Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
- Conventionally managed and rain-fed: This 0.75 ha almond orchard is located in Alacón (41°1′53.8″ N, 0°42′43.7″ W). Almond trees (Belona, Mardía, and Vialfas cultivars grafted onto Garnem® rootstock) were planted in 2020 at 7 × 7 m spacings (204 trees ha−1). Soil at this site is a Calcisol [24,25], it is loamy textured (46.7% sand, 30.1% silt, and 23.2% clay), has a pH of 8.3, and the organic matter content is 1.4%. In the period 2004–2021, the annual mean temperature was 15.1 °C, the annual rainfall and reference evapotranspiration amounted to 375.4 and 1316.1 mm, respectively. Hereafter, this orchard will be designated as Alacón. This orchard represents a new use of a marginal land.
- Organically managed and irrigated: This 0.4 ha almond orchard is located in San Martín del Río (41°4′5.2″ N, 1°23′4.0″ W). Almond trees (Belona, Lauranne, Mardía, and Vialfas cultivars grafted onto Garnem®, Pilowred®, and Rootpac® 20 rootstocks) were planted in 2021 at 7 × 7 m spacings (204 trees ha−1). Soil at this site is a Calcic Luvisol [24,25], is sandy loamy textured (63.6% sand, 22.5% silt, and 13.9% clay), has a pH of 8.0, and the organic matter content is 2.1%. In the period 2006–2021, the annual mean temperature was 12.1 °C and the annual rainfall and reference evapotranspiration amounted to 364.7 and 964.5 mm, respectively. Hereafter, this orchard will be designated as San Martín. This orchard represents a new use of a riverbank.
- Organically managed and rainfed: This 0.2 ha almond orchard is located in Valdealgorfa (41°2′14.1″ N, 0°0′49.7″ W). Almond trees (Mardía cultivar grafted onto Garnem® rootstock) were planted in 2015 at 8 × 8 m spacings (156 trees ha−1). Soil at this site is a Calcisol [24,25], is sandy clay loamy textured (55.5% sand, 18.2% silt, and 26.3% clay), has a pH of 8.6, and the organic matter content is 1.4%. In the period 2004–2021, the annual mean temperature was 15.2 °C and the annual rainfall and reference evapotranspiration amounted to 339.6 and 1255.9 mm, respectively. Hereafter, this orchard will be designated as Valdealgorfa. This orchard represents a traditional use of a marginal land, following the principles of organic agriculture.
2.2. Sampling Collection and Laboratory Determinations
2.3. Soil Quality Assessment
- Bulk density (BD): The considered baseline was 1.6 g cm−3 because several studies on almond orchards reported BD around this value [33,34,35,36]. The lower limit was established at 1 g cm−3 because lower values may cause inadequate plant anchoring and a reduction in plant available water capacity [37].
- pH: Lower and upper baselines of 5.5 and 8.4, respectively, were adopted as they are considered as an optimal range for crop production [30].
- Electrical conductivity (EC): We considered an upper threshold of 4 dS m−1, as this is the limit indicated by Arquero [30]. However, the baseline was set to 1.6 dS m−1 since this value limits almond production.
- Total nitrogen (TN): The optimal range considered was from 0.11% to 0.2% [30].
- Total organic carbon (TOC): As for OM, soils in almond orchards are not expected to have high contents in organic carbon, so we set the baseline at 0.88%.
- Available phosphorus (AP): Arquero [30] reported optimal AP contents between 10 and 25 mg kg−1. Therefore, we used these values as lower and upper baselines, respectively.
- Cation exchange capacity (CEC): We considered 18 meq 100 g−1 as a baseline [30].
- Carbonate content: Values around 40% can compromise crop development, so we used this value as the upper threshold [30].
- Active limestone: Values higher than 9% can compromise crop performance, so we considered this value as the upper threshold [30].
- Available boron (AB): According to Arquero [30], soil boron contents higher than 0.6 mg kg−1 may pose problems to crop performance, so we used 0.5 mg kg−1 as a baseline.
2.4. Statistical Analysis
3. Results
3.1. Soil Quality Indicators: Comparison among Orchards
3.2. Soil Quality Score Cards
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maharjan, B.; Das, S.; Acharya, B.S. Soil Health Gap: A concept to establish a benchmark for soil health management. Global Ecol. Conserv. 2020, 23, e01116. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- FAO-ITPS. Status of the World’s Soil Resources (SWSR)–Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; p. 650. Available online: https://www.fao.org/3/i5199e/I5199E.pdf (accessed on 12 October 2022).
