Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China
Abstract
:1. Introduction
- (1)
- A quantitative evaluation method of the recovery of road traffic volume based on a principal component analysis is proposed.
- (2)
- The above quantitative evaluation methods and dynamic spatial panel models are applied to test the spatial heterogeneity of the recovery of road traffic volume in China.
- (3)
- The mechanism of the above spatial heterogeneity is discovered through the mediating effect test and the decomposition of the spatial–temporal effect.
2. Literature Review and Hypotheses
2.1. Income and Economic Development
2.2. COVID-19 and Climate Suitability
2.3. Spatial Spillover Effect
3. Methods and Data
3.1. Principal Component Analysis
3.2. Spatial Autocorrelation
3.3. Spatial Panel Model
3.4. Variables and Data Source
3.4.1. Explained Variable
3.4.2. Explanatory and Control Variables
4. Results
4.1. Spatial Autocorrelation Index
4.2. Tests of Spatial Panel Models
4.3. Dynamic Spatial Panel Model
4.4. Robustness Tests
4.5. Mediating Effect and Spatial Effect Decomposition
5. Discussion
5.1. Discussion of the Empirical Results
5.2. Policy Recommendations
5.3. Comparison with Existing Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | Definition |
PCA | Principal Component Analysis |
SLM | Spatial Lag Model |
SEM | Spatial Error Model |
SDM | Spatial Durbin Model |
THI | Temperature and Humidity Index |
AQI | Air Quality Index |
LM | Lagrange Multiplier |
LR | Likelihood Ratio |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
References
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Liu, A.; Kim, Y.R.; O’Connell, J.F. COVID-19 and the aviation industry: The interrelationship between the spread of the COVID-19 pandemic and the frequency of flights on the EU market. Ann. Tourism. Res. 2021, 91, 103298. [Google Scholar] [CrossRef]
- Cui, Q.; He, L.; Liu, Y.; Zheng, Y.; Wei, W.; Yang, B.; Zhou, M. The impacts of COVID-19 pandemic on China’s transport sectors based on the CGE model coupled with a decomposition analysis approach. Transp. Policy 2021, 103, 103–115. [Google Scholar] [CrossRef]
- Li, T.; Wang, J.; Huang, J.; Yang, W.; Chen, Z. Exploring the dynamic impacts of COVID-19 on intercity travel in China. J Transp. Geogr. 2021, 95, 103153. [Google Scholar] [CrossRef]
- Olayode, I.O.; Severino, A.G.; Campisi, T.; Tartibu, L.K. Comprehensive Literature Review on the Impacts of COVID-19 Pandemic on Public Road Transportation System: Challenges and Solutions. Sustainability 2022, 14, 9586. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echaniz, E.; Gonzalez, F.; Ladisa, C.; Lezama-Romanelli, R.; Lopez-Parra, A.; Mazzei, V.; et al. Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Guo, W.; Feng, Y.; Luo, W.; Ren, Y.; Tan, J.; Jiang, X.; Xue, Q. The Impacts of COVID-19 and Policies on Spatial and Temporal Distribution Characteristics of Traffic: Two Examples in Beijing. Sustainability 2022, 14, 1733. [Google Scholar] [CrossRef]
- Aparicio, J.T.; Arsenio, E.; Henriques, R. Understanding the Impacts of the COVID-19 Pandemic on Public Transportation Travel Patterns in the City of Lisbon. Sustainability 2021, 13, 8342. [Google Scholar] [CrossRef]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765, 144270. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Ichii, H.; Zacharski, M.; Bania, J.; Khosrawipour, T. The association between international and domestic air traffic and the coronavirus (COVID-19) outbreak. J. Microbiol. Immunol. 2020, 53, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Niu, F. Understanding the Spread of COVID-19 in China: Spatial-Temporal Characteristics, Risk Analysis and the Impact of the Quarantine of Hubei Province on the Railway Transportation Network. Sustainability 2021, 13, 5163. [Google Scholar] [CrossRef]
- Monterde-i-Bort, H.; Sucha, M.; Risser, R.; Kochetova, T. Mobility Patterns and Mode Choice Preferences during the COVID-19 Situation. Sustainability 2022, 14, 768. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, J.; Gao, C.; Gu, C.; Tong, X. The Limited Responses of Provincial Expressway Network Operation Quality to the Impact of COVID-19: Taking Shaanxi Province as an Example. Sustainability 2022, 14, 10859. [Google Scholar] [CrossRef]
- Baig, F.; Kirytopoulos, K.; Lee, J.; Tsamilis, E.; Mao, R.; Ntzeremes, P. Changes in People’s Mobility Behavior in Greece after the COVID-19 Outbreak. Sustainability 2022, 14, 3567. [Google Scholar] [CrossRef]
