Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Model Operation Data
2.2.2. Model Validation Data
2.2.3. Factors Data
2.2.4. Scenario Mode Data
2.3. Framework and Methods
2.3.1. Water Yield Model
2.3.2. Geodetector
3. Results and Discussion
3.1. Water Yield Simulation of CLB from 2000 to 2019
3.1.1. Interannual Variation
3.1.2. Spatial Variation
3.2. Driving Factors Analysis
3.2.1. Univariate Analysis
3.2.2. Interaction Analysis
3.3. Spatial and Temporal Variations in Water Yield under Future Climate Change
3.3.1. Trend Analysis of Annual Precipitation and Annual Reference Evapotranspiration
3.3.2. Trend Analysis of Annual Water Yield
3.4. Limitations
4. Conclusions
- (1)
- The results showed that the water yield simulated using the InVEST model had good applicability in this study region. There was a strong linear relationship between the simulated water yield and the measured surface runoff (y = 1.2363x − 8.6038, R2 = 0.868, p < 0.01), and the Pearson correlation coefficient was 0.93. The annual average water yield depth in the CLB from 2000 to 2019 was 633.8 ± 183.0 mm, which was generally higher in the south than in the north;
- (2)
- The results of the Geodetector analysis showed that the explanatory percentage of interaction between the precipitation and LULC for water yield in 2001, 2008, and 2016 reached 71%, 77%, and 85%, respectively, and these were the two dominant factors affecting water yield in the CLB;
- (3)
- The results of water yield simulations based on downscale-corrected BCC-CSM2-MR model data showed that the average annual water yield in the CLB increased with increasing precipitation under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, and it declined under the SSP1-2.6 scenario. The average annual water yield increased by 5.6%, 108.5%, and 85.9% in 2070 compared with 2040 under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, and it increased by 71%, 139.8%, and 159.5% in 2100 compared with 2040 under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The overall trend of the water yield decreased with increases in carbon emission intensity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Liu, S.; Yin, Y.; Liu, X.; Cheng, F.; Yang, J.; Li, J.; Dong, S.; Zhu, A. Ecosystem Services and Landscape Change Associated with Plantation Expansion in a Tropical Rainforest Region of Southwest China. Ecol. Model. 2017, 353, 129–138. [Google Scholar] [CrossRef]
- Ping, L.; Zheng, X.; Chen, J.; Zhang, Q.; Li, J.; Bo, W. Characteristic Analysis of Ecosystem Service Value of Water System in Taiyuan Urban District Based on LUCC. Int. J. Agric. Biol. Eng. 2016, 9, 153–165. [Google Scholar]
- Fu, B.J.; Zhou, G.Y.; Bai, Y.F.; Song, C.C.; Xie, G.D. The Main Terrestrial Ecosystem Services and Ecological Security in China. Adv. Earth Sci. 2009, 24, 571–576. [Google Scholar]
- van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global Water Scarcity Including Surface Water Quality and Expansions of Clean Water Technologies. Environ. Res. Lett. 2021, 16, 024020. [Google Scholar] [CrossRef]
- MA (Millennium Ecosystem Assessment). Ecosystem and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Le Maitre, D.C.; Milton, S.J.; Jarmain, C.; Colvin, C.A.; Saayman, I.; Vlok, J.H. Linking Ecosystem Services and Water Resources: Landscape-Scale Hydrology of the Little Karoo. Front. Ecol. Environ. 2007, 5, 261–270. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z. Dynamic Responses of Terrestrial Ecosystems Structure and Function to Climate Change in China. J. Geophys. Res. 2010, 115, G03003. [Google Scholar] [CrossRef]