- Joint Research Centre, Institute for Environment and Sustainability. Soil Threats in Europe; Tesfai, M., Øygarden, L., Hessel, R., Panagos, P., Kværnø, S., Verheijen, F., Ballabio, C., Stolte, J., Keizer, J., Eds.; European Union Publications Office: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Tot. Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Ibricki, H.; Cetin, M.; Karnez, E.; Flügel, W.A.; Tilkici, B.; Bulbul, Y.; Ryan, J. Irrigation-induced nitrate losses assessed in a Mediterranean irrigation district. Agric. Water Manag. 2015, 148, 223–231. [Google Scholar] [CrossRef]
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; García-Franco, N.; Melgares de Aguilar, J.; González, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Keesstra, S.; Cerdà, A.; Brevik, E.C. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Sci. Total Environ. 2016, 571, 498–506. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Develop. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.E.; Benítez, E.; García, P.A.; Robles, A.B. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality. Appl. Soil Ecol. 2010, 44, 6–14. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosys. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Anuario de Estadística 2020; Secretaría General Técnica, Centro de Publicaciones. Gobierno de España: Madrid, Spain, 2021; p. 872. [Google Scholar]
- FAOSTAT. Crop and Livestock Products. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 October 2022).
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 3–21. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W.; Parkin, T.B. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 25–37. [Google Scholar] [CrossRef]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosys. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1963. [Google Scholar] [CrossRef]
- Karlen, D.L.; Stott, D.E. A framework fir evaluatinf physical and chemical indicators of soil quality. In Defining Soil Quality for a Sustainable Environment; SSSA Special Publication No. 35; Doran, J.W., Ed.; SSSA: Madison, WI, USA, 1994; pp. 53–72. [Google Scholar]
- Fernandes, J.C.; Gamero, C.A.; Rodrigues, J.G.L.; Mirás-Avalos, J.M. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil Till. Res. 2011, 112, 167–174. [Google Scholar] [CrossRef]
- Hussain, Z.; Deng, L.; Wang, X.; Cui, R.; Liu, G. A review of farmland soil health assessment methods: Current status and a novel approach. Sustainability 2022, 14, 9300. [Google Scholar] [CrossRef]
- Samaei, F.; Emami, H.; Lakzian, A. Assessing soil quality of pasture and agriculture land uses in Shandiz county, northwestern Iran. Ecol. Indic. 2022, 139, 108974. [Google Scholar] [CrossRef]
- Ibarra Benlloch, P. La diversidad edáfica del territorio aragonés. In Geografía Física de Aragón. Aspectos Generales y Temáticos; Peña, J.L., Longares, L.A., Sánchez, M., Eds.; Universidad de Zaragoza e Institución Fernando el Católico: Zaragoza, Spain, 2004; pp. 41–53. [Google Scholar]
- Badía-Villas, D.; del Moral, F. Soils of the arid areas. In The Soils of Spain; Gallardo, J.F., Ed.; World Soil Book Series; Springer International Publishing: Heidelberg, Germany; Cham, Switzerland, 2016; pp. 145–161. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. (Eds.) Soil Sampling Methods of Analysis; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and Exchange coefficients. In Methods of Soil Analysis Part 3 Chemical Methods; American Society of Agronomy: Madison, WI, USA, 1996; pp. 437–474. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; American Socitey of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Bagnall, D.K.; Morgan, C.L.S.; Cope, M.; Bean, G.M.; Cappellazzi, S.; Greub, K.; Liptzin, D.; Norris, C.L.; Rieke, E.; Tracy, P.; et al. Carbon-sensitive pedotransfer functions for plant available water. Soil Sci. Soc. Am. J. 2022, 86, 612–629. [Google Scholar] [CrossRef]
- Arquero, O. (Ed.) Manual del Almendro; Junta de Andalucía, Consejería de Agricultura, Pesca y Desarrollo Rural: Sevilla, Spain, 2013; pp. 16–18. [Google Scholar]
- Wymore, A.W. Model-Based System Engineering: An Introduction to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System Design; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Andrews, S.S.; Carroll, C.R. Designing a decision tool for sustainable agroecosystem management: Soil quality assessment of a poultry litter management case study. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.A.; González-Real, M.M.; Baille, A.; Domingo, R. Agronomic response and water productivity of almond trees under contrasted irrigation regimes. Agric. Water Manag. 2010, 97, 171–181. [Google Scholar] [CrossRef]
- Puerto, P.; Domingo, R.; Torres, R.; Pérez-Pastor, A.; García-Riquelme, M. Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield. Agric. Water Manag. 2013, 126, 33–45. [Google Scholar] [CrossRef]
- Espadafor, M.; Orgaz, F.; Testi, L.; Lorite, I.J.; García-Tejera, O.; Villalobos, F.J.; Fereres, E. Almond tree response to a change in wetted soil volume under drip irrigation. Agric. Water Manag. 2018, 202, 57–65. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Gutiérrez-Gordillo, S.; Souza, L.; Cuadros-Tavira, S.; Durán Zuazo, V.H. Fostering sustainable water use in almond (Prunus dulcis Mill.) orchards in a semiarid Mediterranean environment. Arch. Agron. Soil Sci. 2019, 65, 164–181. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 8 November 2021).
