Climate Change and Inflation in Eastern and Southern Africa
Abstract
:1. Introduction
2. Data and Methods
3. Results
Trend Analysis on Climate Change Risk Indicators and Disaster Events
4. Empirical Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Details of the Estimation Method
Appendix B. Climate Disaster Events
Country | Major Climate Change-Related Events | Effects | Food Price Volatility | Domestic/Trade Measures (To Increase Supply and Curb Prices) | Recent Key Initiatives to Mitigate against Climate Change/Recommendations |
---|---|---|---|---|---|
Kenya | -El-Nino Floods -Drought -Desert locusts | -Displacement -Famine -Landslides -irregular and unpredictable rains | Yes 2008–2009 2011 2015 2016 2017 | -Increased strategic food reserve -Maize exports ban | -Issuance of guidance on climate-related risk-management in 2021. -Kenya climate-smart agriculture (CSA) implementation framework, 2018–2027 -Developed a ten year National Climate Change Learning Strategy in 2021 |
Uganda | -Floods -Drought -Epidemic diseases -Ground movement | -Displacement -Production losses in livestock, food, and cash crops -Reduced export -Increased costs of electricity generation | Yes -2005–2007 -2010 -2011 | No short-term direct intervention measures | -Passed National Climate Change Act in August 2021 -Guidelines for mainstreaming climate change adaptation and mitigation in agricultural sector policies and plans, 2018 -Developed a ten year National Climate Change Learning Strategy in 2013 -Consider operationalization of a strategic food reserve |
Tanzania | -Heat stress -Drought -Storm -Earthquake | -Displacement -Production losses in livestock, food and cash crops | Yes 2006 2009 2011 2015 2016 2019 | Cereal export ban | Climate start agriculture through broader access to early warning systems and technology facilitated information on prices |
Rwanda | -Floods -Droughts -Landslides | Displacement Famine Biodiversity loss conflicts | -2002–2005 -2016 -2019 | Targeted agricultural input distribution | -Launched National Environment and Climate Change policy in 2019 |
Burundi | -Floods -Droughts -Landslides -Storms | -Displacement -Epidemic -High food prices | -1999 -2005 -2014/5 -2019 -2021 | Food export ban Tax exemption on essential imported food items | Exploring climate-smart agriculture systems |
Ethiopia | -Floods -Drought -High precipitation and abnormal vegetation enabled desert locust infestation | Displacement -crop and pasture loss - Affected 806 400 farming households, 197 163 hectares of cropland, and 1.35 million hectares of pasture | Yes -2003 -2009 -2015/16 | Cereal Export ban | Climate start agriculture through broader access to early warning systems and technology-facilitated information on prices -control operations -Launched implementation of its National Climate Change Education Strategy and Priority Actions in September 2020 |
Mozambique | -Typhoons -Tropical Cyclone Idai -Floods -Below-average rains | -Low food supply -High food prices -Displacement -Destruction of crops | Yes 2000 2007 2009/10 2019 | -Cash transfer /food subsidy program -Reduce import tariffs | -Climate Insurance Finance and Resilience Project to be implemented from 2021–2026. -Implementation of the Mozambique Climate Resilience Program since 2016 |
Malawi | -Tropical Cyclone Idai -Floods -Landslides -Erratic rainfall | -Displacement -High food prices | Yes -2005/6 -2008/9 -2012/13 -2019 | -Maize export ban and import restrictions | Climate-smart agriculture through broader access to early warning systems and technology-facilitated information on prices Launched an updated version of its National Climate Change Learning Strategy in February 2021 |
