Factors Associated with SARS-CoV-2 Positivity in Patients Treated at the Lambayeque Regional Hospital, Peru during a Pandemic Period
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.2. Population and Samples
2.3. Procedures
2.4. Statistical Processing and Analysis
2.5. Ethics
3. Results
4. Discussion
4.1. SARS-CoV-2 Positivity
4.2. Factors Associated with SARS-CoV-2 Positivity
Implications of Findings for Public Health-Epidemiology
4.3. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rondón, M.B. Salud mental: Un problema de salud pública en el Perú. Rev. Peru. De Med. Exp. Y Salud Publica 2006, 23, 237–238. [Google Scholar]
- World Health Organization. Novel Coronavirus (2019-nCoV) Report No.: Situation Report-1. Available online: https://apps.who.int/iris/handle/10665/330760?locale-attribute=es& (accessed on 5 May 2022).
- Díaz-Vélez, C.; Failoc-Rojas, V.E.; Valladares-Garrido, M.J.; Colchado, J.; Carrera-Acosta, L.; Becerra, M.; Moreno Paico, D.; Ocampo-Salazar, E.T. SARS-CoV-2 seroprevalence study in Lambayeque, Peru. June-July 2020. PeerJ 2021, 9, e11210. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.-J.; Rabheru, K.; Peisah, C.; Reichman, W.; Ikeda, M. Loneliness and social isolation during the COVID-19 pandemic. Int. Psychogeriatr. 2020, 32, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Pietrabissa, G.; Simpson, S.G. Psychological Consequences of Social Isolation During COVID-19 Outbreak. Front. Psychol. 2020, 11, 2201. [Google Scholar] [CrossRef]
- Hamza, C.A.; Ewing, L.; Heath, N.L.; Goldstein, A.L. When social isolation is nothing new: A longitudinal study on psychological distress during COVID-19 among university students with and without preexisting mental health concerns. Can. Psychol. Psychol. Can. 2021, 62, 20–30. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wall, T.; Rayman-Bacchus, L.; Mifsud, M.; Pritchard, D.J.; Lovren, V.O.; Farinha, C.; Petrovic, D.S.; Balogun, A.-L. Impacts of COVID-19 and social isolation on academic staff and students at universities: A cross-sectional study. BMC Public Health 2021, 21, 1213. [Google Scholar] [CrossRef]
- Sun, C.; Zhai, Z. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 2020, 62, 102390. [Google Scholar] [CrossRef]
- Vokó, Z.; Pitter, J.G. The effect of social distance measures on COVID-19 epidemics in Europe: An interrupted time series analysis. GeroScience 2020, 42, 1075–1082. [Google Scholar] [CrossRef]
- Olivera-La Rosa, A.; Chuquichambi, E.G.; Ingram, G.P.D. Keep your (social) distance: Pathogen concerns and social perception in the time of COVID-19. Personal. Individ. Differ. 2020, 166, 110200. [Google Scholar] [CrossRef]
- Echeverría Ibazeta, R.R.; Sueyoshi Hernandez, J.H. Epidemiological situation of COVID-19 in South America. Rev. Fac. Med. Hum. 2020, 20, 521–523. [Google Scholar]
- Xiao, X.; Zhu, X.; Fu, S.; Hu, Y.; Li, X.; Xiao, J. Psychological impact of healthcare workers in China during COVID-19 pneumonia epidemic: A multi-center cross-sectional survey investigation. J. Affect. Disord. 2020, 274, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Kola, L.; Kohrt, B.A.; Hanlon, C.; Naslund, J.A.; Sikander, S.; Balaji, M.; Benjet, C.; Cheung, E.Y.L.; Eaton, J.; Gonsalves, P.; et al. COVID-19 mental health impact and responses in low-income and middle-income countries: Reimagining global mental health. Lancet Psychiatry 2021, 8, 535–550. [Google Scholar] [CrossRef]
- Panchal, U.; Salazar de Pablo, G.; Franco, M.; Moreno, C.; Parellada, M.; Arango, C.; Fusar-Poli, P. The impact of COVID-19 lockdown on child and adolescent mental health: Systematic review. Eur. Child Adolesc. Psychiatry 2021, 1–27. [Google Scholar] [CrossRef]