- Ghodsi, M.; Ardestani, A.; Rasaizadi, A.; Ghadamgahi, S.; Yang, H. How COVID-19 Pandemic Affected Urban Trips? Structural Interpretive Model of Online Shopping and Passengers Trips during the Pandemic. Sustainability 2021, 13, 11995. [Google Scholar] [CrossRef]
- Luan, S.L.; Yang, Q.F.; Jiang, Z.T.; Wang, W. Exploring the impact of COVID-19 on individual’s travel mode choice in China. Transp. Policy 2021, 106, 271–280. [Google Scholar] [CrossRef]
- Maparu, T.S.; Mazumder, T.N. Transport infrastructure, economic development and urbanization in India (1990–2011): Is there any causal relationship? Transp. Res. Part A Policy Pract. 2017, 100, 319–336. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Luo, G.; Huang, J.; Wu, T. The Economic Recovery from Traffic Restriction Policies during the COVID-19 through the Perspective of Regional Differences and Sustainable Development: Based on Human Mobility Data in China. Sustainability 2022, 14, 6453. [Google Scholar] [CrossRef]
- Andribet, P.; Baumgartner, M.; Garot, J.M.; Air, S.A. Reinventing European air traffic control based on the covid-19 pandemic experience. Util. Policy 2022, 75, 101343. [Google Scholar] [CrossRef]
- Jiao, F.; Huang, L.; Song, R.J.; Huang, H.F. An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic. Sensors 2021, 21, 5950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tian, Y. Forecast daily tourist volumes during the epidemic period using COVID-19 data, search engine data and weather data. Expert Syst. Appl. 2022, 210, 118505. [Google Scholar] [CrossRef] [PubMed]
- Ku, D.; Um, J.; Byon, Y.; Kim, J.; Lee, S. Changes in Passengers’ Travel Behavior Due to COVID-19. Sustainability 2021, 13, 7974. [Google Scholar] [CrossRef]
- Simovic, S.; Ivanisevic, T.; Bradic, B.; Cicevic, S.; Trifunovic, A. What Causes Changes in Passenger Behavior in South-East Europe during the COVID-19 Pandemic? Sustainability 2021, 13, 9398. [Google Scholar] [CrossRef]
- Cruz, C.O.; Sarmento, J.M. The Impact of COVID-19 on Highway Traffic and Management: The Case Study of an Operator Perspective. Sustainability 2021, 13, 5320. [Google Scholar] [CrossRef]
- Li, X.; de Groot, M.; Bäck, T. Using forecasting to evaluate the impact of COVID-19 on passenger air transport demand. Decis. Sci. 2021. [Google Scholar] [CrossRef]
- Kitsou, S.P.; Koutsoukis, N.S.; Chountalas, P.; Rachaniotis, N.P. International Passenger Traffic at the Hellenic Airports: Impact of the COVID-19 Pandemic and Mid-Term Forecasting. Aerospace 2022, 9, 143. [Google Scholar] [CrossRef]
- Dutschke, E.; Engel, L.; Theis, A.; Hanss, D. Car driving, air travel or more sustainable transport? Socio-psychological factors in everyday mobility and long-distance leisure travel. Travel Behav. Soc. 2022, 28, 115–127. [Google Scholar] [CrossRef]
- Chen, K.D.; Lin, H.L.; Liao, L.Y.; Lu, Y.C.; Chen, Y.O.; Lin, Z.H.; Teng, L.X.; Weng, A.F.; Fu, T.Q. Nonlinear Rail Accessibility and Road Spatial Pattern Effects on House Prices. Sustainability 2022, 14, 4700. [Google Scholar] [CrossRef]
- Gu, Y.L.; Lu, W.Q.; Xu, X.Y.; Qin, L.Q.; Shao, Z.Z.; Zhang, H.Y. An Improved Bayesian Combination Model for Short-Term Traffic Prediction with Deep Learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1332–1342. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, J.; Yu, W.; Wu, R.; Liu, B.; Wang, B.; Li, Z. A Two-Phase Approach for Predicting Highway Passenger Volume. Appl. Sci. 2021, 11, 6248. [Google Scholar] [CrossRef]
- Das, S. Traffic volume prediction on low-volume roadways: A Cubist approach. Transp. Plan. Technol. 2021, 44, 93–110. [Google Scholar] [CrossRef]
- Nikolaou, K.; Basbas, S. Urban Traffic and Air Quality Evolution Under Economic Recession Conditions. Glob. Nest J. 2014, 16, 866–872. [Google Scholar]
- Valdes, V. Determinants of air travel demand in Middle Income Countries. J. Air Transp. Manag. 2015, 42, 75–84. [Google Scholar] [CrossRef]
- Nunkoo, R.; Daronkola, H.K.; Gholipour, H.F. Does domestic tourism influence COVID-19 cases and deaths? Curr. Issues Tour. 2022, 25, 338–351. [Google Scholar] [CrossRef]
- Nolan, B.; Roser, M.; Thewissen, S. GDP Per Capita Versus Median Household Income: What Gives Rise to the Divergence Over Time and how does this Vary Across OECD Countries? Rev. Income Wealth 2019, 65, 465–494. [Google Scholar] [CrossRef]
- Macioszek, E.; Kurek, A. Extracting Road Traffic Volume in the City before and during covid-19 through Video Remote Sensing. Remote Sens. 2021, 13, 2329. [Google Scholar] [CrossRef]
