Prediction of Tunnelling Parameters for Underwater Shield Tunnels, Based on the GA-BPNN Method
Abstract
:1. Introduction
2. Methodology
Artificial Neural Network and GA-BPNN
- (1)
- Determine the structure of BP neural network and set various parameters, such as initial weight and threshold.
- (2)
- Initialize the population of GA, including initialization of population size, crossover probability, mutation probability, and weight.
- (3)
- The fitness value of each individual in the population is calculated.
- (4)
- Each individual is randomly selected for replication, crossover, and mutation, to produce new individuals with certain probability, which inherit the high-quality genes of individuals in the population to obtain new, excellent populations.
- (5)
- Calculate whether the number of iterations in the new population reaches the maximum genetic algebra and perform the judgment operation. If the results meet the qualification, the inheritance ends, if not, go back to step (3).
- (6)
- Calculate the fitness values in the population, output and decode the most adaptive individual to obtain the global optimal initial weight and threshold in the network model.
- (7)
- Input the initial weight and threshold adjusted by the genetic algorithm into the BP neural network, then the network training is performed to determine whether the experimental accuracy meets the required qualification.
3. Case Study: An Underwater Tunnel Project
3.1. The Underwater Tunnel Overview
3.2. Parameter Settings for BPNN and GA-BPNN
4. Results and Discussion
4.1. Prediction Result with BPNN
4.2. Prediction Result with GA-BPNN
5. Evaluation of the Ground Reinforcement Effect at the Fine Sand Stratum
5.1. Support Pressure Analysis at Collapse Area of Fine Sand Stratum
5.2. Tunnelling Parameters Prediction at the Reinforced Stratum
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Entacher, M.; Lorenz, S.; Galler, R. Tunnel boring machine performance prediction with scaled rock cutting tests. Int. J. Rock Mech. Min. Sci. 2014, 70, 450–459. [Google Scholar] [CrossRef]
- Rostami, J. Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground. Tunn. Undergr. Space Technol. 2016, 57, 173–182. [Google Scholar] [CrossRef]
- Ren, D.J.; Shen, S.L.; Zhou, A.; Chai, J.C. Prediction of lateral continuous wear of cutter ring in soft ground with quartz sand. Comput. Geotech. 2018, 103, 86–92. [Google Scholar] [CrossRef]
- Zhou, C.; Ding, L.Y.; Zhou, Y.; Skibniewski, M. Visibility graph analysis on time series of shield tunnelling parameters based on complex network theory. Tunn. Undergr. Space Technol. 2019, 89, 10–24. [Google Scholar] [CrossRef]
- Copur, H.; Aydin, H.; Bilgin, N.; Balci, C.; Tumac, D.; Dayanc, C. Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model. Tunn. Undergr. Space Technol. 2014, 42, 1–14. [Google Scholar] [CrossRef]
- Rostami, J.; Ozdemir, L. A new model for performance production of hard rock TBMs. In Proceedings of the Rapid Excavation and Tunnelling Conferences, Boston, MA, USA, 13–17 June 1993; pp. 793–809. Available online: https://www.researchgate.net/publication/288383954_New_model_for_performance_production_of_hard_rock_TBMs (accessed on 11 October 2022).
- Rostami, J.; Ozdemir, L.; Nilsen, B. Comparison between CSM and NTH hard rock TBM performance prediction models. In Proceedings of the Annual Technical Meeting of the Institute of Shaft Drilling and Technology, Las Vegas, NV, USA, 1–3 May 1996; pp. 1–11. Available online: https://www.academia.edu/5061945/COMPARISON_BETWEEN_CSM_AND_NTH_HARD_ROCK_TBM_PERFORMANCE_PREDICTION_MODELS_By (accessed on 11 October 2022).
- Xue, Y.D.; Zhao, F.; Zhao, H.X.; Li, X.; Diao, Z.X. A new method for selecting hard rock TBM tunnelling parameters using optimum energy: A case study. Tunn. Undergr. Space Technol. 2018, 78, 64–75. [Google Scholar] [CrossRef]
- Bruland, A. Hard Rock Tunnel Boring. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 1998. [Google Scholar]
- Barton, N. TBM Tunnelling in Jointed and Faulted Rock; Balkema Brookfield: Rotterdam, The Netherlands, 2000. [Google Scholar]
- Bieniawski, Z.T.; Celada, B.; Galera, J.M. TBM excavability: Prediction and machine-rock interaction. In Proceedings of the Rapid Excavation and Tunnelling Conference, Toronto, ON, Canada, 10–13 June 2007; pp. 1118–1130. Available online: https://www.researchgate.net/publication/286943503_TBM_Excavability_Prediction_and_machine-rock_interaction (accessed on 11 October 2022).