- Yan, J.; Kim, S.; Zhang, S.X.; Foo, M.-D.; Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Yáñez, J.A. Hospitality workers’ COVID-19 risk perception and depression: A contingent model based on transactional theory of stress model. Int. J. Hosp. Manag. 2021, 95, 102935. [Google Scholar] [CrossRef]
- Alvarez-Risco, A.; Estrada-Merino, A.; Anderson-Seminario, M.d.l.M.; Mlodzianowska, S.; García-Ibarra, V.; Villagomez-Buele, C.; Carvache-Franco, M. Multitasking behavior in online classrooms and academic performance: Case of university students in Ecuador during COVID-19 outbreak. Interact. Technol. Smart Educ. 2021, 18, 422–434. [Google Scholar] [CrossRef]
- Zhang, S.X.; Sun, S.; Afshar Jahanshahi, A.; Alvarez-Risco, A.; Ibarra, V.G.; Li, J.; Patty-Tito, R.M. Developing and testing a measure of COVID-19 organizational support of healthcare workers—Results from Peru, Ecuador, and Bolivia. Psychiatry Res. 2020, 291, 113174. [Google Scholar] [CrossRef] [PubMed]
- Fruehwirth, J.C.; Biswas, S.; Perreira, K.M. The Covid-19 pandemic and mental health of first-year college students: Examining the effect of Covid-19 stressors using longitudinal data. PLoS ONE 2021, 16, e0247999. [Google Scholar] [CrossRef]
- Kim, A.W.; Nyengerai, T.; Mendenhall, E. Evaluating the mental health impacts of the COVID-19 pandemic: Perceived risk of COVID-19 infection and childhood trauma predict adult depressive symptoms in urban South Africa. Psychol. Med. 2022, 52, 1587–1599. [Google Scholar] [CrossRef]
- Wilbiks, J.M.P.; Best, L.A.; Law, M.A.; Roach, S.P. Evaluating the mental health and well-being of Canadian healthcare workers during the COVID-19 outbreak. Healthc. Manag. Forum 2021, 34, 205–210. [Google Scholar] [CrossRef]
- Botha, F.; Butterworth, P.; Wilkins, R. Evaluating How Mental Health Changed in Australia through the COVID-19 Pandemic: Findings from the ‘Taking the Pulse of the Nation’ (TTPN) Survey. Int. J. Environ. Res. Public Health 2022, 19, 558. [Google Scholar] [CrossRef]
- Lugo-Marín, J.; Gisbert-Gustemps, L.; Setien-Ramos, I.; Español-Martín, G.; Ibañez-Jimenez, P.; Forner-Puntonet, M.; Arteaga-Henríquez, G.; Soriano-Día, A.; Duque-Yemail, J.D.; Ramos-Quiroga, J.A. COVID-19 pandemic effects in people with Autism Spectrum Disorder and their caregivers: Evaluation of social distancing and lockdown impact on mental health and general status. Res. Autism Spectr. Disord. 2021, 83, 101757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Chen, J.; Afshar Jahanshahi, A.; Alvarez-Risco, A.; Dai, H.; Li, J.; Patty-Tito, R.M. Succumbing to the COVID-19 Pandemic-Healthcare Workers Not Satisfied and Intend to Leave Their Jobs. Int. J. Ment. Health Addict. 2022, 20, 956–965, Erratum in Int. J. Ment. Health Addict. 2022, 20, 2115. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.A.; Jahanshahi, A.A.; Alvarez-Risco, A.; Li, J.; Zhang, S.X. Anxiety, distress, and turnover intention of healthcare workers in Peru by their distance to the epicenter during the COVID-19 crisis. Am. J. Trop. Med. Hyg. 2020, 103, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Rojas Román, B.; Moscoso, S.; Chung, S.A.; Limpias Terceros, B.; Álvarez-Risco, A.; Yáñez, J.A. Tratamiento de la COVID-19 en Perú y Bolivia y los riesgos de la automedicación. Rev. Cuba. De Farm. 2020, 53, 1–32. [Google Scholar]
- Yáñez, J.A.; Chung, S.A.; Román, B.R.; Hernández-Yépez, P.J.; Garcia-Solorzano, F.O.; Del-Aguila-Arcentales, S.; Inga-Berrospi, F.; Mejia, C.R.; Alvarez-Risco, A. Prescription, over-the-counter (OTC), herbal, and other treatments and preventive uses for COVID-19. In Environmental and Health Management of Novel Coronavirus Disease (COVID-19); Hadi Dehghani, M., Karri, R.R., Roy, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 379–416. [Google Scholar]