- Angel, A.; Cohen, A.; Dalyot, S.; Plaut, P. Impact of COVID-19 policies on pedestrian traffic and walking patterns. Environ. Plan. B Urban Anal. City Sci. 2022, 23998083221113332. [Google Scholar] [CrossRef]
- Goenaga, B.; Matini, N.; Karanam, D.; Underwood, B.S. Disruption and Recovery: Initial Assessment of COVID-19 Traffic Impacts in North Carolina and Virginia. J. Transp. Eng. Part A Syst. 2021, 147, 06021001. [Google Scholar] [CrossRef]
- Lee, H.; Noh, E.; Jeon, H.; Nam, E.W. Association between traffic inflow and COVID-19 prevalence at the provincial level in South Korea. Int. J. Infect. Dis. 2021, 108, 435–442. [Google Scholar] [CrossRef]
- Sathiaraj, D.; Punkasem, T.O.; Wang, F.H.; Seedah, D. Data-driven analysis on the effects of extreme weather elements on traffic volume in Atlanta, GA, USA. Comput. Environ. Urban 2018, 72, 212–220. [Google Scholar] [CrossRef]
- Roh, H.J. Development and Performance Assessment of Winter Climate Hazard Models on Traffic Volume with Four Model Structure Types. Nat. Hazards Rev. 2020, 21, 04020023. [Google Scholar] [CrossRef]
- Dunne, S.; Ghosh, B. Weather Adaptive Traffic Prediction Using Neurowavelet Models. IEEE Trans. Intell. Transp. Syst. 2013, 14, 370–379. [Google Scholar] [CrossRef]
- Praharaj, S.; Chen, T.D.; Zahura, F.T.; Behl, M.; Goodall, J.L. Estimating impacts of recurring flooding on roadway networks: A Norfolk, Virginia case study. Nat. Hazards 2021, 107, 2363–2387. [Google Scholar] [CrossRef]
- Akter, T.; Mitra, S.K.; Hernandez, S.; Corro-Diaz, K. A spatial panel regression model to measure the effect of weather events on freight truck traffic. Transp. A Transp. Sci. 2020, 16, 910–929. [Google Scholar] [CrossRef]
- Bi, H.; Ye, Z.; Zhu, H. Data-driven analysis of weather impacts on urban traffic conditions at the city level. Urban Clim. 2022, 41, 101065. [Google Scholar] [CrossRef]
- Ward, M.P.; Xiao, S.; Zhang, Z.J. The role of climate during the COVID-19 epidemic in New South Wales, Australia. Transbound. Emerg. Dis. 2020, 67, 2313–2317. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.J.; Bilal; Komal, B.; Bashir, M.A.; Tan, D.J.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Chen, S.; Prettner, K.; Kuhn, M.; Geldsetzer, P.; Wang, C.; Bärnighausen, T.; Bloom, D.E. Climate and the spread of COVID-19. Sci. Rep. 2021, 11, 9042. [Google Scholar] [CrossRef]
- Anselin, L. Space and Applied Econometrics-Introduction. Reg. Sci. Urban Econ. 1992, 22, 307–316. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Zhou, X.Y.; Li, J.J.; Wang, F. Technological Innovation, Fiscal Decentralization, Green Development Efficiency: Based on Spatial Effect and Moderating Effect. Sustainability 2022, 14, 4316. [Google Scholar] [CrossRef]
- Liang, X.; Li, P.G. Empirical Study of the Spatial Spillover Effect of Transportation Infrastructure on Green Total Factor Productivity. Sustainability 2021, 13, 326. [Google Scholar] [CrossRef]
- Chen, T.; Fang, J.; Xu, M.Y.; Tong, Y.F.; Chen, W.T. Prediction of Public Bus Passenger Flow Using Spatial-Temporal Hybrid Model of Deep Learning. J. Transp. Eng. Part A Syst. 2022, 148, 04022007. [Google Scholar] [CrossRef]
- Yue-di, Y.; Liu, J.; Ma, M.S.; Chen, X.C. Impact of Air Service on High-Speed Railway Passenger Flow. Int. J. Transp. Econ. 2019, 46, 137–158. [Google Scholar]
- Li, F.; Li, G.D. Agglomeration and Spatial Spillover Effects of Regional Economic Growth in China. Sustainability 2018, 10, 4695. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.R.; Wang, S.; Yuan, L.R.; Liu, X.G.; Gong, B.L. The impact of epidemics on agricultural production and forecast of COVID-19. China Agric. Econ. Rev. 2020, 12, 409–425. [Google Scholar] [CrossRef]
- Donaire, J.A.; Gali, N.; Camprubi, R. Empty Summer: International Tourist Behavior in Spain during COVID-19. Sustainability 2021, 13, 4356. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y. A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transp. Res. Part D Transp. Environ. 2008, 13, 298–305. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.Z.; Zhang, T.; Yu, Q. Time dimension analysis: Comparison of Nanjing local driving cycles in 2009 and 2017. Sustain. Cities Soc. 2020, 53, 101949. [Google Scholar] [CrossRef]
- Mikulić, J.; Krešić, D.; Kožić, I. Critical Factors of the Maritime Yachting Tourism Experience: An Impact-Asymmetry Analysis of Principal Components. J. Travel Tour. Mark 2015, 32, S30–S41. [Google Scholar] [CrossRef]