- Nedkov, S.; Campagne, S.; Borisova, B.; Krpec, P.; Prodanova, H.; Kokkoris, I.P.; Hristova, D.; Le Clec’h, S.; Santos-Martin, F.; Burkhard, B.; et al. Modeling Water Regulation Ecosystem Services: A Review in the Context of Ecosystem Accounting. Ecosyst. Serv. 2022, 56, 101458. [Google Scholar] [CrossRef]
- Boumans, R.; Costanza, R.; Farley, J.; Wilson, M.A.; Portela, R.; Rotmans, J.; Villa, F.; Grasso, M. Modeling the Dynamics of the Integrated Earth System and the Value of Global Ecosystem Services Using the GUMBO Model. Ecol. Econ. 2002, 41, 529–560. [Google Scholar] [CrossRef]
- Schägner, J.P.; Brander, L.; Maes, J.; Hartje, V. Mapping Ecosystem Services’ Values: Current Practice and Future Prospects. Ecosyst. Serv. 2013, 4, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Benra, F.; De Frutos, A.; Gaglio, M.; Alvarez-Garreton, C.; Felipe-Lucia, M.; Bonn, A. Mapping Water Ecosystem Services: Evaluating InVEST Model Predictions in Data Scarce Regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Ma, L.; He, C.; Bian, H.; Sheng, L. MIKE SHE Modeling of Ecohydrological Processes: Merits, Applications, and Challenges. Ecol. Eng. 2016, 96, 137–149. [Google Scholar] [CrossRef]
- Torres, M.A.; Nikolskii, I.; Martínez Miranda, M.E.; Martínez, M.R. Evaluación Hidrológica de La Cuenca Del Río Teapa, Utilizando El Modelo MIKE-SHE. Tecnol. Y Cienc. Del Agua 2018, 9, 130–146. [Google Scholar] [CrossRef]
- Singh, P.K.; Gaur, M.L.; Mishra, S.K.; Rawat, S.S. An Updated Hydrological Review on Recent Advancements in Soil Conservation Service-Curve Number Technique. J. Water Clim. Chang. 2010, 1, 118–134. [Google Scholar] [CrossRef]
- Verma, R.K.; Verma, S.; Mishra, S.K.; Pandey, A. SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events. Water Resour. Manag. 2021, 35, 2149–2175. [Google Scholar] [CrossRef]
- He, F.; Jin, J.; Zhang, H.; Yuan, L. The Change of Ecological Service Value and the Promotion Mode of Ecological Function in Mountain Development Using InVEST Model. Arab. J. Geosci. 2021, 14, 510. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Zhang, Z.; Liu, K. Regional spatial management based on supply-demand risk of ecosystem services—A case study of the Fenghe River watershed. Int. J. Environ. Res. Public Health 2020, 17, 4112. [Google Scholar] [CrossRef]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing Two Tools for Ecosystem Service Assessments Regarding Water Resources Decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Butsic, V.; Shapero, M.; Moanga, D.; Larson, S. Using InVEST to Assess Ecosystem Services on Conserved Properties in Sonoma County, CA. Calif. Agric. 2017, 71, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jung, Y. Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests 2020, 11, 804. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST Habitat Quality Module in Spatially Vulnerability Assessment of Natural Habitats (Case Study: Chaharmahal and Bakhtiari Province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef] [PubMed]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A New Approach to Modeling the Sediment Retention Service (InVEST 3.0): Case Study of the Cape Fear Catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem Services as a Resilience Descriptor in Habitat Risk Assessment Using the InVEST Model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Scordo, F.; Lavender, T.; Seitz, C.; Perillo, V.; Rusak, J.; Piccolo, M.; Perillo, G. Modeling Water Yield: Assessing the Role of Site and Region-Specific Attributes in Determining Model Performance of the InVEST Seasonal Water Yield Model. Water 2018, 10, 1496. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.11.0.post56+ug.gfa89dd9 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2020. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 15 January 2022).