- Yáñez, J.A.; Alvarez-Risco, A.; Delgado-Zegarra, J. Covid-19 in Peru: From supervised walks for children to the first case of Kawasaki-like syndrome. BMJ 2020, 369, m2418. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Yanez, J.A. Telemedicine in Peru as a Result of the COVID-19 Pandemic: Perspective from a Country with Limited Internet Access. Am. J. Trop. Med. Hyg. 2021, 105, 6–11. [Google Scholar] [CrossRef]
- Alvarez-Risco, A.; Mejia, C.R.; Delgado-Zegarra, J.; Del-Aguila-Arcentales, S.; Arce-Esquivel, A.A.; Valladares-Garrido, M.J.; Del Portal, M.R.; Villegas, L.F.; Curioso, W.H.; Sekar, M.C.; et al. The Peru approach against the COVID-19 infodemic: Insights and strategies. Am. J. Trop. Med. Hyg. 2020, 103, 583–586. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.X.; Jahanshahi, A.A.; Alvarez-Risco, A.; Dai, H.; Li, J.; Ibarra, V.G. Belief in a COVID-19 Conspiracy Theory as a Predictor of Mental Health and Well-Being of Health Care Workers in Ecuador: Cross-Sectional Survey Study. JMIR Public Health Surveill. 2020, 6, e20737. [Google Scholar] [CrossRef]
- Chung, S.A.; Rebollo, A.; Quiroga, A.; Paes, I.; Yáñez, J.A. Factores de riesgo de ansiedad en estudiantes de Bolivia durante la pandemia de la COVID-19. Rev. Cuba. De Farm. 2021, 54, 1–18. [Google Scholar]
- Chen, J.; Zhang, S.X.; Yin, A.; Yáñez, J.A. Mental health symptoms during the COVID-19 pandemic in developing countries: A systematic review and meta-analysis. J. Glob. Health 2022, 12, 05011. [Google Scholar] [CrossRef]
- Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Yáñez, J.A.; Rosen, M.A.; Mejia, C.R. Influence of Technostress on Academic Performance of University Medicine Students in Peru during the COVID-19 Pandemic. Sustainability 2021, 13, 8949. [Google Scholar] [CrossRef]
- Gonzáles-Gutierrez, V.; Alvarez-Risco, A.; Estrada-Merino, A.; Anderson-Seminario, M.d.l.M.; Mlodzianowska, S.; Del-Aguila-Arcentales, S.; Yáñez, J.-A. Multitasking Behavior and Perceptions of Academic Performance in University Business Students in Mexico during the COVID-19 Pandemic. Int. J. Ment. Health Promot. 2022, 24, 565–581. [Google Scholar] [CrossRef]
- Petrova, D.; Salamanca-Fernández, E.; Rodríguez Barranco, M.; Navarro Pérez, P.; Jiménez Moleón, J.J.; Sánchez, M.-J. La obesidad como factor de riesgo en personas con COVID-19: Posibles mecanismos e implicaciones. Aten. Primaria 2020, 52, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Aquino, M.; Trinidad, V.G.C.; Alvarez-Risco, A.; Yáñez, J.-A. Properties of a Scale of Self-Care Behaviors Facing COVID-19: An Exploratory Analysis in a Sample of University Students in Huanuco, Peru. Int. J. Ment. Health Promot. 2022, 24, 959–974. [Google Scholar] [CrossRef]
- Quispe-Cañari, J.F.; Fidel-Rosales, E.; Manrique, D.; Mascaró-Zan, J.; Huamán-Castillón, K.M.; Chamorro–Espinoza, S.E.; Garayar–Peceros, H.; Ponce–López, V.L.; Sifuentes-Rosales, J.; Alvarez-Risco, A.; et al. Self-medication practices during the COVID-19 pandemic among the adult population in Peru: A cross-sectional survey. Saudi Pharm. J. 2021, 29, 1–11. [Google Scholar] [CrossRef]
- Villena-Tejada, M.; Vera-Ferchau, I.; Cardona-Rivero, A.; Zamalloa-Cornejo, R.; Quispe-Florez, M.; Frisancho-Triveño, Z.; Abarca-Meléndez, R.C.; Alvarez-Sucari, S.G.; Mejia, C.R.; Yañez, J.A. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS ONE 2021, 16, e0257165. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Yáñez, J.; Dunne, C.; Davies, N.; Barbosa-Cánovas, G. Study of strawberry flavored milk under pulsed electric field processing. Food Res. Int. 2010, 43, 2201–2207. [Google Scholar] [CrossRef] [Green Version]