- Tian, X.B.; Zhang, M.R. Research on Spatial Correlations and Influencing Factors of Logistics Industry Development Level. Sustainability 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.; Moffat, J.; Kravtsova, V. In Search of ‘W’. Spat. Econ. Anal. 2011, 6, 249–270. [Google Scholar] [CrossRef]
- Parent, O.; LeSage, J.P. Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers. J. Appl. Econ. 2008, 23, 235–256. [Google Scholar] [CrossRef]
- Bivand, R.; Piras, G. Comparing Implementations of Estimation Methods for Spatial Econometrics. J. Stat. Softw. 2015, 63, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Lv, K.; Yu, S.R.; Fu, D.A.; Wang, J.W.; Wang, C.C.; Pan, J.B. The Impact of Financial Development and Green Finance on Regional Energy Intensity: New Evidence from 30 Chinese Provinces. Sustainability 2022, 14, 9207. [Google Scholar] [CrossRef]
- Yang, K.; Lee, L.F. Identification and estimation of spatial dynamic panel simultaneous equations models. Reg. Sci. Urban Econ. 2019, 76, 32–46. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, B. Applying PCA to Deep Learning Forecasting Models for Predicting PM2.5. Sustainability 2021, 13, 3726. [Google Scholar] [CrossRef]
- Alemzero, D.A.; Sun, H.; Mohsin, M.; Iqbal, N.; Nadeem, M.; Vo, X.V. Assessing energy security in Africa based on multi-dimensional approach of principal composite analysis. Environ. Sci. Pollut. Res. 2021, 28, 2158–2171. [Google Scholar] [CrossRef]
- Xu, B.J.; Zhong, R.Y.; Liu, Y.F. Comparison of CO2 emissions reduction efficiency of household fuel consumption in China. Sustainability 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Ichim, P.; Sfica, L. The Influence of Urban Climate on Bioclimatic Conditions in the City of Iasi, Romania. Sustainability 2020, 12, 9652. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Xie, H.M. What Do We Know and What Do We Need to Know about COVID-19’s Implications on Business Economics? From Bibliometric Analysis to a Conceptual Framework. Sustainability 2022, 14, 6396. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Moon, J.; Hong, J.G.; Park, T.W. A Novel Method for Traffic Estimation and Air Quality Assessment in California. Sustainability 2022, 14, 9169. [Google Scholar] [CrossRef]
- Qu, L.C.; Li, W.; Li, W.J.; Ma, D.F.; Wang, Y.H. Daily long-term traffic flow forecasting based on a deep neural network. Expert Syst. Appl. 2019, 121, 304–312. [Google Scholar] [CrossRef]
- Jiang, B. Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution. Prof. Geogr. 2013, 65, 482–494. [Google Scholar] [CrossRef]
- Liu, X.C.; Li, L.S.; Liu, X.H.; Zhang, T.; Rong, X.Y.; Yang, L.; Xiong, D.Z. Field investigation on characteristics of passenger flow in a Chinese hub airport terminal. Build. Environ. 2018, 133, 51–61. [Google Scholar] [CrossRef]
- Debarsy, N.; Ertur, C. Testing for spatial autocorrelation in a fixed effects panel data model. Reg. Sci. Urban Econ. 2010, 40, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Ouchen, A.; Montargot, N. Non-spatial and spatial econometric analysis of tourism demand in a panel of countries around the world. Spat. Econ. Anal. 2021, 17, 262–283. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference. Sociol. Method Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Liu, L. Random Effects, Fixed Effects and Hausman’s Test for the Generalized Mixed Regressive Spatial Autoregressive Panel Data Model. Econ. Rev. 2016, 35, 638–658. [Google Scholar] [CrossRef]
- Jin, X.T.; Zhao, Y.R.; Song, W.; Zhao, T.Y. Save for Safe: Effect of COVID-19 Pandemic on Consumers’ Saving and Spending Behavior in China. Front. Psychol. 2021, 12, 636859. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Yamamoto, T.; Liu, K. Spatial dependence and spillover effects in customized bus demand: Empirical evidence using spatial dynamic panel models. Transp. Policy 2021, 105, 166–180. [Google Scholar] [CrossRef]
- Wu, H.T.; Xu, L.N.; Ren, S.Y.; Hao, Y.; Yan, G.Y. How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- Jankelova, N.; Skorkova, Z.; Joniakova, Z.; Nemethova, I. A Diverse Organizational Culture and Its Impact on Innovative Work Behavior of Municipal Employees. Sustainability 2021, 13, 3419. [Google Scholar] [CrossRef]
- Wu, L.; Achyldurdyyeva, J.; Jou, W.; Foung, W.; Jaw, B. Relief, Recovery, and Revitalization Measures for Tourism and Hospitality Industry During Covid-19 Pandemic: Case Study from Taiwan. SAGE Open 2021, 11, 1999480888. [Google Scholar] [CrossRef]