Zambia | Floods Drought Tropical storm | -Submerged land and food crops- 2720 Hectares -Destruction of bridges -Disruption of learning in 16 primary schools -Affected electricity generation | Yes -2018/19 | Maize export ban | Launched the National Climate Change Learning Strategy in March 2021 |
Zimbabwe | Tropical storm Below-average rains | -Low food supply and -High food prices -Displacement -Epidemic | 2001/2 2010 2013 2017 2019 | Suspension of import duties on essential food products | Launched the National Climate Change Learning Strategy in April 2021 |
Appendix C
Independent Variables | The Dependent Variable Is Overall Inflation | The Dependent Variable Is Food Inflation | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Rainfall Anomaly Index | −0.01(−0.51) | 0.03(0.78) | 0.04(0.86) | −0.06(−3.50) *** | −0.06(−3.43) *** | −0.05(−2.76) *** |
GDP | 0.02(2.01) ** | −0.004(−0.27) | 0.10(0.89) | −5.62E−10(−3.08) *** | −5.85E−10(2.35) *** | −5.63E−10(−1.74) * |
Oil prices | 0.01(2.01) ** | 0.89(1.64) * | 0.01(1.92) ** | 0.14(0.09) | 0.06(0.03) | 0.30(0.13) |
Foreign prices | 0.91(3.97) *** | 0.79(2.05) ** | 0.94(2.65) *** | |||
Inflation(−1) | 0.10(14.2) *** | 0.09(6.92) *** | 0.10(4.08) *** | 0.95(7.71) *** | 0.96(5.97) *** | 0.99(4.17) *** |
Interest rate | 0.10(1.28) | −0.01(−1.05) | ||||
Real Effective Exchange Rate | −0.49(−3.14) *** | −0.008(−0.79) | 0.07(0.21) | 010(0.17) | ||
Subsidy | −0.005(−3.37) *** | −0.03(−0.35) | ||||
Cereal price | 0.01(1.79) * | 0.01(1.74) * | 0.09(2.51) *** | |||
No. Obs. | 1222 | 715 | 649 | 708 | 708 | 624 |
R2 | 0.68 | 0.69 | 0.64 | 0.47 | 0.46 | 0.47 |
J stats(P_value) | 7.43(0.11) | 6.13(0.29) | 0.54(0.76) | 6.15(0.52) | 5.82(0.44) | 5.89(0.31) |
Appendix D
References
- World Meteorological Organization (WMO). State of the Global Climate 2020; WMO-No. 1264; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Nanda, V. Climate change and developing countries: The international law perspective. J. Int. Comp. Law 2010, 16, 539–556. [Google Scholar]
- United Nations Development Program (UNDP). Linking Climate Change Policies to Human Development Analysis and Advocacy, A Guidance Note for Human Development Report Team; UNDP, Human Development Report Office: Washington, DC, USA, 2009. [Google Scholar]
- Veras, O. Agriculture in Africa: Potential Versus Reality, NTU-SBF Center for African Studies. 2017. Available online: https://www.howwemadeitinafrica.com/agriculture-africa-potential-versus-reality/57635/ (accessed on 28 November 2021).
- Alliance for a Green Revolution in Africa (AGRA). The business of smallholder agriculture in Sub-Saharan Africa, AGRA. In Africa Agriculture Status Report; AGRA: Nairobi, Kenya, 2017; Volume 5. [Google Scholar]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Mukasa, A.; Andinet, D.; Salami, A.O.; Simpasa, A.M. Africa’s agricultural transformation: Identifying priority areas and overcoming challenges. Afr. Econ. Brief 2017, 8, 1–16. [Google Scholar]
- Nelson, C.; Rosegrant, M.W.; Palazzo, A.; Gray, I.; Ingersoll, C.; Robertson, R.; You, L. Food Security, Farming and Climate Change to 2050: Scenarios, Results, Policy Options; IFPRI: Washington, DC, USA, 2010; pp. 1–155. [Google Scholar]
- Friedman, M.; Schwartz, A.J.A. Monetary History of the United States, 1867–1960; NBER Books, National Bureau of Economic Research, Inc.: New York, NY, USA, 1963. [Google Scholar]