- Hussain, I.; Olson, K.R.; Wander, M.M.; Karlen, D.L. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Till. Res. 1999, 50, 237–249. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Andrews, P.K. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosys. Environ. 2000, 80, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Pirastru, M.; Niedda, M.; Ventrella, D. Comparing physical quality of tilled and no-tilled soils in an almond orchard in southern Italy. Ital. J. Agron. 2013, 8, 149–157. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Grecchio, C.; Pascazio, S.; de Giorgio, D. Impact of long term soil management practices on the fertility and weed flora of an almond orchard. Turk. J. Agric. For. 2016, 40, 194–202. [Google Scholar] [CrossRef]
- Raiesi, F.; Tavakoli, M. Developing a soil quality index model for assessing landscape-level soil quality along a toposequence in almond orchards using factor analysis. Model. Earth Syst. Environ. 2022, 8, 4035–4050. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Perez, M.; Almagro, M.; Garcia-Franco, N.; Díaz-Pereira, E. Long-term effects of sustainable management practices on soil properties and crop yields in rainfed Mediterranean almond agroecosystems. Eur. J. Agron. 2021, 123, 126207. [Google Scholar] [CrossRef]
- Silva, A.P.; Aires, A.; Barreales, D.; Rodrigues, M.Â.; Ribeiro, A.C.; Gonçalves, B.; Morais, M.C. Effects of foliar and soil boron fertilization on yield, leaf physiological traits and fruit attributes in rainfed almond orchards. Agronomy 2022, 12, 2005. [Google Scholar] [CrossRef]
- Villa, Y.B.; Khalsa, S.D.S.; Ryals, R.; Duncan, R.A.; Brown, P.H.; Hart, S.C. Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture. Nutr. Cycl. Agroecosyst. 2021, 120, 343–361. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodriguez-Lizana, A.; Cárceles Rodríguez, B.; García-Tejero, I.F.; Durán Zuazo, V.H.; Carbonell-Bojollo, R.M. Cover crop contributions to improve the soil nitrogen and carbon sequestration in almond orchards (SW Spain). Agronomy 2021, 11, 387. [Google Scholar] [CrossRef]
- Djemiel, C.; Dequiedt, S.; Karimi, B.; Cottin, A.; Horrigue, W.; Bailly, A.; Boutaleb, A.; Sadet-Bourgeteau, S.; Maron, P.-A.; Chemidin Prévost-Bouré, N.; et al. Potential of meta omics to provide modern microbial indicators for monitoring soil quality and securing food production. Front. Microbiol. 2022, 13, 889788. [Google Scholar] [CrossRef] [PubMed]
- Freitas, J.; Silva, P. Sustainable agricultural systems for fruit orchards: The influence of plant growth promoting bacteria on the soil biodiversity and nutrient management. Sustainability 2022, 14, 13952. [Google Scholar] [CrossRef]