- Lin, A.J.; Chang, H.Y.; Hung, B. Identifying Key Financial, Environmental, Social, Governance (ESG), Bond, and COVID-19 Factors Affecting Global Shipping Companies-A Hybrid Multiple-Criteria Decision-Making Method. Sustainability 2022, 14, 5148. [Google Scholar] [CrossRef]
- Pacurar, C.M.; Albu, R.G.; Pacurar, V.D. Tourist Route Optimization in the Context of Covid-19 Pandemic. Sustainability 2021, 13, 5492. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Song, H.Y.; Wen, L.; Liu, C. Forecasting tourism recovery amid COVID-19. Ann. Tour. Res. 2021, 87, 103149. [Google Scholar] [CrossRef]
- Graham, D.J.; Glaister, S. Decomposing the determinants of road traffic demand. Appl. Econ. 2005, 37, 19–28. [Google Scholar] [CrossRef]
- Hamidi, S.; Zandiatashbar, A. Compact development and adherence to stay-at-home order during the COVID-19 pandemic: A longitudinal investigation in the United States. Landsc. Urban Plan. 2021, 205, 103952. [Google Scholar] [CrossRef]
- Fu, W.J.; Jiang, P.K.; Zhou, G.M.; Zhao, K.L. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Fitchett, J.M.; Robinson, D.; Hoogendoorn, G. Climate suitability for tourism in South Africa. J. Sustain. Tour. 2017, 25, 851–867. [Google Scholar] [CrossRef]
- Deng, T.T.; Li, X.; Ma, M.L. Evaluating impact of air pollution on China’s inbound tourism industry: A spatial econometric approach. Asia Pac. J. Tour. Res. 2017, 22, 771–780. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, J. Spatial weights matrix selection and model averaging for spatial autoregressive models. J. Econ. 2018, 203, 1–18. [Google Scholar] [CrossRef]
Serial Number | Province | Bartlett’s Test | Variance Proportion | Loading 1 | Loading 2 |
---|---|---|---|---|---|
1 | Beijing | 22.091 *** | 0.976 | 0.639 | 0.769 |
2 | Tianjin | 26.698 *** | 0.985 | 0.642 | 0.766 |
3 | Hebei | 16.029 *** | 0.971 | 0.413 | 0.911 |
4 | Shanxi (1) | 21.867 *** | 0.981 | 0.481 | 0.877 |
5 | Neimenggu | 23.930 *** | 0.981 | 0.607 | 0.794 |
6 | Liaoning | 16.339 *** | 0.954 | 0.648 | 0.761 |
7 | Jilin | 30.306 *** | 0.992 | 0.504 | 0.864 |
8 | Heilongjiang | 10.447 *** | 0.910 | 0.646 | 0.764 |
9 | Shanghai | 0.231 *** | 0.992 | 0.678 | 0.735 |
10 | Jiangsu | 20.740 *** | 0.976 | 0.533 | 0.846 |
11 | Zhejiang | 5.421 ** | 0.844 | 0.560 | 0.829 |
12 | Anhui | 12.547 *** | 0.928 | 0.690 | 0.724 |
13 | Fujian | 20.639 *** | 0.981 | 0.450 | 0.893 |
14 | Jiangxi | 4.483 ** | 0.828 | 0.525 | 0.851 |
15 | Shandong | 18.344 *** | 0.965 | 0.600 | 0.800 |
16 | Henan | 19.752 *** | 0.968 | 0.693 | 0.720 |
17 | Hubei | 14.287 *** | 0.956 | 0.477 | 0.879 |
18 | Hunan | 22.824 *** | 0.977 | 0.657 | 0.754 |
19 | Guangdong | 17.447 *** | 0.959 | 0.663 | 0.748 |
20 | Guangxi | 7.612 *** | 0.902 | 0.460 | 0.888 |
21 | Hainan | 28.674 *** | 0.991 | 0.468 | 0.884 |
22 | Chongqing | 10.260 *** | 0.908 | 0.653 | 0.757 |
23 | Sichuan | 24.980 *** | 0.988 | 0.452 | 0.892 |
24 | Guizhou | 18.830 *** | 0.979 | 0.405 | 0.914 |
25 | Yunnan | 17.805 *** | 0.976 | 0.419 | 0.908 |
26 | Xizang | 12.497 *** | 0.971 | 0.311 | 0.950 |
27 | Shanxi (2) | 17.249 *** | 0.986 | 0.292 | 0.956 |
28 | Gansu | 22.188 *** | 0.976 | 0.662 | 0.750 |
29 | Qinghai | 10.139 *** | 0.971 | 0.256 | 0.967 |
30 | Ningxia | 10.833 *** | 0.924 | 0.546 | 0.838 |
31 | Xinjiang | 17.166 *** | 0.959 | 0.637 | 0.771 |
Category | Variable | Description | Source | Expected Effect | Mean | Median | Min | Max | SD |
---|---|---|---|---|---|---|---|---|---|
Explained Variable | Recovery | Recovery index of road traffic volume | Ministry of Transport of the People’s Republic of China and authors computation | / | 54.031 | 50.392 | 15.288 | 129.056 | 19.277 |
Explanatory Variables | THI | THI index | National Meteorological Administration of the People’s Republic of China | + | 57.946 | 59.220 | 11.363 | 81.532 | 15.362 |
Income | Disposable income per capita | National Bureau of Statistics of the People’s Republic of China | − | 2914.489 | 2557.016 | 1447.334 | 7182.954 | 1175.549 | |
Economic | GDP per capita | National Bureau of Statistics of the People’s Republic of China | − | 6636.535 | 5666.043 | 2830.190 | 16,542.862 | 2956.007 | |
COVID-19 Cases | Number of confirmed cases of COVID-19 | National Health Commission of the People’s Republic of China | − | 40.987 | 6 | 0 | 1514 | 121.636 | |
Control Variables | AQI | Level of air pollution | National Meteorological Administration of the People’s Republic of China and authors computation | / | 2.543 | 2 | 1 | 5 | 1.104 |
Season | Seasonal index | Authors computation | / | 0.250 | 0 | 0 | 1 | 0.434 |