- Delisio, A.; Zhao, J. A new model for TBM performance prediction in blocky rock conditions. Tunn. Undergr. Space Technol. 2014, 43, 440–452. [Google Scholar] [CrossRef]
- Hassanpour, J.; Rostami, J.; Khamehchiyan, M.; Bruland, A. Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: A case history of Nowsood water conveyance tunnel. Geomech. Geoeng. Int. J. 2009, 4, 287–297. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
- Benato, A.; Oreste, P. Prediction of penetration per revolution in TBM tunnelling as a function of intact rock and rock mass characteristics. Int. J. Rock Mech. Min. Sci. 2015, 74, 119–127. [Google Scholar] [CrossRef]
- Salimi, A.; Rostami, J.; Moormann, C.; Delisio, A. Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs. Tunn. Undergr. Space Technol. 2016, 58, 236–246. [Google Scholar] [CrossRef]
- Mahdevari, S.; Shahriar, K.; Yagiz, S.; Shirazi, M.A. A support vector regression model for predicting tunnel boring machine penetration rates. Int. J. Rock Mech. Min. Sci. 2014, 72, 214–229. [Google Scholar] [CrossRef]
- Yagiz, S.; Karahan, H. Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass. Int. J. Rock Mech. Min. Sci. 2015, 80, 308–315. [Google Scholar] [CrossRef]
- Ghasemi, E.; Yagiz, S.; Ataei, M. Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic. Bull. Eng. Geol. Environ. 2014, 73, 23–35. [Google Scholar] [CrossRef]
- Gao, X.J.; Shi, M.L.; Song, X.G.; Zhang, C.; Zhang, H.W. Recurrent neural networks for real-time prediction of TBM operating parameters. Autom. Constr. 2019, 98, 225–235. [Google Scholar] [CrossRef]
- Sun, W.; Shi, M.L.; Zhang, C.; Zhao, J.H.; Song, X.G. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data. Autom. Constr. 2018, 92, 23–34. [Google Scholar] [CrossRef]
- Ye, X.; Wang, S.; Wang, Q.; Sloan, S.W.; Sheng, D. Numerical and experimental studies of the mechanical behaviour for compaction grouted soil nails in sandy soil. Comput. Geotech. 2017, 90, 202–214. [Google Scholar] [CrossRef]
- Liu, B.; Wang, R.; Zhao, G.; Guo, X.; Wang, Y.; Li, J.; Wang, S. Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm. Tunn. Undergr. Space Technol. 2020, 95, 103103. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Fahimifar, A.; Ghaleini, E.N.; Momenzadeh, M.; Armaghani, D.J. Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Eng. Comput. 2020, 36, 345–357. [Google Scholar] [CrossRef]
- Wang, S.T.; Wang, J.Z.; Shang, F.K.; Wang, Y.T.; Cheng, Q.; Liu, N. A GA-BP method of detecting carbamate pesticide mixture based on three-dimensional fluorescence spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117–396. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Liu, Z.Y.; Tan, J.R. Prediction of geological conditions for a tunnel boring machine using big operational data. Autom. Constr. 2019, 100, 73–83. [Google Scholar] [CrossRef]
- Shi, F.; Wang, X.C.; Yu, L.; Li, Y. 30 Cases of Neural Network Analysis with MATLAB; Beijing University of Aeronautics and Astronautics Press: Beijing, China, 2010. [Google Scholar]
- Lee, H.M.; Chen, C.M.; Huang, T.C. Learning efficiency improvement of back propagation algorithm by error saturation prevention method. Neurocomputing. 2001, 41, 125–143. [Google Scholar] [CrossRef]
- Liu, X.Y.; Shao, C.; Ma, H.F.; Liu, R.X. Optimal earth pressure balance control for shield tunnelling based on LS-SVM and PSO. Autom. Constr. 2011, 20, 321–327. [Google Scholar]