- Friedman, M. The Role of Monetary Policy. Am. Econ. Rev. 1968, 58, 1–17. [Google Scholar]
- Stamoulis, K.G.; Chalfant, J.A.; Rausser, G.C. Monetary Policies and the Overshooting of Flexible Prices: Implications for Agricultural Policy, Working Paper No. 372; Agricultural Experiment Station Giannini Foundation of Agricultural Economics: San Mateo, CA, USA, 1965. [Google Scholar]
- Frankel, J.A. Expectations and commodity price dynamics: The overshooting model. Am. J. Agric. Econ. 1986, 68, 344–348. [Google Scholar] [CrossRef]
- Boughton, J.M.; Branson, W.H. Commodity prices as a leading indicator of inflation. In Leading Economic Indicators: New Approaches and Forecasting Records; Lahiri, K., Moore, G.H., Eds.; Cambridge University Press: Cambridge, MA, USA, 1991; pp. 303–338. [Google Scholar]
- Dornbusch, R. Expectations and Exchange Rate Dynamics. J. Political Econ. 1976, 84, 1161–1176. [Google Scholar] [CrossRef]
- Mellor, J.W. Food price policy and income distribution in low-income countries. Econ. Dev. Cult. Chang. 1978, 27, 1–26. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ericksen, P.J. Conceptualizing food systems for global environmental research. Glob. Environ. Chang. 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Sen, A. Poverty and Famines: An Essay on Entitlements and Deprivation; Oxford University Press: Oxford, UK, 1981. [Google Scholar]
- Food and Agriculture Organization (FAO). The State of Food and Agriculture World Review: The Ten Years Since the World Food Conference Urbanization, Agriculture and Food Systems; FAO: Rome, Italy, 1985. [Google Scholar]
- Wachter, S.M. Latin American Inflation the Structuralist-Monetarist Debate; Mass Lexington Books: Lexington, KY, USA, 1979. [Google Scholar]
- Ravallion, M. Famines and Economics, World Bank Policy Research No. 1693; World Bank: Washington, DC, USA, 1996. [Google Scholar]
- Devereux, S. The New Famines–Why Famines Persist in an Era of Globalization; Routledge: Abingdon, UK, 2007. [Google Scholar]
- Brown, M. Food Security, Food Prices, and Climate Variability; Routledge: Abingdon, UK; New York, NY, USA, 2014. [Google Scholar]
- Zant, W. How is the liberalization of food markets progressing? Market integration and transaction costs in subsistence economies. World Bank Econ. Rev. 2013, 27, 28–54. [Google Scholar] [CrossRef]
- Ihle, R.; Cramon-Taubadel, S.V.; Zorya, S. Measuring the Integration of Staple Food Markets in Sub-Saharan Africa: Heterogeneous Infrastructure and Cross Border Trade in the East African Community; CESifo Working Paper No. 3413; CESifo: Gottingen, Germany, 2011. [Google Scholar]
- Hertel, T.W.; Rosch, S.D. Climate Change, Agriculture and Poverty. Appl. Econ. Perspect. Policy 2010, 32, 355–385. [Google Scholar] [CrossRef]
- McKibbin, W.; Adele, M.; Wilcoxen, P.; Augustus, P. Climate change and monetary policy: Issues for policy design and modeling. Oxf. Rev. Econ. Policy 2020, 36, 579–603. [Google Scholar] [CrossRef]
- Acevedo, M.S.; Mrkaic, M.; Novta, N.; Pugacheva, E.; Topalova, P.B. The Effect of Weather Shocks on Economic Activity: What Are the Channels of Impact; IMF Working Paper, WP/18/144; IMF: Washington, DC, USA, 2018. [Google Scholar]
- Belloumi, M. Investigating the Linkage between Climate Variables and Food Security in ESA Countries; AGRODEP Working Paper, No. 0004; AGRODEP: Washington, DC, USA, 2014. [Google Scholar]
- Takaoka, S. Impact of the 1997–1998 El Niño rains on farms in the Mount Kenya region. Mt. Res. Dev. 2005, 25, 326–331. [Google Scholar] [CrossRef]