Month | Moran’s I | Z-Value | p-Value | Spatial Pattern |
---|---|---|---|---|
January | −0.112 | −0.580 | 0.562 | Random |
February | 0.326 | 2.678 | 0.007 | Positive |
March | 0.126 | 1.216 | 0.224 | Random |
April | 0.225 | 1.992 | 0.046 | Positive |
May | 0.119 | 1.129 | 0.259 | Random |
June | 0.270 | 2.241 | 0.025 | Positive |
July | 0.300 | 1.511 | 0.012 | Positive |
August | 0.544 | 4.622 | 0.000 | Positive |
September | 0.443 | 3.740 | 0.000 | Positive |
October | 0.333 | 2.724 | 0.006 | Positive |
November | 0.406 | 3.333 | 0.001 | Positive |
December | 0.331 | 2.752 | 0.006 | Positive |
Tests | Distance Weight Matrix | Economic-Distance Weight Matrix |
---|---|---|
LM spatial lag | 49.752 *** | 18.782 *** |
Robust LM spatial lag | 36.218 *** | 44.302 *** |
LM spatial error | 28.911 *** | 8.136 *** |
Robust LM spatial error | 15.377 *** | 33.656 *** |
Wald spatial lag | 11.837 | 15.448 |
Wald spatial error | 17.145 * | 18.487 ** |
LR spatial lag | 11.731 | 15.198 |
LR spatial error | 17.327 * | 18.096 * |
Hausman for SLM | 151.71 *** | 46.95 *** |
Hausman for SDM | 76.53 *** | 108.49 *** |
Variables | SLM | SDM | Dynamic SLM | Dynamic SDM | ||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
COVID-19 Cases | –0.018 ** (–2.289) | –0.016 ** (–2.010) | –0.018 ** (–2.207) | –0.015 * (–1.867) | –0.019 ** (–2.383) | –0.018 ** (–2.144) | –0.018 ** (–2.222) | –0.016 * (–1.941) |
THI | 0.128 ** (2.561) | 0.119 ** (2.322) | 0.179 ** (2.564) | 0.159 ** (2.255) | 0.138 *** (2.722) | 0.127 ** (2.455) | 0.185 *** (2.647) | 0.162 ** (2.303) |
Income | –0.396 *** (–4.955) | –5.000 ** (–2.375) | –0.322 *** (–3.621) | –5.110 ** (–2.373) | –0.377 *** (–4.659) | –4.970 ** (–2.361) | –0.314 *** (–3.522) | –5.076 ** (–2.357) |
Economic | n.a. | –4.170 ** (–2.181) | n.a. | –4.285 ** (–2.203) | n.a. | –4.145 ** (–2.168) | n.a. | –4.248 ** (–2.183) |
Income × Economic | n.a. | 0.536 ** (2.188) | n.a. | 0.561 ** (2.244) | n.a. | 0.535 ** (2.183) | n.a. | 0.557 ** (2.227) |
AQI = 2 | 0.072 ** (2.145) | 0.070 ** (2.082) | 0.087 ** (2.470) | 0.088 ** (2.514) | 0.072 ** (2.137) | 0.070 ** (2.091) | 0.089 ** (2.511) | 0.090 ** (2.550) |
AQI = 3 | 0.132 *** (3.043) | 0.130 *** (2.964) | 0.141 *** (2.878) | 0.140 *** (2.839) | 0.126 *** (2.887) | 0.125 *** (2.841) | 0.140 *** (2.874) | 0.141 *** (2.865) |
AQI = 4 | 0.168 *** (3.115) | 0.166 *** (3.045) | 0.163 *** (2.623) | 0.159 ** (2.557) | 0.152 *** (2.781) | 0.151 *** (2.747) | 0.160 *** (2.581) | 0.159 ** (2.560) |
AQI = 5 | 0.249 *** (3.667) | 0.241 *** (3.516) | 0.244 *** (3.043) | 0.231 *** (2.878) | 0.221 *** (3.148) | 0.215 *** (3.044) | 0.239 *** (2.987) | 0.231 *** (2.875) |
Season | –0.039 (–1.459) | –0.036 (–1.358) | –0.073 (–1.507) | –0.071 (–1.469) | –0.056 * (–1.920) | –0.053 * (–1.824) | –0.077 (–1.593) | –0.073 (–1.507) |
W × COVID-19 cases | n.a. | n.a. | –0.029 (–1.118) | –0.018 (–0.584) | n.a. | n.a. | –0.037 (–1.366) | –0.027 (–0.835) |
W × THI | n.a. | n.a. | –0.276 (–1.639) | –0.299 * (–1.715) | n.a. | n.a. | –0.287 * (–1.704) | –0.307 * (–1.759) |
W × Income | n.a. | n.a. | –0.548* (–1.946) | –11.215 (–1.476) | n.a. | n.a. | –0.495 * (–1.746) | –9.604 (–1.224) |
W × Economic | n.a. | n.a. | n.a. | –9.701 (–1.430) | n.a. | n.a. | n.a. | –8.255 (–1.178) |
W × Income × Economic | n.a. | n.a. | n.a. | 1.192 (1.396) | n.a. | n.a. | n.a. | 1.017 (1.156) |
W × AQI2 | n.a. | n.a. | –0.377 * (–1.661) | –0.460 ** (–2.029) | n.a. | n.a. | –0.369 (–1.627) | –0.447 ** (–1.968) |
W × AQI3 | n.a. | n.a. | –0.324 (–1.282) | –0.454 * (–1.776) | n.a. | n.a. | –0.354 (–1.396) | –0.459 * (–1.799) |
W×AQI4 | n.a. | n.a. | –0.338 (–1.312) | –0.459 * (–1.768) | n.a. | n.a. | –0.388 (–1.491) | –0.478 * (–1.834) |
W × AQI5 | n.a. | n.a. | –0.366 (–1.332) | –0.499 * (–1.793) | n.a. | n.a. | –0.441 (–1.576) | –0.531 * (–1.890) |
W × Season | n.a. | n.a. | 0.082 (0.831) | 0.071 (0.726) | n.a. | n.a. | 0.062 (0.625) | 0.060 (0.608) |
W × Recoveryit | 0.771 *** (11.027) | 0.777 *** (11.256) | 0.749 *** (9.563) | 0.751 *** (9.620) | 0.765 *** (10.711) | 0.771 *** (10.913) | 0.753 *** (9.579) | 0.752 *** (9.604) |
W × Recovery it–1 | n.a. | n.a. | n.a. | n.a. | 0.148 (1.468) | 0.149 (1.484) | 0.149 (1.310) | 0.099 (0.814) |
0.240 | 0.245 | 0.249 | 0.270 | 0.235 | 0.239 | 0.249 | 0.268 | |
Log-likelihood | 114.086 | 116.465 | 118.267 | 122.330 | 114.590 | 116.973 | 118.604 | 122.397 |
AIC | –208.171 | –208.929 | –200.533 | –200.660 | –207.179 | –207.946 | –199.207 | –198.794 |