- Yáñez, J.A.; Miranda, N.D.; Remsberg, C.M.; Ohgami, Y.; Davies, N.M. Stereospecific high-performance liquid chromatographic analysis of eriodictyol in urine. J. Pharm. Biomed. Anal. 2007, 43, 255–262. [Google Scholar] [CrossRef]
- Vega-Villa, K.R.; Remsberg, C.M.; Ohgami, Y.; Yanez, J.A.; Takemoto, J.K.; Andrews, P.K.; Davies, N.M. Stereospecific high-performance liquid chromatography of taxifolin, applications in pharmacokinetics, and determination in tu fu ling (Rhizoma smilacis glabrae) and apple (Malus x domestica). Biomed. Chromatogr. 2009, 23, 638–646. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Santos-Buelga, C.; Pérez-Alonso, J.J.; Yáñez, J.A.; Dueñas, M. HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol. 2010, 230, 745–752. [Google Scholar] [CrossRef]
- Roupe, K.A.; Helms, G.L.; Halls, S.C.; Yanez, J.A.; Davies, N.M. Preparative enzymatic synthesis and HPLC analysis of rhapontigenin: Applications to metabolism, pharmacokinetics and anti-cancer studies. J. Pharm Pharm Sci. 2005, 8, 374–386. [Google Scholar] [PubMed]
- Yáñez, J.A.; Remsberg, C.M.; Takemoto, J.K.; Vega-Villa, K.R.; Andrews, P.K.; Sayre, C.L.; Martinez, S.E.; Davies, N.M. Polyphenols and Flavonoids: An Overview. In Flavonoid Pharmacokinetics: Methods of Analysis, Preclinical and Clinical Pharmacokinetics, Safety, and Toxicology; Davies, N.M., Yáñez, J.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–69. [Google Scholar]
- Bonin, A.M.; Yáñez, J.A.; Fukuda, C.; Teng, X.W.; Dillon, C.T.; Hambley, T.W.; Lay, P.A.; Davies, N.M. Inhibition of experimental colorectal cancer and reduction in renal and gastrointestinal toxicities by copper-indomethacin in rats. Cancer Chemother. Pharmacol. 2010, 66, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.A.; Teng, X.W.; Roupe, K.A.; Davies, N.M. Stereospecific high-performance liquid chromatographic analysis of hesperetin in biological matrices. J. Pharm. Biomed. Anal. 2005, 37, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Remsberg, C.M.; Yanez, J.A.; Roupe, K.A.; Davies, N.M. High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection. J. Pharm. Biomed. Anal. 2007, 43, 250–254. [Google Scholar] [CrossRef]
- Xiong, M.P.; Yáñez, J.A.; Kwon, G.S.; Davies, N.M.; Forrest, M.L. A cremophor-free formulation for tanespimycin (17-AAG) using PEO-b-PDLLA micelles: Characterization and pharmacokinetics in rats. J. Pharm. Sci. 2009, 98, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Yanez, J.A.; Davies, N.M. Stereospecific high-performance liquid chromatographic analysis of naringenin in urine. J. Pharm. Biomed. Anal. 2005, 39, 164–169. [Google Scholar] [CrossRef]
- Delgado-Zegarra, J.; Alvarez-Risco, A.; Cárdenas, C.; Donoso, M.; Moscoso, S.; Rojas Román, B.; Del-Aguila-Arcentales, S.; Davies, N.M.; Yáñez, J.A. Labeling of Genetically Modified (GM) Foods in Peru: Current Dogma and Insights of the Regulatory and Legal Statutes. Int. J. Food Sci. 2022, 2022, 3489785. [Google Scholar] [CrossRef]
- Carhuapoma-Yance, M.; Apolaya-Segura, M.; Valladares-Garrido, M.J.; Failoc-Rojas, V.E.; Díaz-Vélez, C. Índice desarrollo humano y la tasa de letalidad por Covid-19: Estudio ecológico en america. Rev. Del Cuerpo Médico Hosp. Nac. Almanzor Aguinaga Asenjo 2021, 14, 362–366. [Google Scholar] [CrossRef]
- León-Jiménez, F.; Vives-Kufoy, C.; Failoc-Rojas, V.E.; Valladares-Garrido, M.J. Mortality in patients hospitalized with COVID-19 in northern Peru. Rev. Med. De Chile 2021, 149, 1459–1466. [Google Scholar] [CrossRef]
- Wang, J.J.; Edin, M.L.; Zeldin, D.C.; Li, C.; Wang, D.W.; Chen, C. Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol. Ther. 2020, 215, 107628. [Google Scholar] [CrossRef]