- Ngecu, W.; Mathu, E. The El-Nino-triggered landslides and their socioeconomic impact on Kenya. Environ. Geol. 1999, 38, 277–284. [Google Scholar] [CrossRef]
- Musa, A.M.A.; Yousif, F.M.K. Modeling the determinants of inflation in Sudan. Int. J. Inf. Res. Rev. 2018, 5, 5154–5165. [Google Scholar]
- Diabate, N. The determinants of inflation in West Africa. Int. J. Econ. Financ. Res. 2019, 5, 100–105. [Google Scholar]
- Emre, A.; Niko, H.; Ali, U. Food Inflation in Sub-Saharan Africa: Causes and Policy Implications; WP/16/247; IMF: Washington, DC, USA, 2016. [Google Scholar]
- Nguyen, A.D.M.; Dridi, J.; Unsal, F.D.; Williams, O.H. On the Drivers of Inflation in Sub-Saharan Africa; IMF WP/15/189; IMF: Washington, DC, USA, 2015. [Google Scholar]
- Mirzabaev, A.; Tsegai, D.W. Effects of Weather Shocks on Agricultural Commodity Prices in Central Asia No 140769, Discussion Papers 2012; University of Bonn, Center for Development Research (ZEF): Bonn, Germany, 2012. [Google Scholar]
- Barnichon, R.; Peiris, S.J. Sources of Inflation in Sub-Saharan Africa; IMF WP No. 07/32; IMF: Washington, DC, USA, 2007. [Google Scholar]
- Moser, G. The Main Determinants of Inflation in Nigeria; IMF Staff Papers; IMF: Washington, DC, USA, 1995; Volume 42, pp. 270–289. [Google Scholar]
- Bawa, S.; Abdullahi, S.; Ibrahim, A. Analysis of Inflation Dynamics in Nigeria (1981–2015). J. Appl. Stat. 2016, 7, 255–276. [Google Scholar]
- Ubide, A. Determinants of inflation in Mozambique; IMF WP/97/145; IMF: Washington, DC, USA, 1997. [Google Scholar]
- Durevall, D.; Ndung’u, N. A Dynamic Model of Inflation in Kenya, 1974–1996. J. Afr. Econ. 2001, 10, 92–125. [Google Scholar] [CrossRef]
- Adam, C.; Kwimbere, D.; Mbowe, W.; O’Connell, S. Food Prices and Inflation in Tanzania. J. Afr. Dev. 2016, 18, 19–40. [Google Scholar] [CrossRef]
- Loening, J.L.; Durevall, D.; Birru, Y.A. Inflation Dynamics and Food Prices in an Agricultural Economy: The Case of Ethiopia; World Bank Policy Research Working Paper 4969; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Mawejje, J. Food Prices, Energy and Climate Shocks in Uganda. Agric. Food Econ. 2016, 4, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chipili, J. Inflation Dynamics in Zambia; Policy Brief, No. 742; AERC: Nairobi, Kenya, 2021. [Google Scholar]
- Gupta, E.; Ramaswami, B.; Somanathan, E. The Distributional Impact of Climate Change: Why Food Prices Matter. Econ. Disasters Clim. Chang. 2021, 5, 249–275. [Google Scholar] [CrossRef]
- African Development Bank (AfDB). Climate Change Impacts on Africa’s Economic Growth; AfDB: Abidjan, Ivory Coast, 2019. [Google Scholar]
- Kinda, S.R.; Badolo, F.; Tajani, F. Does rainfall variability matter for food security in developing countries. Cogent Econ. Financ. 2019, 7, 1–16. [Google Scholar] [CrossRef]
- Deniz, P.; Tekce, M.; Yilmaz, A. Investigating the Determinants of Inflation: A Panel Data Analysis. Int. J. Financ. Res. 2016, 7, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Haile, K. The Determinants of Inflation in Botswana and Bank of Botswana’s Medium-Term Objective Range. Botsw. J. Econ. 2013, 11, 57–74. [Google Scholar]
- Adu, G.; Marbuah, G. Determinants of Inflation in Ghana: An Empirical Investigation. S. Afr. J. Econ. 2011, 79, 251–269. [Google Scholar] [CrossRef]
- Madito, O.; Odhiambo, N. The main determinants of inflation in South Africa: An Empirical Investigation. Organ. Mark. Emerg. Econ. 2018, 9, 212–232. [Google Scholar] [CrossRef]
- World Bank. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/download-data (accessed on 24 January 2022).