- Piotrowski, A.P.; Napiorkowski, J. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J. Hydrol. 2013, 476, 97–111. [Google Scholar] [CrossRef]
- Liu, X.X. A Research on Population Size Impaction on the Performance of Genetic Algorithm. Master’s Thesis, North China Electric Power University (NCEPU), Beijing, China, 2010. [Google Scholar]
- Liang, Y.; Chen, X.Y.; Yang, J.S.; Zhang, J.; Huang, L.C. Analysis of ground collapse caused by shield tunnelling and the evaluation of the reinforcement effect on a sand stratum. Eng. Fail. Anal. 2020, 115, 104–616. [Google Scholar] [CrossRef]
- Pinto, F.; Zymnis, D.M. Ground movements due to shallow tunnels in soft ground. II: Analytical interpretation and prediction. J. Geotech. Geoenviron. Eng. 2014, 140, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.W.; Zhu, H.H.; Ding, W.Q.; Wu, X.S.; Yu, N. Cutting torque during tunnelling process of earth pressure balance shield machine in homogeneous ground. Chin. J. Geotech. Eng. 2010, 32, 47–54. [Google Scholar]
Stratum | Natural Gravity (kN/m3) | Cohesion (kPa) | Friction Angle (°) | Poisson Ratio | Permeability Coefficient (m/d) | Lateral Pressure Coefficient |
---|---|---|---|---|---|---|
Fine sand | 19.9 | 5 | 18 | 0.30 | 7.5 | 0.43 |
Gravel | 21.0 | 0 | 35 | 0.28 | 17.8 | 0.39 |
Silty clay | 19.2 | 40 | 18 | 0.32 | 0.02 | 0.30 |
Backfill | 19.5 | 12 | 8 | 0.35 | 1.25 | 0.54 |
Conglomerate (strong weathered) | 23.5 | 185 | 32 | 0.25 | 0.16 | 0.33 |
Conglomerate (moderate weathered) | 24.3 | 500 | 38 | 0.22 | 0.11 | 0.28 |
Parameters for BPNN | Nodes in Hidden Layer | Learning Rate | Training Times | Convergence Rate |
17 | 0.1 | 20,000 | 0.01 | |
Parameters for GA | Population Size | Crossover Probability | Mutation Probability | Population Iterations |
50 | 0.6 | 0.2 | 300 |
Samples | Index | Rotation/R | Penetration/P | Torque/T | Thrust/F | Pressure/Wp |
---|---|---|---|---|---|---|
Training set with BPNN | MAPE | 1.7% | 11.9% | 4.4% | 8.5% | 2.7% |
RMSE | 0.04 | 1.62 | 169.42 | 441.59 | 0.06 | |
Test set with BPNN | MAPE | 2.6% | 13.5% | 13.9% | 13.0% | 6.8% |
RMSE | 0.07 | 1.73 | 464.64 | 608.88 | 0.14 | |
Training set with GA-BPNN | MAPE | 1.6% | 11.6% | 4.2% | 8.2% | 2.0% |
RMSE | 0.04 | 1.61 | 160.06 | 421.40 | 0.05 | |
Test set with GA-BPNN | MAPE | 2.7% | 14.0% | 10.9% | 10.5% | 2.5% |
RMSE | 0.07 | 2.12 | 387.28 | 523.90 | 0.05 |
Stratum | Natural Gravity (kN/m3) | Cohesion (kPa) | Friction Angle (°) | Poisson Ratio | Permeability Coefficient (m/d) | Lateral Pressure Coefficient |
---|---|---|---|---|---|---|
Mixed cement–soil | 20.0 | 50–100 | 20–30 | 0.32 | 0.01 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Jiang, K.; Gao, S.; Yin, Y. Prediction of Tunnelling Parameters for Underwater Shield Tunnels, Based on the GA-BPNN Method. Sustainability 2022, 14, 13420. https://doi.org/10.3390/su142013420
Liang Y, Jiang K, Gao S, Yin Y. Prediction of Tunnelling Parameters for Underwater Shield Tunnels, Based on the GA-BPNN Method. Sustainability. 2022; 14(20):13420. https://doi.org/10.3390/su142013420
Chicago/Turabian StyleLiang, Yu, Kai Jiang, Shijun Gao, and Yihao Yin. 2022. "Prediction of Tunnelling Parameters for Underwater Shield Tunnels, Based on the GA-BPNN Method" Sustainability 14, no. 20: 13420. https://doi.org/10.3390/su142013420
APA StyleLiang, Y., Jiang, K., Gao, S., & Yin, Y. (2022). Prediction of Tunnelling Parameters for Underwater Shield Tunnels, Based on the GA-BPNN Method. Sustainability, 14(20), 13420. https://doi.org/10.3390/su142013420