BIC | –168.982 | –161.903 | –129.993 | –114.444 | –164.072 | –157.001 | –124.748 | –108.660 |
Variables | SLM | SDM | Dynamic SLM | Dynamic SDM | ||||
---|---|---|---|---|---|---|---|---|
Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | Model 15 | Model 16 | |
COVID-19 Cases | –0.021 ** (–2.412) | –0.021 ** (–2.318) | –0.020 ** (–2.334) | –0.022 ** (–2.407) | –0.021 ** (–2.451) | –0.022 ** (–2.401) | −0.020 ** (−2.341) | −0.022 ** (−2.440) |
THI | 0.197 *** (3.602) | 0.184 *** (3.265) | 0.213 *** (3.695) | 0.190 *** (3.183) | 0.205 *** (3.724) | 0.190 *** (3.368) | 0.212 *** (3.678) | 0.188 *** (3.142) |
Income | –0.498 *** (–5.609) | –4.545 * (–1.927) | –0.426 *** (–4.643) | –4.373 * (–1.860) | –0.490 *** (–5.514) | –4.606 * (–1.956) | −0.426 *** (−4.642) | −4.397 * (−1.870) |
Economic | n.a. | –3.611 * (–1.686) | n.a. | –3.505 (–1.642) | n.a. | –3.658 * (–1.710) | n.a. | −3.522 * (−1.650) |
Income × Economic | n.a. | 0.471 * (1.715) | n.a. | 0.457 * (1.672) | n.a. | 0.479 * (1.746) | n.a. | 0.459 * (1.681) |
AQI = 2 | 0.074 ** (1.976) | 0.075 ** (1.978) | 0.074 * (1.957) | 0.073 * (1.928) | 0.073 * (1.955) | 0.074 ** (1.972) | 0.074 * (1.957) | 0.073 * (1.927) |
AQI = 3 | 0.156 *** (3.205) | 0.158 *** (3.217) | 0.146 *** (2.972) | 0.145 *** (2.935) | 0.149 *** (3.054) | 0.152 *** (3.089) | 0.146 *** (2.978) | 0.146 *** (2.937) |
AQI = 4 | 0.219 *** (3.647) | 0.222 *** (3.662) | 0.192 *** (3.050) | 0.192 *** (3.033) | 0.206 *** (3.380) | 0.209 *** (3.415) | 0.192 *** (3.056) | 0.192 *** (3.035) |
AQI = 5 | 0.338 *** (4.484) | 0.338 *** (4.432) | 0.294 *** (3.797) | 0.289 *** (3.677) | 0.317 *** (4.124) | 0.317 *** (4.093) | 0.295 *** (3.802) | 0.289 *** (3.679) |
Season | −0.054 * (−1.830) | −0.050 * (−1.680) | −0.049 (−1.422) | −0.042 (−1.205) | −0.063 ** (−2.067) | −0.059 * (−1.927) | −0.049 (−1.418) | −0.042 (−1.204) |
W × COVID-19 Cases | n.a. | n.a. | –0.079 (–1.106) | –0.081 (–1.092) | n.a. | n.a. | −0.088 (−1.115) | −0.101 (−1.204) |
W × THI | n.a. | n.a. | –0.272 (–0.585) | –0.176 (–0.377) | n.a. | n.a. | −0.263 (−0.564) | −0.156 (−0.333) |
W × Income | n.a. | n.a. | –3.094 ** (–2.310) | 50.928 (0.861) | n.a. | n.a. | −3.017 ** (−2.205) | 52.267 (0.883) |
W × Economic | n.a. | n.a. | n.a. | 49.643 (0.909) | n.a. | n.a. | n.a. | 50.794 (0.930) |
W × Income × Economic | n.a. | n.a. | n.a. | –6.266 (–0.911) | n.a. | n.a. | n.a. | −6.400 (−0.930) |
W × AQI2 | n.a. | n.a. | −1.662 (−1.167) | −1.174 (−0.772) | n.a. | n.a. | −1.665 (−1.169) | −1.183 (−0.775) |
W × AQI3 | n.a. | n.a. | −1.519 (−1.049) | −1.059 (−0.682) | n.a. | n.a. | −1.512 (−1.044) | −1.064 (−0.684) |
W × AQI4 | n.a. | n.a. | −0.876 (−0.608) | −0.391 (−0.248) | n.a. | n.a. | −0.846 (−0.582) | −0.387 (−0.246) |
W × AQI5 | n.a. | n.a. | −0.775 (−0.514) | −0.221 (−0.134) | n.a. | n.a. | −0.708 (−0.454) | −0.200 (−0.119) |
W × Season | n.a. | n.a. | −0.222 (−0.913) | −0.246 (−1.011) | n.a. | n.a. | −0.212 (−0.833) | −0.242 (−0.950) |
W × Recoveryit | 0.815 *** (3.287) | 0.824 *** (3.341) | 0.602 ** (2.146) | 0.627 ** (2.244) | 0.810 *** (3.229) | 0.820 *** (3.284) | 0.609 ** (2.168) | 0.642 ** (2.297) |
W × Recoveryit–1 | n.a. | n.a. | n.a. | n.a. | 0.415 (1.340) | 0.451 (1.456) | 0.116 (0.267) | 0.224 (0.506) |
0.226 | 0.232 | 0.247 | 0.254 | 0.227 | 0.233 | 0.246 | 0.252 |
Variables | Distance Weight Matrix | Economic-Distance Weight Matrix | ||||||
---|---|---|---|---|---|---|---|---|
Model 17 | Model 18 | Model 19 | Model 8 | Model 20 | Model 21 | Model 22 | Model 16 | |
COVID-19 Cases | n.a. | –0.023 *** (–2.953) | n.a. | –0.018 ** (–2.144) | n.a. | –0.031 *** (–3.526) | n.a. | –0.022 ** (–2.401) |
THI | 0.158 *** (3.185) | n.a. | –1.672 *** (–5.063) | 0.127 ** (2.455) | 0.230 *** (4.254) | n.a. | –1.926 *** (–6.307) | 0.190 *** (3.368) |
Income | –5.361 ** (–2.544) | –5.399 ** (–2.560) | 20.853 (1.579) | –4.970 ** (–2.361) | –5.067 ** (–2.142) | –5.217 ** (–2.190) | 21.656 (1.620) | –4.606 * (–1.956) |
Economic | –4.567 ** (–2.390) | –4.418 ** (–2.303) | 22.136 * (1.847) | –4.145 ** (–2.168) | –4.159 * (–1.939) | –4.028 * (–1.859) | 23.439 * (1.933) | –3.658 * (–1.710) |
Income × Economic | 0.580 ** (2.366) | 0.576 ** (2.345) | –2.431 (–1.582) | 0.535 ** (2.183) | 0.533 * (1.935) | 0.536 * (1.933) | –2.536 (–1.630) | 0.479 * (1.746) |
AQI = 2 | 0.068 ** (2.011) | 0.065 * (1.917) | 0.137 (0.648) | 0.070 ** (2.091) | 0.071 * (1.881) | 0.066 * (1.727) | 0.136 (0.640) | 0.074 ** (1.972) |