- Peng, L.-C.; Lin, Y.-P.; Chen, G.-W.; Lien, W.-Y. Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan. Water 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Niu, X.; Wang, B.; Song, Q. InVEST Model-Based Spatiotemporal Analysis of Water Supply Services in the Zhangcheng District. Forests 2021, 12, 1082. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China: Applicability of the InVEST Model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, R.; Meadows, M.E.; Ji, G.; Xu, J. Modelling Water Yield with the InVEST Model in a Data Scarce Region of Northwest China. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST Models to Determine Hydrological Ecosystem Service Spatial Patterns, Priorities and Trade-Offs in a Complex Basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Xu, C.; Tao, L.; Xu, X. Integrating the InVEST and SDSM Model for Estimating Water Provision Services in Response to Future Climate Change in Monsoon Basins of South China. Water 2020, 12, 3199. [Google Scholar] [CrossRef]
- Yan, Y.; Guan, Q.; Wang, M.; Su, X.; Wu, G.; Chiang, P.; Cao, W. Assessment of Nitrogen Reduction by Constructed Wetland Based on InVEST: A Case Study of the Jiulong River Watershed, China. Mar. Pollut. Bull. 2018, 133, 349–356. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs Scenarios to Project the Future Dynamic Variations of Water-Soil-Carbon-Biodiversity Services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Change Res. 2019, 15, 445–456. [Google Scholar]
- Yazdandoost, F.; Moradian, S.; Izadi, A.; Aghakouchak, A. Evaluation of CMIP6 Precipitation Simulations across Different Climatic Zones: Uncertainty and Model Intercomparison. Atmos. Res. 2021, 250, 105369. [Google Scholar] [CrossRef]
- Guo, B.; Jin, X.; Fang, Y.; Zhou, Y. Evaluation of Sustainable Regional Development Combining Remote Sensing Data and Ecological Constraints: A Case Study of Chaohu Basin, China. Sustainability 2020, 12, 9836. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, T.; Li, L.; Chen, L.; Hu, S.; Wang, J.; Liu, W.; Zhang, Y.; Yuan, L. Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018. Sustainability 2021, 13, 358. [Google Scholar] [CrossRef]
- Widmoser, P. A Discussion on and Alternative to the Penman-Monteith Equation. Agric. Water Manag. 2009, 96, 711–721. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of Available Soil Water Capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Feng, J.; Wei, W.; Feng, Q. The Runoff Curve Number of SCS-CN Method in Loess Hilly Region. Acta Ecol. Sin. 2021, 41, 4170–4181. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B. Soil and Water Assessment Tool Input/Output File Documentation. Version 2009. 2011. Available online: https://swat.tamu.edu/docs/ (accessed on 15 December 2021).
- Hamadalnel, M.; Zhu, Z.; Gaber, A.; Iyakaremye, V.; Ayugi, B. Possible Changes in Sudan’s Future Precipitation under the High and Medium Emission Scenarios Based on Bias Adjusted GCMs. Atmos. Res. 2022, 269, 106036. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Singh, V.P. Evaluation and Generalization of Temperature-Based Methods for Calculating Evaporation. Hydrol. Process. 2001, 15, 305–319. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.K.; Xu, P.; Yan, K.; Li, M. Value of Ecosystem Hydropower Service and Its Impact on the Payment for Ecosystem Services. Sci. Total Environ. 2014, 472, 338–346. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J.; Gao, Y. The Influences of Land Use Changes on the Value of Ecosystem Services in Chaohu Lake Basin, China. Environ. Earth Sci. 2015, 74, 385–395. [Google Scholar] [CrossRef]
- Ma, L.; Sun, R.; Kazemi, E.; Pang, D.; Zhang, Y.; Sun, Q.; Zhou, J.; Zhang, K. Evaluation of Ecosystem Services in the Dongting Lake Wetland. Water 2019, 11, 2564. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Su, Y.; Li, T.; Cheng, S.; Wang, X. Spatial Distribution Exploration and Driving Factor Identification for Soil Salinisation Based on Geodetector Models in Coastal Area. Ecol. Eng. 2020, 156, 105961. [Google Scholar] [CrossRef]
- Dong, W.; Cheng, X.; Zhang, Q.; Zhao, Y.; Han, P. Application of SCS-CN Model Estimating Surface Runoff to Chaohu Lake Basin. Bull. Soil Water Conserv. 2012, 32, 174–177+187. [Google Scholar] [CrossRef]
- Xie, S.; Zhu, H.; Tang, X.; Guo, J. Ecological Protection and Restoration of Mountain-river-forest-farmland-lake-grassland System in Chaohu Lake Basin. Available online: https://kns.cnki.net/kcms/detail/32.1356.TV.20220610.1347.002.html (accessed on 10 July 2022).
