Evaluation of Emergency Response Measures for the LOCA of A Marine Reactor
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Significance
2. Methods
2.1. Consequence Analysis Model for a Marine Reactor LOCA
2.2. Calculation Model of Radionuclide Release
2.3. Accident Assumption and Process Analysis
3. Impact Analysis of Radiation Consequences
4. Nuclear Accident Emergency Measure for a Marine Reactor
4.1. Selection and Determination of Emergency Measure Indexes
4.2. Establishment of an Index System for Emergency Response Measures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LOCA | Loss of coolant accident |
PWR | Pressurized water reactor |
AHP | Analytic hierarchy process |
SBO | Station black-out |
ECCS | Emergency core cooling system |
References
- Tao, Z.T.; Fu, M.; Liu, Y.; Gao, Y.J.; Tong, H.; Hu, W.J.; Lei, L.B.; Bi, L. High-performing Proton-conducting Solid Oxide Fuel Cells with Triple-conducting Cathode of Pr0.5Ba0.5 (Co0.7Fe0.3) O3-δ Tailored with W. Int. J. Hydrog. Energy 2022, 47, 1947–1953. [Google Scholar] [CrossRef]
- Wu, G.H.; Tong, J.J.; Zhang, L.G.; Yuan, D.P.; Xiao, Y.Q. Research on Rapid Source Term Estimation in Nuclear Accident Emergency Decision for Pressurized Water Reactor Based on Bayesian Network. Nucl. Eng. Technol. 2021, 53, 2534–2546. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, D.; Xian, L. Review of Reactor Accidents of Foreign Nuclear Power Submarine. Nucl. Sci. Eng. 2017, 37, 442–449. [Google Scholar]
- Xu, S.; Qin, Z.; Han, Y.; Dong, H.; Huang, Y.; Zhao, F.; Zou, Y.; Liu, Y.; Gong, D.; Xu, L.; et al. Ultrawide-range Radiation Detection Based on Dynamic Identification and Analysis of the Response of a Monolithic Active Pixel Sensor. Opt. Express 2022, 30, 14134–14145. [Google Scholar]
- Lyu, X.; Liu, S.; Ji, K.; Feng, Y.; Wang, S.; Huang, Z. Research on Hydrogen Risk and Hydrogen Control System in Marine Nuclear Reactor. Ann. Nucl. Energy 2020, 141, 107373. [Google Scholar] [CrossRef]
- Ouyang, K.; Chen, W.; He, Z. Analysis of the Radioactive Atmospheric Dispersion Induced By Ship Nuclear Power Plant Severe Accident. Ann. Nucl. Energy 2019, 127, 395–399. [Google Scholar] [CrossRef]
- Zhao, F.; Zou, S.; Liu, Z.; Xu, T.; Xu, S.; Huang, Y.; Feng, J. Study on Release and Migration of Radionuclides Under the Small Break Loss of Coolant Accident in a Marine Reactor. Sci. Technol. Nucl. Install. 2021, 2021, 6635950. [Google Scholar]
- Humphries, L.L.; Figueroa, V.G.; Young, M.F.; Louie, D.; Reynolds, J.T. MELCOR Computer Code Manuals Volume 1: Primer and Users’ Guide. Available online: https://www.osti.gov/biblio/1433069/ (accessed on 9 September 2022).
- Zhao, F.; Zou, S.; Xu, S.; Xu, T.; Liu, Z.; Huang, Y.; Feng, J. Effect analysis of break size on source term release and radioactive consequences of marine nuclear reactor during loss of coolant accident. Int. J. Energy Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhao, F.; Zou, S.; Xu, S.; Wang, X.; Wang, J.; Tang, D. A Novel Approach for Radionuclide Diffusion in the Enclosed Environment of a Marine Nuclear Reactor During a Severe Accident. Nucl. Sci. Tech. 2022, 33, 19. [Google Scholar] [CrossRef]
- Zhao, F.; Zou, S.; Xu, S.; Wang, J.; Tang, D. Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method. Nucl. Eng. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- Nath, P.D.; Rahman, K.M.; Al Bari, M.A. Thermal Hydraulic Analysis of a Nuclear Reactor due to Loss of Coolant Accident with and without Emergency Core Cooling System. J. Eng. Adv. 2020, 1, 53–60. [Google Scholar] [CrossRef]
- Zubair, M.; Suwaidi, R.; Souqi, A. Behavior of Emergency Core Cooling System (ECCS) during the early stage of Loss of Coolant Accident (LOCA) for APR 1400 with Flownex software. Prog. Nucl. Energy 2021, 141, 103949. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef]
- Maggino, F. Developing Indicators and Managing the Complexity (Chapter 4); Springer International Publishing: Cham, Switzerland, 2017; pp. 87–114. [Google Scholar]
- Ashley, S.; Vaughan, G.; Nuttall, W.; Thomas, P. Considerations in Relation to Off-site Emergency Procedures and Response for Nuclear Accidents. Process Saf. Environ. Prot. 2017, 112, 77–95. [Google Scholar] [CrossRef]