- Bienvenu, L.A.; Noonan, J.; Wang, X.; Peter, K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc. Res. 2020, 116, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Phelps, M.; Christensen, D.M.; Gerds, T.; Fosbøl, E.; Torp-Pedersen, C.; Schou, M.; Køber, L.; Kragholm, K.; Andersson, C.; Biering-Sørensen, T.; et al. Cardiovascular comorbidities as predictors for severe COVID-19 infection or death. Eur. Heart J. —Qual. Care Clin. Outcomes 2021, 7, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.A.; Ahmed, Z.; Younas, S. COVID-19 and comorbidities: Deleterious impact on infected patients. J. Infect. Public Health 2020, 13, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Emmi, A.; Barbon, S.; Boscolo-Berto, R.; Stecco, C.; Stocco, E.; Macchi, V.; De Caro, R. Sympathetic activation: A potential link between comorbidities and COVID-19. FEBS J. 2020, 287, 3681–3688. [Google Scholar] [CrossRef] [PubMed]
- Parra-Bracamonte, G.M.; Parra-Bracamonte, F.E.; Lopez-Villalobos, N.; Lara-Rivera, A.L. Chronic kidney disease is a very significant comorbidity for high risk of death in patients with COVID-19 in Mexico. Nephrology 2021, 26, 248–251. [Google Scholar] [CrossRef]
- Singh, J.; Malik, P.; Patel, N.; Pothuru, S.; Israni, A.; Chakinala, R.C.; Hussain, M.R.; Chidharla, A.; Patel, H.; Patel, S.K.; et al. Kidney disease and COVID-19 disease severity—Systematic review and meta-analysis. Clin. Exp. Med. 2022, 22, 125–135. [Google Scholar] [CrossRef]
- Gibertoni, D.; Reno, C.; Rucci, P.; Fantini, M.P.; Buscaroli, A.; Mosconi, G.; Rigotti, A.; Giudicissi, A.; Mambelli, E.; Righini, M.; et al. COVID-19 incidence and mortality in non-dialysis chronic kidney disease patients. PLoS ONE 2021, 16, e0254525. [Google Scholar] [CrossRef]
- Gok, M.; Cetinkaya, H.; Kandemir, T.; Karahan, E.; Tuncer, İ.B.; Bukrek, C.; Sahin, G. Chronic kidney disease predicts poor outcomes of COVID-19 patients. Int. Urol. Nephrol. 2021, 53, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Hannawi, H.; Salmi, I.A.; Naeem, K.B.; Alokaily, F.; Hannawi, S. Diabetes mellitus as a comorbidity in COVID-19 infection in the United Arab Emirates. Saudi Med. J. 2021, 42, 170. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care 2020, 43, 1399–1407. [Google Scholar] [CrossRef]
- Mithal, A.; Jevalikar, G.; Sharma, R.; Singh, A.; Farooqui, K.J.; Mahendru, S.; Krishnamurthy, A.; Dewan, A.; Budhiraja, S. High prevalence of diabetes and other comorbidities in hospitalized patients with COVID-19 in Delhi, India, and their association with outcomes. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.J.; Liu, J.; Chen, Y.; Ye, B.; Li, N.; Wang, X.; Tang, M.; Shao, J. Characteristics of laboratory findings of COVID-19 patients with comorbid diabetes mellitus. Diabetes Res. Clin. Pract. 2020, 167, 108351. [Google Scholar] [CrossRef]
- Singh, A.K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kamyshnyi, A.; Krynytska, I.; Matskevych, V.; Marushchak, M.; Lushchak, O. Arterial Hypertension as a Risk Comorbidity Associated with COVID-19 Pathology. Int. J. Hypertens. 2020, 2020, 8019360. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Mancia, G.; Dell’Oro, R.; Grassi, G. COVID-19, hypertension and cardiovascular diseases: Should we change the therapy? Pharmacol. Res. 2020, 158, 104906. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Grassi, G.; Mancia, G. COVID-19 and arterial hypertension: Hypothesis or evidence? J. Clin. Hypertens. 2020, 22, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, E.L.; Flack, J.M.; Ito, S.; Muntner, P.; Webb, R.C. Hypertension and COVID-19. Am. J. Hypertens. 2020, 33, 373–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Gupta, R.; Misra, A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 283–287. [Google Scholar] [CrossRef]