- OCHA. Overview of El Niño Response in East and Southern Africa; OCHA: New York, NY, USA, 2016. [Google Scholar]
- World Bank. World Development Indicators. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 24 January 2022).
- Eckstein, D.; Kunzel, V.; Schafer, L. Global Climate Risk Index, 2021: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000–2019; German Watch: Bonn, Germany, 2021; Available online: https://www.germanwatch.org/en/19777 (accessed on 18 February 2022).
- Oulatta, M. Modeling Inflation in the WAEMU’S Zone. MPRA, 2016, WP No. 82983. Available online: https://mpra.ub.uni-muenchen.de/89300/ (accessed on 18 February 2022).
- Diouf, M. Modeling Inflation for Mali; IMF Working Paper, WP/07/295; IMF: Washington, DC, USA, 2007. [Google Scholar]
- Danladi, J. International Commodity Prices and Inflation Dynamics in Sierra Leone; AERC Research Paper, 382; African Economic Research Consortium: Nairobi, Kenya, 2020. [Google Scholar]
- Narula, A. Determinants of Food Inflation in India. Ind. J. Agric. Econ. 2019, 74, 1–17. [Google Scholar]
- Dilip, A.; Kundu, S. Climate Change: Macroeconomic Impact and Policy Options for Mitigating Risks. RBI Bull. 2020, 125, 105–125. [Google Scholar]
- Nahousse, D. Climate Change and Inflation in WAEMU. Am. J. Econ. 2019, 9, 128–132. [Google Scholar]
- Suliman, K. The Determinants of Inflation in Sudan; AERC Research Paper, No. 243; AERC: Nairobi, Kenya, 2012. [Google Scholar]
- Asfuroğlu, D. The determinants of inflation in emerging markets and developing countries: A literature review. Anadolu Üniv. Sos. Bilim. Derg. 2021, 21, 483–504. [Google Scholar] [CrossRef]
- Fahrer, J.; Myatt, J. Inflation in Australia: Cause, Inertia and Policy; RBA Research Discussion Paper No. 9105; Reserve Bank of Australia: Sydney, Australia, 1991. [Google Scholar]
- Letta, M.; Montalbano, P.; Pierre, G. Weather Shocks, Traders’ Expectations, and food prices. Am. J. Agric. Econ. 2022, 104, 1100–1119. [Google Scholar] [CrossRef]
- Annalisa, M. The Impact of Weather on Commodity Prices: A Warning for the Future; Discussion Paper, No. 1902; University of Exeter, Department of Economic: Exeter, UK, 2019. [Google Scholar]
- Nsabimana, A.; Habimana, O. Asymmetric Effects of Rainfall on Food Crop Prices: Evidence from Rwanda. Environ. Econ. 2017, 8, 136–149. [Google Scholar] [CrossRef]
- Baltagi, B. Econometric Analysis of Panel Data; John and Wiley Sons: New York, NY, USA, 2002. [Google Scholar]
- Giovanni, S. Estimation, Inference and Monte Carlo Analysis in Dynamic Panel Data Models with a Small Number of Individuals; Instituto di Economia Politica: Milan, Italy, 2004. [Google Scholar]