AQI = 3 | 0.124 *** (2.794) | 0.111 ** (2.526) | 0.149 (0.540) | 0.125 *** (2.841) | 0.150 *** (3.030) | 0.131 *** (2.638) | 0.127 (0.456) | 0.152 *** (3.089) |
AQI = 4 | 0.159 *** (2.887) | 0.121 ** (2.244) | −0.305 (−0.896) | 0.151 *** (2.747) | 0.219 *** (3.557) | 0.163 *** (2.688) | −0.318 (−0.922) | 0.209 *** (3.415) |
AQI = 5 | 0.221 *** (3.121) | 0.161 ** (2.386) | −0.146 (−0.340) | 0.215 *** (3.044) | 0.324 *** (4.148) | 0.233 *** (3.133) | −0.134 (−0.309) | 0.317 *** (4.093) |
Season | −0.060 ** (−2.079) | −0.013 (−0.537) | 0.499 *** (2.975) | −0.053 * (−1.824) | −0.070 ** (−2.324) | −0.001 (−0.035) | 0.586 *** (3.520) | −0.059 * (−1.927) |
W × Recoveryit | 0.778 *** (11.152) | 0.791 *** (11.677) | n.a. | 0.771 *** (10.913) | 0.820 *** (3.279) | 0.845 *** (3.408) | n.a. | 0.820 *** (3.284) |
W × Recoveryit–1 | 0.126 (1.255) | 0.123 (1.222) | n.a. | 0.149 (1.484) | 0.405 (1.298) | 0.367 (1.172) | n.a. | 0.451 (1.456) |
W × COVID-19 Casesit | n.a. | n.a. | 0.270 ** (2.328) | n.a. | n.a. | n.a. | 0.139 (0.502) | n.a. |
W × COVID-19 Casesit–1 | n.a. | n.a. | 0.038 (0.251) | n.a. | n.a. | n.a. | –0.538 (–1.434) | n.a. |
0.224 | 0.236 | 0.202 | 0.239 | 0.220 | 0.210 | 0.187 | 0.233 |
Effects | Variables | Distance Weight Matrix | Economic-Distance Weight Matrix | ||||||
---|---|---|---|---|---|---|---|---|---|
Model 5 | Model 6 | Model 13 | Model 14 | ||||||
Short Term | Long Term | Short Term | Long Term | Short Term | Long Term | Short Term | Long Term | ||
Direct effect | COVID-9 Cases | –0.021 ** (–2.518) | –0.023 * (–1.922) | –0.020 ** (–2.252) | –0.022 * (–1.898) | –0.022 *** (–2.583) | –0.023 ** (–2.518) | –0.023 ** (–2.520) | –0.024 ** (–2.376) |
THI | 0.155 *** (2.984) | 0.172 ** (2.401) | 0.143 *** (2.696) | 0.160 ** (2.068) | 0.213 *** (3.996) | 0.221 *** (3.658) | 0.198 *** (3.634) | 0.206 *** (3.457) | |
Income | –0.407 *** (–4.655) | –0.461 *** (–2.722) | –5.422 ** (–2.379) | –6.123 * (–1.781) | –0.495 *** (–5.502) | –0.514 *** (–4.603) | –4.676 ** (–1.982) | –4.882 * (–1.909) | |
Economic | n.a. | n.a. | –4.524 ** (–2.187) | –5.112 * (–1.674) | n.a. | n.a. | –3.714 * (–1.735) | –3.879 * (–1.685) | |
Income × Economic | n.a. | n.a. | 0.584 ** (2.202) | 0.660 * (1.686) | n.a. | n.a. | 0.486 * (1.772) | 0.508 * (1.717) | |
Indirect effect | COVID-19 Cases | –0.016 ** (–2.081) | –0.035 (–0.624) | –0.016 * (–1.729) | –0.033 (–0.737) | –0.002 * (–1.674) | –0.003 (–0.965) | –0.002 (–1.562) | –0.004 (–0.748) |
THI | 0.119 ** (2.424) | 0.245 (0.722) | 0.115 ** (2.184) | 0.235 (0.639) | 0.018 * (1.939) | 0.035 (0.894) | 0.017 ** (2.078) | 0.034 (1.106) | |
Income | –0.317 *** (–2.876) | –0.696 (–0.725) | –4.420 * (–1.812) | –9.380 (–0.591) | –0.040 ** (–2.149) | –0.080 (–0.873) | –0.403 (–1.476) | –0.828 (–0.835) | |
Economic | n.a. | n.a. | –3.693 * (–1.711) | –7.857 (–0.574) | n.a. | n.a. | –0.320 (–1.357) | –0.660 (–0.808) | |
Income × Economic | n.a. | n.a. | 0.477 * (1.717) | 1.014 (0.578) | n.a. | n.a. | 0.042 (1.374) | 0.086 (0.804) | |
Total effect | COVID-19 Cases | –0.036 ** (–2.413) | –0.058 (–0.880) | –0.036 ** (–2.079) | –0.055 (–1.011) | –0.024 ** (–2.570) | –0.026 ** (–2.284) | –0.025 ** (–2.488) | –0.027 ** (–1.999) |
THI | 0.273 *** (2.882) | 0.417 (1.052) | 0.258 *** (2.588) | 0.395 (0.915) | 0.231 *** (3.926) | 0.256 *** (2.866) | 0.215 *** (3.613) | 0.240 *** (2.952) | |
Income | –0.724 *** (–3.984) | –1.157 (–1.039) | –9.842 ** (–2.182) | –15.502 (–0.823) | –0.535 *** (–5.395) | –0.594 *** (–3.190) | –5.079 ** (–1.974) | –5.711 * (–1.736) | |
Economic | n.a. | n.a. | –8.217 ** (–2.024) | –12.969 (–0.795) | n.a. | n.a. | –4.034 * (–1.730) | –4.538 (–1.560) | |
Income × Economic | n.a. | n.a. | 1.061 ** (2.035) | 1.674 (0.801) | n.a. | n.a. | 0.528 * (1.766) | 0.594 (1.583) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, S.; Peng, C.; Gong, X. Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China. Sustainability 2022, 14, 14297. https://doi.org/10.3390/su142114297
Zhang J, Zhao S, Peng C, Gong X. Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China. Sustainability. 2022; 14(21):14297. https://doi.org/10.3390/su142114297
Chicago/Turabian StyleZhang, Jun, Shenghao Zhao, Chaonan Peng, and Xianming Gong. 2022. "Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China" Sustainability 14, no. 21: 14297. https://doi.org/10.3390/su142114297
APA StyleZhang, J., Zhao, S., Peng, C., & Gong, X. (2022). Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China. Sustainability, 14(21), 14297. https://doi.org/10.3390/su142114297