- Fresán, U.; Guevara, M.; Trobajo-Sanmartín, C.; Burgui, C.; Ezpeleta, C.; Castilla, J. Hypertension and Related Comorbidities as Potential Risk Factors for COVID-19 Hospitalization and Severity: A Prospective Population-Based Cohort Study. J. Clin. Med. 2021, 10, 1194. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.a.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Leidman, E.; Doocy, S.; Heymsfield, G.; Sebushishe, A.; Mbong, E.N.; Majer, J.; IMC-CDC COVID-19 Research Team; Bollemeijer, I. Risk factors for hospitalisation and death from COVID-19: A prospective cohort study in South Sudan and Eastern Democratic Republic of the Congo. BMJ Open 2022, 12, e060639. [Google Scholar] [CrossRef] [PubMed]
- Aghili, S.M.M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Pejman Sani, M.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis. Int. J. Obes. 2021, 45, 998–1016. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Garduño, E. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes. Res. Clin. Pract. 2020, 14, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Pettit, N.N.; MacKenzie, E.L.; Ridgway, J.P.; Pursell, K.; Ash, D.; Patel, B.; Pho, M.T. Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. Obesity 2020, 28, 1806–1810. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Pongpirul, W.A.; Wiboonchutikul, S.; Charoenpong, L.; Panitantum, N.; Vachiraphan, A.; Uttayamakul, S.; Pongpirul, K.; Manosuthi, W.; Prasithsirikul, W. Clinical course and potential predictive factors for pneumonia of adult patients with Coronavirus Disease 2019 (COVID-19): A retrospective observational analysis of 193 confirmed cases in Thailand. PLoS Negl. Trop. Dis. 2020, 14, e0008806. [Google Scholar] [CrossRef]
- Azizi, Z.; Shiba, Y.; Alipour, P.; Maleki, F.; Raparelli, V.; Norris, C.; Forghani, R.; Pilote, L.; El Emam, K. Importance of sex and gender factors for COVID-19 infection and hospitalisation: A sex-stratified analysis using machine learning in UK Biobank data. BMJ Open 2022, 12, e050450. [Google Scholar] [CrossRef]
- Murray, C.J.L. COVID-19 will continue but the end of the pandemic is near. Lancet 2022, 399, 417–419. [Google Scholar] [CrossRef]
- Moreira-Soto, A.; Pachamora Diaz, J.M.; González-Auza, L.; Merino Merino, X.J.; Schwalb, A.; Drosten, C.; Gotuzzo, E.; Talledo, M.; Arévalo Ramirez, H.; Peralta Delgado, R.; et al. High SARS-CoV-2 Seroprevalence in Rural Peru, 2021: A Cross-Sectional Population-Based Study. Msphere 2021, 6, e00685-00621. [Google Scholar] [CrossRef]
- Vera-Ponce, V.J.; Mendez-Aguilar, P.; Ichiro-Peralta, C.; Failoc-Rojas, V.E.; Valladares-Garrido, M.J. Factores asociados a seropositividad para SARS-CoV-2 en pacientes atendidos en un hospital de zona altoandina peruana. Rev. Del Cuerpo Médico Hosp. Nac. Almanzor Aguinaga Asenjo 2021, 14, 8–12. [Google Scholar] [CrossRef]
- Reyes-Vega, M.F.; Soto-Cabezas, M.G.; Cárdenas, F.; Martel, K.S.; Valle, A.; Valverde, J.; Vidal-Anzardo, M.; Falcón, M.E.; Munayco, C.V. SARS-CoV-2 prevalence associated to low socioeconomic status and overcrowding in an LMIC megacity: A population-based seroepidemiological survey in Lima, Peru. EClinicalMedicine 2021, 34, 100801. [Google Scholar] [CrossRef]
- Álvarez-Antonio, C.; Meza-Sánchez, G.; Calampa, C.; Casanova, W.; Carey, C.; Alava, F.; Rodríguez-Ferrucci, H.; Quispe, A.M. Seroprevalence of anti-SARS-CoV-2 antibodies in Iquitos, Peru in July and August, 2020: A population-based study. Lancet Glob. Health 2021, 9, e925–e931. [Google Scholar] [CrossRef]
- Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A.; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.G.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef]