- Hansen, L.P. Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Machasio, I. Do Remittance flows promote financial inclusion? In MAGKS Joint Discussion Paper Series in Economics, No. 26-2018; Philipps University Marburg, School of Business and Economics: Marburg, Germany, 2018. [Google Scholar]
- Charalambos, G.T. Growth Empirics Under Model Uncertainty: Is Africa Different? WP/05/18; IMF, African Department: Washington, DC, USA, 2005. [Google Scholar]
- Bond, S.; Hoeffler, A.; Temple, J. GMM Estimation of Empirical Growth Models. Department of Economics; Discussion Paper 3058; University of Bristol: Bristol, UK, 2001. [Google Scholar]
Country | CRI, 2019 (Rank) | CRI, 2000–2019 (Rank) | CRI Score | Fatalities in 2019 (Rank) | Fatalities per 100000 Inhabitants, (Rank) | Losses in Million US$ PPP (Rank) | Losses per Unit GDP in % (Rank) |
---|---|---|---|---|---|---|---|
Kenya | 25 | 34 | 33 | 15 | 16 | 49 | 51 |
Uganda | 31 | 66 | 42.1 | 21 | 19 | 68 | 63 |
Tanzania | 67 | 122 | 66.5 | 27 | 47 | 88 | 95 |
Rwanda | 42 | 117 | 53.3 | 45 | 21 | 99 | 67 |
Burundi | 57 | 74 | 61.8 | 26 | 10 | 121 | 102 |
Ethiopia | 72 | 60 | 69.3 | 39 | 74 | 67 | 81 |
Mozambique | 1 | 5 | 2.6 | 2 | 3 | 4 | 2 |
Malawi | 5 | 62 | 15.1 | 20 | 13 | 35 | 5 |
Zambia | 59 | 123 | 63.3 | 80 | 90 | 56 | 32 |
Zimbabwe | 2 | 15 | 6.1 | 6 | 2 | 21 | 3 |
Independent Variables | The Dependent Variable Is Overall Inflation | The Dependent Variable Is Food Inflation | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Average Rainfall | −0.11(−2.34) *** | −0.06(−1.60) * | −0.05(−1.89) ** | −0.028(−2.17) ** | −0.02(−2.11) ** | −0.03(−3.43) *** |
GDP | −0.02(−1.36) | 0.01(1.26) | 0.03(0.58) | −2.10 × 10−10(−1.96) ** | −1.96 × 10−10(−1.67) * | −5.53 × 10−10(−1.67) * |
Oil prices | 0.02(3.25) *** | 0.01(2.46) *** | 0.01(2.45) *** | 0.27(0.57) | 0.35(0.69) | 0.68(0.32) |
Foreign prices | 0.42(2.56) *** | 0.54(1.20) | 0.88(2.76) *** | |||
Inflation(−1) | 0.13(11.3) *** | 0.11(7.55) *** | 0.08(8.97) *** | 0.93(9.74) *** | 0.91(9.75) *** | 0.97(4.36) *** |
Interest rate | −0.10(−1.24) | −0.45(−1.40) | ||||
Real Effective Exchange Rate | −0.53(−2.37) *** | −0.79(−1.72) * | −0.11(−0.56) | 0.14(0.25) | ||
Subsidy | −0.02(−0.57) | −0.05(−0.48) | ||||
Cereal price | 0.006(2.31) *** | 0.006(2.17) ** | 0.01(3.49) *** | |||
No. Obs. | 1216 | 1290 | 645 | 1621 | 1621 | 609 |
R2 | 0.74 | 0.58 | 0.84 | 0.44 | 0.45 | 0.47 |
J stats(p_value) | 0.67(0.95) | 7.29(0.12) | 1.33(0.51) | 1.89(0.92) | 1.72(0.88) | 9.04(0.10) |
Independent Variables | The Dependent Variable Is Overall Inflation | The Dependent Variable Is Food Inflation | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Rainfall variability | 0.23(5.69) *** | 0.13(2.15) ** | 0.06(1.93) ** | 0.05(2.09) ** | 0.05(1.93) ** | 0.04(4.91) *** |
GDP | −0.01(−0.99) | 0.01(1.36) | 0.02(0.47) | −2.12 × 10−10(1.97) ** | −2.00 × 10−10(1.70) * | −0.07(−1.85) * |