- Li, Z.; Cao, Y.; Duan, Y.; Jiang, Z.; Sun, F. Simulation and Prediction of the Impact of Climate Change Scenarios on Runoff of Typical Watersheds in Changbai Mountains, China. Water 2022, 14, 792. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Song, Y. Hydrological and Water Quality Simulation and Future Runoff Prediction under CMIP6 Scenario in the Upstream Basin of Miyun Reservoir. J. Water Clim. Chang. 2022, 13, 2505–2530. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of Climate Extremes in China, an Incremental Exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Y.; Cheng, C.; Zhang, H.; Yu, R.; Lv, J. Land Use Change and Driving Mechanism in Rapid Urbanization Region-A Case Study at Chaohu River Basin. Bull. Soil Water Conserv. 2017, 37, 253–260. [Google Scholar] [CrossRef]
Data Items | Data Sources |
---|---|
Annual precipitation rasters from 2000 to 2019 | Daily dataset of Chinese terrestrial climate information (V3.0), National Meteorological Science Data Center (NMSDC) (http://data.cma.cn/ (accessed on 8 April 2021)) |
Annual reference evapotranspiration rasters from 2000 to 2019 | Daily dataset of Chinese terrestrial climate information (V3.0), National Meteorological Science Data Center (NMSDC) (http://data.cma.cn/ (accessed on 8 April 2021)) |
Land use and land cover rasters of 2000, 2005, 2010, 2015, 2018 | Resource and Environment Science and Data Center (http://www.resdc.cn/ (accessed on 26 March 2021)) |
Plant available water content | Soil map based Harmonized World Soil Database (v1.2) (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 6 May 2021)) |
Root restricting layer depth (Raster) | Soil map based Harmonized World Soil Database (v1.2) (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 6 May 2021)) |
Watersheds and sub-watersheds | Lake-Watershed Science SubCenter, National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://gre.geodata.cn (accessed on 29 June 2021)) |
LULC Level 1 Type | LULC Level 2 Type | Kc | ||
---|---|---|---|---|
Code | Name | Code | Name | |
1 | Cultivated land | 11 | Paddy field | 0.65 |
12 | Dry land | 0.65 | ||
2 | Woodland | 21 | Forested land | 1 |
22 | Bushlands | 0.398 | ||
23 | Sparse woodlands | 1 | ||
24 | Other woodlands | 1 | ||
3 | Grassland | 31 | High coverage grass | 0.65 |
32 | Medium coverage grass | 0.65 | ||
33 | Low coverage grass | 0.65 | ||
4 | Waters | 41 | Canals | 1.2 |
42 | Lakes | 1.2 | ||
43 | Reservoir pits | 1.2 | ||
46 | Beach | 1.2 | ||
5 | Urban and rural areas, industrial and mining, residential land | 51 | Town land | 0.3 |
52 | Rural residential area | 0.3 | ||
53 | Other construction land | 0.3 | ||
6 | Unused land | 65 | Bare land | 0.5 |
66 | Bare rock gravel | 0.5 |
Hydrological Soil Group | A | B | C | D |
---|---|---|---|---|
Minimum infiltration rate | >7.26 | 3.81–7.26 | 1.27–3.81 | 0.00–1.27 |