- Bergeri, I.; Whelan, M.; Ware, H.; Subissi, L.; Nardone, A.; Lewis, H.C.; Li, Z.; Ma, X.; Valenciano, M.; Cheng, B.; et al. Global epidemiology of SARS-CoV-2 infection: A systematic review and meta-analysis of standardized population-based seroprevalence studies, Jan 2020-Dec 2021. MedRxiv 2021. [Google Scholar] [CrossRef]
- Shadmi, E.; Chen, Y.; Dourado, I.; Faran-Perach, I.; Furler, J.; Hangoma, P.; Hanvoravongchai, P.; Obando, C.; Petrosyan, V.; Rao, K.D.; et al. Health equity and COVID-19: Global perspectives. Int. J. Equity Health 2020, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Lipsitch, M.; Cevik, M. On the Effect of Age on the Transmission of SARS-CoV-2 in Households, Schools, and the Community. J. Infect. Dis. 2021, 223, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Piersiala, K.; Kakabas, L.; Bruckova, A.; Starkhammar, M.; Cardell, L.O. Acute odynophagia: A new symptom of COVID-19 during the SARS-CoV-2 Omicron variant wave in Sweden. J. Intern. Med. 2022, 292, 154–161. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Wang, Y.; Yin, W.; Liu, T.; Liu, D.; Li, D.; Feng, M.; Zhang, Y.; Liang, Z.; et al. Characteristics of Pulmonary Auscultation in Patients with 2019 Novel Coronavirus in China. Respiration 2020, 99, 755–763. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Gupta, Y.; Kalaivani, M.; Praveen, P.A.; Ambekar, S.; Tandon, N. SARS-CoV-2 Seroprevalence in Individuals With Type 1 and Type 2 Diabetes Compared With Controls. Endocr. Pract. 2022, 28, 191–198. [Google Scholar] [CrossRef]
- Pranata, R.; Henrina, J.; Raffaello, W.M.; Lawrensia, S.; Huang, I. Diabetes and COVID-19: The past, the present, and the future. Metab.-Clin. Exp. 2021, 121, 154814. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lu, Y.; Huang, Y.-M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.-L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.; Adam, S.; Ho, J.H.; Iqbal, Z.; Turkington, P.; Razvi, S.; Le Roux, C.W.; Soran, H.; Syed, A.A. Obesity: A critical risk factor in the COVID-19 pandemic. Clin. Obes. 2020, 10, e12403. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) | |
---|---|---|
Age (year) ‡ | 45.0 ± 22.51 | |
Age (categorized) | ||
Children | 942 (10.6) | |
Teenager | 120 (1.4) | |
Young adult | 942 (10.6) | |
Adult | 4295 (48.4) | |
Elderly | 2585 (29.1) | |
Sex | ||
Male | 4481 (50.4) | |
Female | 4403 (49.6) | |
Symptoms (Yes) | ||
Fever | 2714 (35.9) | |
Chill | 604 (8.1) | |
General discomfort | 3748 (48.7) | |
Cough | 5030 (65.0) | |
Throat pain | 2260 (30.0) | |
Nasal congestion | 1116 (14.9) | |
Diarrhea | 643 (8.7) | |
Nausea | 411 (5.6) | |
Headache | 1314 (17.6) | |
Irritability | 165 (2.3) | |
Muscle pain | 1203 (16.2) | |
Abdominal pain | 263 (3.6) | |
Chest pain | 619 (8.4) | |
Joint pain | 448 (6.1) | |
Anosmia | 40 (0.6) | |
Ageusia | 28 (0.4) | |
Earache | 6 (0.1) | |
Signs (Yes) | ||
Pharyngeal exudate | 154 (2.1) | |
Conjunctival injection/hyperemia | 59 (0.8) | |
Convulsion | 37 (0.5) | |
Dyspnea/tachypnea | 2182 (28.7) | |
Abnormal lung auscultation | 753 (10.1) | |
Abnormal findings on radiography | 238 (3.2) | |
Abnormal findings on ultrasound | 11 (0.2) | |
Abnormal findings on tomography | 77 (1.1) | |
Abnormal findings on MRI | 363 (98.11) | |
Comorbidity-risk factors | ||
Heart disease | 953 (12.7) | |
Mellitus diabetes | 651 (8.8) | |
Cerebrovascular disease | 11 (0.2) | |
Down’s Syndrome | 2 (0.0) | |
Obesity | 228 (3.1) | |
Pregnancy | 348 (4.7) | |
HIV | 27 (0.4) | |
Chronic kidney disease | 362 (4.9) | |
Chronic lung disease | 64 (0.9) | |
Cancer | 267 (3.6) | |
Contact with COVID-19 case | ||
No | 212 (78.9) | |
Yes | 57 (21.1) | |
Confirmed COVID-19 | ||
No | 3769 (42.4) | |
Yes | 5115 (57.6) |
Characteristics | Seropositivity | p-Value | ||
---|---|---|---|---|
Negative (n = 379) | Positive (n = 5115) | |||