Indicator | Units | Scoring Function | L | B | U | B1 | O | B2 | Slope at Baseline | Soil Function | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
BD | g cm−3 | Less is better | 1 | 1.6 | 2 | - | - | - | −5.005 | FB | [33,34,35,36,37] |
TP | % | Optimum | 18 | - | 60 | 25 | 43 | 50 | 0.1668 | WR | [33,35] |
pH | Optimum | 3 | - | 11 | 5.5 | 7 | 8.4 | 1.001 | NS | [30] | |
EC | dS m−1 | Less is better | 0 | 1.6 | 4 | - | - | - | −1.001 | WR | [30] |
TN | % | Optimum | 0 | - | 0.5 | 0.11 | 0.15 | 0.2 | 33.3667 | NS | [30] |
OM | More is better | 0.5 | 1.5 | 3 | - | - | - | 1.001 | NS | [33,36] | |
TOC | More is better | 0.29 | 0.88 | 2.2 | - | - | - | 1.001 | FB | [33,36] | |
AP | mg kg−1 | Optimum | 5 | - | 30 | 10 | 15 | 25 | 0.2503 | NS | [30] |
CEC | meq 100 g−1 | More is better | 13 | 18 | 25 | - | - | - | 1.001 | NS | [30] |
Carbonates | % | Less is better | 5 | 15 | 40 | - | - | - | −0.1001 | CL | [30] |
Limestone | Less is better | 0 | 6 | 9 | - | - | - | −0.05005 | CL | [30] | |
AB | mg kg−1 | Less is better | 0 | 0.5 | 3 | - | - | - | 0.5005 | CL | [30] |
WRC | % | More is better | 3 | 13 | 23 | - | - | - | 0.25025 | WR | [33,34,35,36] |
Soil Function | Indicator | Units | Alacón | San Martín | Valdealgorfa |
---|---|---|---|---|---|
Filtering and buffering | BD | g cm−3 | 1.86 ± 0.04 b | 1.69 ± 0.09 ab | 1.53 ± 0.09 a |
TOC * | % | 0.86 ± 0.03 ab | 1.21 ± 0.10 b | 0.79 ± 0.02 a | |
Nutrient supply | pH | - | 8.33 ± 0.11 b | 8.00 ± 0.04 a | 8.60 ± 0.03 c |
AP | mg kg−1 | 20.50 ± 2.52 ab | 26.10 ± 2.62 b | 17.05 ± 2.19 a | |
CEC | meq 100 g−1 | 19.99 ± 1.12 b | 15.02 ± 0.85 a | 17.52 ± 1.01 ab | |
TN | % | 0.08 ± 0.00 ab | 0.14 ± 0.01 b | 0.07 ± 0.00 a | |
OM | % | 1.48 ± 0.05 a | 2.08 ± 0.16 b | 1.37 ± 0.04 a | |
Water relations | WRC | % | 14.42 ± 0.51 a | 14.46 ± 0.31 a | 14.07 ± 0.26 a |
Tp | % | 30.05 ± 1.41 a | 36.21 ± 3.45 ab | 42.17 ± 3.34 b | |
EC | dS m−1 | 0.65 ± 0.27 ab | 0.42 ± 0.07 b | 0.13 ± 0.00 a | |
Crop limitation | Carbonates | % | 47.57 ± 2.06 b | 8.65 ± 1.48 a | 45.42 ± 1.69 b |
Limestone | % | 12.67 ± 0.23 b | 0.26 ± 0.12 a | 13.73 ± 0.21 c | |
AB | mg kg−1 | 0.31 ± 0.10 a | 0.64 ± 0.05 b | 0.14 ± 0.02 a |
Soil Function | Weight | QI 1 | Score of QI (A) | OMV | Standardized Score (B) | A × B | Sum of Scores | Sum of Scores × Weight | SQI |
---|---|---|---|---|---|---|---|---|---|
FB | 0.1 | BD | 0.5 | 1.85 | 0.01 | 0.005 | 0.245 | 0.025 | 0.554 |
TOC | 0.5 | 0.86 | 0.48 | 0.240 | |||||
NS | 0.4 | pH | 0.2 | 8.33 | 0.57 | 0.114 | 0.549 | 0.220 | |
AP | 0.2 | 20.50 | 0.99 | 0.198 | |||||
CEC | 0.2 | 19.99 | 0.69 | 0.138 | |||||
TN | 0.2 | 0.08 | 0.02 | 0.004 | |||||
OM | 0.2 | 1.48 | 0.48 | 0.096 | |||||
WR | 0.3 | WRC | 0.4 | 14.42 | 0.81 | 0.324 | 0.909 | 0.273 | |
Tp | 0.3 | 30.05 | 0.97 | 0.291 | |||||