Saturated hydraulic conductivity (Ks, mm/h) | >180 | 18–180 | 1.8–18 | <1.8 |
Soil texture | Sandy, loamy, sandy loam | Loam, silt loam | Sandy clay loam | Clay loam, silt clay, sand clay, silt clay, clay |
Statistics | Year | Elevation | Slope | Aspect | HSG | AET | Precipitation | RET | NDVI | LULC |
---|---|---|---|---|---|---|---|---|---|---|
q-value | 2001 | 0.04 | 0.02 | 0.06 | 0.05 | 0.25 | 0.16 | 0.13 | 0.46 | 0.04 |
2008 | 0.02 | 0.01 | 0.10 | 0.12 | 0.10 | 0.05 | 0.17 | 0.63 | 0.02 | |
2016 | 0.03 | 0.02 | 0.07 | 0.08 | 0.44 | 0.17 | 0.11 | 0.36 | 0.03 | |
p-value | 2001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2008 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2016 | 0.60 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Year | Factors | Elevation | Slope | Aspect | HSG | Precipitation | RET | NDVI | LULC |
---|---|---|---|---|---|---|---|---|---|
2001 | Elevation | 0.04 | |||||||
Slope | 0.07 | 0.02 | |||||||
Aspect | 0.11 | 0.09 | 0.06 | ||||||
HSG | 0.09 | 0.08 | 0.12 | 0.05 | |||||
Precipitation | 0.27 | 0.27 | 0.31 | 0.34 | 0.25 | ||||
RET | 0.20 | 0.18 | 0.21 | 0.25 | 0.29 | 0.16 | |||
NDVI | 0.17 | 0.16 | 0.16 | 0.19 | 0.32 | 0.28 | 0.13 | ||
LULC | 0.51 | 0.48 | 0.47 | 0.51 | 0.71 | 0.62 | 0.51 | 0.46 | |
2008 | Elevation | 0.02 | |||||||
Slope | 0.05 | 0.01 | |||||||
Aspect | 0.13 | 0.12 | 0.10 | ||||||
HSG | 0.16 | 0.15 | 0.21 | 0.12 | |||||
Precipitation | 0.11 | 0.13 | 0.21 | 0.26 | 0.10 | ||||
RET | 0.08 | 0.07 | 0.17 | 0.23 | 0.11 | 0.05 | |||
NDVI | 0.19 | 0.19 | 0.23 | 0.25 | 0.33 | 0.25 | 0.17 | ||
LULC | 0.66 | 0.64 | 0.64 | 0.65 | 0.77 | 0.70 | 0.67 | 0.63 | |
2016 | Elevation | 0.03 | |||||||
Slope | 0.04 | 0.02 | |||||||
Aspect | 0.11 | 0.08 | 0.07 | ||||||
HSG | 0.11 | 0.10 | 0.15 | 0.08 | |||||
Precipitation | 0.45 | 0.46 | 0.50 | 0.54 | 0.44 | ||||
RET | 0.22 | 0.19 | 0.22 | 0.28 | 0.48 | 0.17 | |||
NDVI | 0.15 | 0.12 | 0.14 | 0.17 | 0.56 | 0.28 | 0.11 | ||
LULC | 0.40 | 0.37 | 0.36 | 0.42 | 0.85 | 0.51 | 0.39 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Gao, Q.; Xie, H.; Wu, Q.; Yu, Y.; Zhou, C.; Chen, Z.; Hu, H. Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin. Sustainability 2022, 14, 14080. https://doi.org/10.3390/su142114080
Zhang T, Gao Q, Xie H, Wu Q, Yu Y, Zhou C, Chen Z, Hu H. Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin. Sustainability. 2022; 14(21):14080. https://doi.org/10.3390/su142114080
Chicago/Turabian StyleZhang, Ting, Qian Gao, Huaming Xie, Qianjiao Wu, Yuwen Yu, Chukun Zhou, Zixian Chen, and Hanqing Hu. 2022. "Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin" Sustainability 14, no. 21: 14080. https://doi.org/10.3390/su142114080
APA StyleZhang, T., Gao, Q., Xie, H., Wu, Q., Yu, Y., Zhou, C., Chen, Z., & Hu, H. (2022). Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin. Sustainability, 14(21), 14080. https://doi.org/10.3390/su142114080