- Park, S.; Ahn, K. Evaluation of an Accident Management Strategy of Emergency Water Injection Using Fire Engines in a Typical Pressurized Water Reactor. Nucl. Eng. Technol. 2015, 47, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Díaz, H.; Teixeira, A.; Guedes, C. Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for Ranking Floating Wind Farm Locations. Ocean. Eng. 2022, 245, 110453. [Google Scholar] [CrossRef]
- Redfoot, E.K.; Verner, K.M.; Borrelli, R.A. Applying Analytic Hierarchy Process to Industrial Process Design in a Nuclear Renewable Hybrid Energy System. Prog. Nucl. Energy 2022, 145, 104083. [Google Scholar] [CrossRef]
- Zhao, F.; Zou, S.; Xu, S.; Xu, T. Study on Nuclide Diffusion in Closed Environment of Marine Reactor with Large Break Loss of Coolant. Nucl. Power Eng. 2022, 43, 194–198. [Google Scholar]
- Mohamed, A.; Omar, A.; Ababneh, A.; Omar, A.; Mohamed, A. Gamma spectroscopy for the investigation of radiation contamination in the UAE. Int. J. Nucl. Energy Sci. Technol. 2020, 14, 141. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, M.; Song, M.; Feng, W. Characteristics of Thermophoresis Deposition of Aerosols in the Containment. Nucl. Saf. 2018, 17, 36–39. [Google Scholar]
Secondary Index | Detection of Radionuclide Released | Detection of Radionuclide Diffusion in Chambers | Radiation Protection Measures |
---|---|---|---|
Detection of radionuclide released | 1 | 1/2 | 1/4 |
Detection of radionuclide diffusion in chambers | 2 | 1 | 1/3 |
Radiation protection measures | 4 | 3 | 1 |
Excellent | Good | General | Poor | Bed | |
---|---|---|---|---|---|
Improving radionuclide detection technology in chambers | 0.3000 | 0.3333 | 0.3333 | 0.0333 | 0 |
Strengthen the accurate control of sprinkler or spray device | 0.4000 | 0.4000 | 0.2000 | 0 | 0 |
Reduce the leakage rate of containment | 0.3333 | 0.4000 | 0.2000 | 0.0333 | 0.0333 |
Reduce the possibility of pressure vessel leakage | 0.4000 | 0.4333 | 0.0667 | 0.0667 | 0.0333 |
Improve the nuclide adsorption on the inner surface of containment | 0.5000 | 0.3333 | 0.1333 | 0.0333 | 0 |
Improve detection capability | 0.5333 | 0.3333 | 0.1000 | 0.0333 | 0 |
Quick start of emergency ventilation system | 0.4333 | 0.3667 | 0.1333 | 0.0667 | 0 |
Keep chambers sealed | 0.4000 | 0.4000 | 0.2000 | 0 | 0 |
Reduce radionuclide leakage rate | 0.3667 | 0.2667 | 0.2333 | 0.1000 | 0.0333 |
Reduce the wind speed of ventilation system | 0.3667 | 0.4000 | 0.1000 | 0.0667 | 0.0667 |
Improve the diagnostic efficiency of radiation damage | 0.4000 | 0.4000 | 0.2000 | 0 | 0 |
Control the distance from the radiation source | 0.4000 | 0.4333 | 0.1000 | 0.0667 | 0 |
Reduce the exposure time of staff | 0.4000 | 0.3333 | 0.2333 | 0.0333 | 0 |
Timely concealment | 0.3667 | 0.2667 | 0.2667 | 0.0667 | 0.0333 |
Take stable iodine tablets | 0.4000 | 0.4000 | 0.1333 | 0.0333 | 0.0333 |
Excellent | Good | General | Poor | Bed | |
---|---|---|---|---|---|
Detection of radionuclide released | 0.3546 | 0.3699 | 0.2407 | 0.0277 | 0.0072 |
Detection of radionuclide diffusion in chambers | 0.4614 | 0.3516 | 0.1341 | 0.0449 | 0.0081 |
Radiation protection measures | 0.3964 | 0.3878 | 0.1793 | 0.0310 | 0.0056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Zhao, F.; Xu, S.; Zou, S. Evaluation of Emergency Response Measures for the LOCA of A Marine Reactor. Sustainability 2022, 14, 13873. https://doi.org/10.3390/su142113873
Zou Y, Zhao F, Xu S, Zou S. Evaluation of Emergency Response Measures for the LOCA of A Marine Reactor. Sustainability. 2022; 14(21):13873. https://doi.org/10.3390/su142113873
Chicago/Turabian StyleZou, Yang, Fang Zhao, Shoulong Xu, and Shuliang Zou. 2022. "Evaluation of Emergency Response Measures for the LOCA of A Marine Reactor" Sustainability 14, no. 21: 13873. https://doi.org/10.3390/su142113873
APA StyleZou, Y., Zhao, F., Xu, S., & Zou, S. (2022). Evaluation of Emergency Response Measures for the LOCA of A Marine Reactor. Sustainability, 14(21), 13873. https://doi.org/10.3390/su142113873