Oil prices | 0.16(0.15) | 0.94(1.73) * | 0.008(2.81) *** | 0.54(0.93) | 0.59(1.01) | 0.07(0.19) |
Foreign prices | 0.69(3.60) *** | 0.02(0.05) | 0.98(2.96) *** | |||
Inflation(−1) | 0.13(10.7) *** | 0.13(5.60) *** | 0.08(12.6) *** | 0.92(9.24) *** | 0.90(9.56) *** | 0.99(10.9) *** |
Interest rate | −0.19(−1.81) * | −0.02(−1.12) | ||||
Real effective exchange rate | −0.54(−2.30) ** | −0.65(−2.06) ** | −0.09(−0.45) | 026(0.82) | ||
Subsidy | −0.05(−1.78) * | −0.11(−1.33) | ||||
Cereal | 0.007(2.52) *** | 0.007(2.34) *** | 0.17(1.64) * | |||
No. Obs. | 1216 | 1308 | 652 | 1639 | 1639 | 703 |
R2 | 0.86 | 0.53 | 0.88 | 0.44 | 0.44 | 0.57 |
J stats(p_value) | 4.39(0.49) | 8.75(0.11) | 2.47(0.28) | 2.29(0.89) | 2.17(0.82) | 9.98(0.12) |
Independent Variables | The Dependent Variable Is Overall Inflation | The Dependent Variable Is Food Inflation | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Temperature variability | 0.04(2.39) *** | 0.05(2.50) *** | 0.04(1.80) * | 0.16(1.27) | 0.18(0.66) | −0.03(−0.61) |
GDP | 0.01(1.22) | 0.004(0.22) | 0.006(0.04) | −2.10 × 10−10(−1.91) ** | −1.13 × 10−11(−1.93) *** | −0.07(−1.82) * |
Oil prices | 0.01(2.08) ** | 0.92(2.53) *** | 0.009(5.49) *** | 0.58(0.97) | 0.69(063) | 0.67(1.73) * |
Foreign prices | 0.91(1.95) ** | 0.63(3.58) *** | 0.51(2.32) ** | |||
Inflation(−1) | 0.10(5.06) *** | 0.08(7.26) *** | 0.08(4.54) *** | 0.91(9.61) *** | 0.66(6.19) *** | 0.90(13.7) *** |
Interest rate | 0.11(1.16) | −0.01(−0.49) | ||||
Real effective exchange rate | −0.008(−2.19) ** | −0.007(−0.90) | −0.69(−1.92) ** | 0.10(0.49) | ||
Subsidy | −0.11(−3.29) *** | −0.05(−0.09) | ||||
Cereal | 0.005(2.14) ** | 0.008(2.79) *** | 0.10(1.68) * | |||
No. Obs. | 1232 | 1163 | 624 | 1639 | 1599 | 664 |
R2 | 0.66 | 0.64 | 0.8 | 0.44 | 0.46 | 0.56 |
J stats(p_value) | 7.50(0.11) | 8.79(0.26) | 0.01(0.99) | 3.41(0.75) | 3.91(0.56) | 9.34(0.15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odongo, M.T.; Misati, R.N.; Kamau, A.W.; Kisingu, K.N. Climate Change and Inflation in Eastern and Southern Africa. Sustainability 2022, 14, 14764. https://doi.org/10.3390/su142214764
Odongo MT, Misati RN, Kamau AW, Kisingu KN. Climate Change and Inflation in Eastern and Southern Africa. Sustainability. 2022; 14(22):14764. https://doi.org/10.3390/su142214764
Chicago/Turabian StyleOdongo, Maureen Teresa, Roseline Nyakerario Misati, Anne Wangari Kamau, and Kethi Ngoka Kisingu. 2022. "Climate Change and Inflation in Eastern and Southern Africa" Sustainability 14, no. 22: 14764. https://doi.org/10.3390/su142214764
APA StyleOdongo, M. T., Misati, R. N., Kamau, A. W., & Kisingu, K. N. (2022). Climate Change and Inflation in Eastern and Southern Africa. Sustainability, 14(22), 14764. https://doi.org/10.3390/su142214764