taylor, G.; Sato, T.; Hansuebsai, A. Cross-regional comparison of colour emotions Part II: Qualitative analysis. Color Res. Appl. 2004, 29, 458–466. [Google Scholar] [CrossRef]
- Taylor, C.; Clifford, A.; Franklin, A. Color preferences are not universal. J. Exp. Psychol. Gen. 2013, 142, 1015–1027. [Google Scholar] [CrossRef]
- Gao, X.P.; Xin, J.H. Investigation of human’s emotional responses on colors. Color Res. Appl. 2006, 31, 411–417. [Google Scholar] [CrossRef]
- Jonauskaite, D.; Wicker, J.; Mohr, C.; Dael, N.; Havelka, J.; Papadatou-Pastou, M.; Zhang, M.; Oberfeld, D. A machine learning approach to quantify the specificity of colour–emotion associations and their cultural differences. R. Soc. Open Sci. 2019, 6, 190741. [Google Scholar] [CrossRef] [Green Version]
- Suk, H.J.; Irtel, H. Emotional response to color across media. Color Res. Appl. 2010, 35, 64–77. [Google Scholar] [CrossRef]
- Gong, R.; Wang, Q.; Hai, Y.; Shao, X. Investigation on factors to influence color emotion and color preference responses. Optik 2017, 136, 71–78. [Google Scholar] [CrossRef]
- Hanjalic, A. Extracting moods from pictures and sounds: Towards truly personalized TV. IEEE Signal Process. Mag. 2006, 23, 90–100. [Google Scholar] [CrossRef]
- Yang, J.; She, D.; Sun, M. Joint Image Emotion Classification and Distribution Learning via Deep Convolutional Neural Network. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence; International Joint Conferences on Artificial Intelligence Organization: Melbourne, Australia, 2017; pp. 3266–3272. [Google Scholar] [CrossRef] [Green Version]
- Mikels, J.A.; Fredrickson, B.L.; Larkin, G.R.; Lindberg, C.M.; Maglio, S.J.; Reuter-Lorenz, P.A. Emotional category data on images from the international affective picture system. Behav. Res. Methods 2005, 37, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Sun, H.; Li, M.; Iida, M. Application of Color Featuring and Deep Learning in Maize Plant Detection. Remote Sens. 2020, 12, 2229. [Google Scholar] [CrossRef]
- Poterek, Q.; Herrault, P.A.; Skupinski, G.; Sheeren, D. Deep Learning for Automatic Colorization of Legacy Grayscale Aerial Photographs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2899–2915. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. arXiv 2020, arXiv:1911.02685. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.; Provost, E.M. Deep learning for robust feature generation in audiovisual emotion recognition. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3687–3691. [Google Scholar] [CrossRef]
- Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 512–519. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Kim, Y.S.; Kim, S.J.; Lee, I.K. Building Emotional Machines: Recognizing Image Emotions through Deep Neural Networks. arXiv 2017, arXiv:1705.07543. [Google Scholar] [CrossRef] [Green Version]
- Priya, D.T.; Udayan, J.D. Affective emotion classification using feature vector of image based on visual concepts. Int. J. Electr. Eng. Educ. 2020, 60. [Google Scholar] [CrossRef]
- Rao, T.; Xu, M.; Xu, D. Learning Multi-level Deep Representations for Image Emotion Classification. arXiv 2018, arXiv:1611.07145. [Google Scholar] [CrossRef] [Green Version]
- Elliot, A.J. Color and psychological functioning: A review of theoretical and empirical work. Front. Psychol. 2015, 6, 368. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Qi, H.; Zaretzki, R. Image color transfer to evoke different emotions based on color combinations. Signal Image Video Process. 2015, 9, 1965–1973. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Jiang, Y.; Pei, M.; Liu, S. Emotional image color transfer via deep learning. Pattern Recognit. Lett. 2018, 110, 16–22. [Google Scholar] [CrossRef]
- Liu, S.; Pei, M. Texture-Aware Emotional Color Transfer Between Images. IEEE Access 2018, 6, 31375–31386. [Google Scholar] [CrossRef]
- Ram, V.; Schaposnik, L.P.; Konstantinou, N.; Volkan, E.; Papadatou-Pastou, M.; Manav, B.; Jonauskaite, D.; Mohr, C. Extrapolating continuous color emotions through deep learning. Phys. Rev. Res. 2020, 2, 033350. [Google Scholar] [CrossRef]
- Takada, A.; Wang, X.; Yamasaki, T. Color-Grayscale-Pair Image Sentiment Dataset and Its Application to Sentiment-Driven Image Color Conversion. In Proceedings of the 2021 International Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia 2021; ACM: Taipei Taiwan, 2021; pp. 2–7. [Google Scholar] [CrossRef]
- Picard, R.W. Affective Computing; Technical Report No. 321; Media Laboratory Perceptual Computing Section; MIT 20 Ames St.: Cambridge, MA, USA, 1995. [Google Scholar]
- Zhao, S.; Wang, S.; Soleymani, M.; Joshi, D.; Ji, Q. Affective Computing for Large-Scale Heterogeneous Multimedia Data: A Survey. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 15, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Yao, X.; Yang, J.; Jia, G.; Ding, G.; Chua, T.S.; Schuller, B.W.; Keutzer, K. Affective Image Content Analysis: Two Decades Review and New Perspectives. arXiv 2021, arXiv:2106.16125. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Emotion and Motivation. In Handbook of Psychophysiology, 3rd ed.; Cacioppo, J.T., Tassinary, L.G., Berntson, G., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 581–607. [Google Scholar] [CrossRef]