EC | 0.3 | 0.65 | 0.98 | 0.294 | |||||
CL | 0.2 | Carbonates | 0.4 | 47.57 | 0.00 | 0.000 | 0.183 | 0.037 | |
Limestone | 0.3 | 12.67 | 0.01 | 0.003 | |||||
AB | 0.3 | 0.31 | 0.60 | 0.180 |
Soil Function | Weight | QI 1 | Score of QI (A) | OMV | Standardized Score (B) | A × B | Sum of Scores | Sum of Scores × Weight | SQI |
---|---|---|---|---|---|---|---|---|---|
FB | 0.1 | BD | 0.5 | 1.69 | 0.14 | 0.070 | 0.465 | 0.047 | 0.746 |
TOC | 0.5 | 1.21 | 0.79 | 0.395 | |||||
NS | 0.4 | pH | 0.2 | 8.00 | 0.83 | 0.166 | 0.644 | 0.258 | |
AP | 0.2 | 26.10 | 0.25 | 0.050 | |||||
CEC | 0.2 | 15.02 | 0.23 | 0.046 | |||||
TN | 0.2 | 0.14 | 0.99 | 0.200 | |||||
OM | 0.2 | 2.08 | 0.91 | 0.182 | |||||
WR | 0.3 | WRC | 0.4 | 14.46 | 0.81 | 0.324 | 0.924 | 0.277 | |
Tp | 0.3 | 36.21 | 1.00 | 0.300 | |||||
EC | 0.3 | 0.42 | 1.00 | 0.300 | |||||
CL | 0.2 | Carbonates | 0.4 | 8.65 | 0.99 | 0.396 | 0.825 | 0.165 | |
Limestone | 0.3 | 0.26 | 1.00 | 0.300 | |||||
AB | 0.3 | 0.64 | 0.43 | 0.129 |
Soil Function | Weight | QI 1 | Score of QI (A) | OMV | Standardized Score (B) | A × B | Sum of Scores | Sum of Scores × Weight | SQI |
---|---|---|---|---|---|---|---|---|---|
FB | 0.1 | BD | 0.5 | 1.53 | 0.79 | 0.395 | 0.600 | 0.060 | 0.542 |
TOC | 0.5 | 0.79 | 0.41 | 0.205 | |||||
NS | 0.4 | pH | 0.2 | 8.60 | 0.31 | 0.062 | 0.427 | 0.171 | |
AP | 0.2 | 17.05 | 1.00 | 0.200 | |||||
CEC | 0.2 | 17.52 | 0.45 | 0.090 | |||||
TN | 0.2 | 0.07 | 0.01 | 0.001 | |||||
OM | 0.2 | 1.37 | 0.37 | 0.074 | |||||
WR | 0.3 | WRC | 0.4 | 14.07 | 0.75 | 0.300 | 0.897 | 0.269 | |
Tp | 0.3 | 42.16 | 0.99 | 0.297 | |||||
EC | 0.3 | 0.13 | 1.00 | 0.300 | |||||
CL | 0.2 | Carbonates | 0.4 | 45.42 | 0.00 | 0.000 | 0.210 | 0.042 | |
Limestone | 0.3 | 13.73 | 0.00 | 0.000 | |||||
AB | 0.3 | 0.14 | 0.70 | 0.210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirás-Avalos, J.M.; Marco, P.; Sánchez, S.; Bielsa, B.; Rubio Cabetas, M.J.; González, V. Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions. Sustainability 2022, 14, 14770. https://doi.org/10.3390/su142214770
Mirás-Avalos JM, Marco P, Sánchez S, Bielsa B, Rubio Cabetas MJ, González V. Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions. Sustainability. 2022; 14(22):14770. https://doi.org/10.3390/su142214770
Chicago/Turabian StyleMirás-Avalos, José Manuel, Pedro Marco, Sergio Sánchez, Beatriz Bielsa, María José Rubio Cabetas, and Vicente González. 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions" Sustainability 14, no. 22: 14770. https://doi.org/10.3390/su142214770
APA StyleMirás-Avalos, J. M., Marco, P., Sánchez, S., Bielsa, B., Rubio Cabetas, M. J., & González, V. (2022). Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions. Sustainability, 14(22), 14770. https://doi.org/10.3390/su142214770