- Alameda-Pineda, X.; Ricci, E.; Yan, Y.; Sebe, N. Recognizing Emotions from Abstract Paintings Using Non-Linear Matrix Completion. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5240–5248. [Google Scholar] [CrossRef]
- Saleh, B.; Elgammal, A. Large-scale Classification of Fine-Art Paintings: Learning The Right Metric on The Right Feature. arXiv 2015, arXiv:1505.00855. [Google Scholar]
- Achlioptas, P.; Ovsjanikov, M.; Haydarov, K.; Elhoseiny, M.; Guibas, L. ArtEmis: Affective Language for Visual Art. arXiv 2021, arXiv:2101.07396. [Google Scholar]
- Hassan, N.A.; Hijazi, R. Open Source Intelligence Methods and Tools: A Practical Guide to Online Intelligence, 1st ed.; Apress: Berkeley, CA, USA, 2018. [Google Scholar] [CrossRef]
- Rhyne, T.M. Applying Color Theory to Digital Media and Visualization; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Shevlyakov, G.L.; Oja, H. Robust Correlation: Theory and Applications; Wiley Publisher: Hoboken, NJ, USA, 2016. [Google Scholar]
- Cano-Martínez, M.J.; Carrasco, M.; Sandoval, J.; González-Martín, C. Quantitative Analysis of Visual Representation of Sign Elements in COVID-19 Context. Empir. Stud. Arts. 2022, 1, 21. [Google Scholar] [CrossRef]
- Israelashvili, J. More Positive Emotions During the COVID-19 Pandemic Are Associated With Better Resilience, Especially for Those Experiencing More Negative Emotions. Front. Psychol. 2021, 12, 648112. [Google Scholar] [CrossRef]
Topic | Common Points | Differences |
---|---|---|
Semantic level | Color as an index is an indication, as is the example of the color of the fruit in its ripening, or the white on detergent packaging [24]. | Color is something we learn, a convention [11]. For instance, red on a traffic light means to stop driving, or certain colors on a flag represent a specific community. |
Colors and emotions | Color is a low-level characteristic, it has an important relationship with the object [57]. | Emotions can be influenced by different factors such as color, shapes, the appearance of lines, and the emotional bias of observers themselves [47]. Not all color combinations generate a correlation with emotion [63]. |
Different cultural identities | Color can generate different emotions according to different cultural identities [44]. | There are overlaps between groups [35,42,43,44]. |
Hue, Chroma and Luminosity | Judgment about happiness and sadness is determined by the chroma and luminosity of color [46]. | Chroma is more decisive for the sensation in the color temperature (cold-warm), while the lighting produces the heavy-light sensation [11,39]. |
Genre | Our relationship with colors is associated with events, objects, concepts, emotions, etc. [25]. | There is no evidence of universality on color preference from a gender perspective in research, detecting some differences between sexes [33,34]. |
Color and grayscale | Color images generate a more significant emotion effect (positive or negative) on the observer [64]. | It is possible to induce different emotions in the observer by changing its color [66]. |
Age/time | Color images generate a more significant emotion effect (positive or negative) on the observer [64]. | Color preferences may change over time, affected by fashions, new social and physical circumstances or moods [28,29,37,38]. |
Analogous Color Harmony | Count | Percentage |
---|---|---|
(yellow-orange, orange, red-orange) | 289 | 33.8% |
(orange, red-orange, red) | 179 | 20.9% |
(yellow, yellow-orange, orange) | 146 | 17.1% |
(yellow-green, yellow, yellow-orange) | 62 | 7.3% |
(red-orange, red, red-violet) | 51 | 6.0% |
(blue-green, green, yellow-green) | 29 | 3.4% |
(blue, blue-green, green) | 25 | 2.9% |
(red-violet, violet, blue-violet) | 17 | 2.0% |
(red, red-violet, violet) | 16 | 1.9% |
(violet, blue-violet, blue) | 15 | 1.8% |
(green, yellow-green, yellow) | 15 | 1.8% |
(blue-violet, blue, blue-green) | 11 | 1.3% |
Complementary Color Harmony | Count | Percentage |
---|---|---|
(blue-green, red-orange) | 369 | 30% |
(blue, orange) | 187 | 15% |
(red, green) | 30 | 2% |
(yellow-green, red-violet) | 13 | 1% |
(yellow-orange, blue-violet) | 9 | 1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Martín, C.; Carrasco, M.; Oviedo, G. Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic. Sustainability 2022, 14, 12989. https://doi.org/10.3390/su142012989
González-Martín C, Carrasco M, Oviedo G. Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic. Sustainability. 2022; 14(20):12989. https://doi.org/10.3390/su142012989
Chicago/Turabian StyleGonzález-Martín, César, Miguel Carrasco, and Germán Oviedo. 2022. "Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic" Sustainability 14, no. 20: 12989. https://doi.org/10.3390/su142012989
APA StyleGonzález-Martín, C., Carrasco, M., & Oviedo, G. (2022). Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic. Sustainability, 14(20), 12989. https://doi.org/10.3390/su142012989