n (%) | n (%) | |||
Age (years) † | 40.16 ± 23.36 | 48.55 ± 21.17 | <0.001 | |
Age (category) | <0.001 | |||
Children | 590 (62.6) | 352 (37.4) | ||
Teenager | 69 (57.5) | 51 (42.5) | ||
Young adult | 456 (48.4) | 486 (51.6) | ||
Adult | 1796 (41.8) | 2499 (58.2) | ||
Elderly | 858 (33.2) | 1727 (66.8) | ||
Sex | ||||
Female | 2056 (45.9) | 2425 (54.1) | <0.001 | |
Male | 1713 (38.9) | 2690 (61.1) | <0.001 | |
Symptoms (Yes) | ||||
Fever | 609 (22.4) | 2105 (77.6) | <0.001 | |
Chills | 149 (24.7) | 455 (75.3) | <0.001 | |
General discomfort | 954 (25.5) | 2794 (74.6) | <0.001 | |
Cough | 1815 (36.1) | 3215 (63.9) | <0.001 | |
Sore throat | 610 (27.0) | 1650 (73.0) | <0.001 | |
Nasal congestion | 343 (30.7) | 773 (69.3) | <0.001 | |
Diarrhea | 208 (32.3) | 435 (67.7) | 0.001 | |
Nausea | 161 (39.2) | 250 (60.8) | 0.814 | |
Headache | 436 (33.2) | 878 (66.8) | <0.001 | |
Irritability | 73 (44.2) | 92 (55.8) | 0.127 | |
Muscle pain | 344 (28.6) | 859 (71.4) | <0.001 | |
Abdominal pain | 93 (35.4) | 170 (64.6) | 0.305 | |
Chest pain | 170 (27.5) | 449 (72.5) | <0.001 | |
Joint pain | 155 (34.6) | 293 (65.4) | 0.084 | |
Anosmia | 12 (30.0) | 28 (70.0) | 0.275 | |
Ageusia | 6 (21.4) | 22 (78.6) | 0.065 | |
Earache | 2 (33.3) | 4 (66.7) | 0.799 | |
Signs (Yes) | ||||
Pharyngeal exudate | 56 (36.4) | 98 (63.6) | 0.584 | |
Conjunctival injection/hyperemia | 19 (32.2) | 40 (67.8) | 0.325 | |
Convulsions | 15 (40.5) | 22 (59.5) | 0.784 | |
Dyspnea/tachypnea | 406 (18.6) | 1776 (81.4) | <0.001 | |
Abnormal lung auscultation | 159 (21.1) | 594 (78.9) | <0.001 | |
Abnormal radiography findings | 74 (31.1) | 164 (68.9) | 0.017 | |
Abnormal ultrasound findings | 4 (36.4) | 7 (63.6) | 0.891 | |
Abnormal tomography findings | 19 (24.7) | 58 (75.3) | 0.013 | |
Comorbidity—Risk factors | ||||
Heart disease | 274 (28.8) | 679 (71.3) | <0.001 | |
Diabetes mellitus | 172 (26.4) | 479 (73.6) | <0.001 | |
Cerebrovascular disease | 6 (54.6) | 5 (45.5) | 0.270 | |
Down’s Syndrome | 0 (0.0) | 2 (100.0) | 0.265 | |
Obesity | 44 (19.3) | 184 (80.7) | <0.001 | |
Pregnancy | 142 (40.8) | 206 (59.2) | 0.431 | |
HIV | 18 (66.7) | 9 (33.3) | 0.003 | |
Chronic kidney disease | 148 (40.9) | 214 (59.1) | 0.354 | |
Chronic lung disease | 29 (45.3) | 35 (54.7) | 0.254 | |
Cancer | 152 (56.9) | 115 (43.1) | <0.001 | |
Contact with COVID-19 case | 0.079 | |||
No | 146 (68.5) | 67 (31.5) | ||
Yes | 32 (56.1) | 25 (43.9) |
Seropositivity | |||||||
---|---|---|---|---|---|---|---|
Characteristics | Simple Regression | Multiple Regression | |||||
PR | 95% CI | p-Value * | PR | 95% CI | p-Value * | ||
Age (categorized) | |||||||
Children | Ref | Ref | |||||
Teenager | 1.14 | 0.91–1.42 | 0.260 | 1.12 | 0.87–1.44 | 0.379 | |
Young | 1.38 | 1.25–1.53 | <0.001 | 1.40 | 1.25–1.58 | <0.001 | |
Adult | 1.56 | 1.43–1.70 | <0.001 | 1.36 | 1.26–1.54 | <0.001 | |
Elderly | 1.79 | 1.64–1.95 | <0.001 | 1.38 | 1.30–1.60 | <0.001 | |
Sex | |||||||
Female | Ref | Ref | |||||
Male | 1.13 | 1.09–1.17 | <0.001 | 0.99 | 0.97–1.04 | 0.857 | |
Symptoms (Yes) | |||||||
Fever | 1.47 | 1.42–1.52 | <0.001 | 1.20 | 1.16–1.24 | <0.001 | |
Chill | 1.25 | 1.19–1.31 | <0.001 | 0.96 | 0.91–1.01 | 0.122 | |
Discomfort | 1.52 | 1.46–1.58 | <0.001 | 1.21 | 1.17–1.27 | <0.001 | |
Cough | 1.13 | 1.09–1.17 | <0.001 | 1.02 | 0.99–1.07 | 0.221 | |
Throat pain | 1.29 | 1.25–1.33 | <0.001 | 1.09 | 1.04–1.12 | <0.001 | |
Nasal congestion | 1.15 | 1.11–1.21 | <0.001 | 1.07 | 1.02–1.12 | 0.004 | |
Diarrhea | 1.11 | 1.05–1.17 | <0.001 | 0.97 | 0.92–1.03 | 0.329 | |
Nausea | 0.99 | 0.91–1.07 | 0.815 | ||||
Headache | 1.11 | 1.06–1.16 | <0.001 | 0.97 | 0.93–1.02 | 0.186 | |
Irritability | 0.91 | 0.79–1.04 | 0.154 | ||||
Muscle pain | 1.20 | 1.15–1.25 | <0.001 | 1.05 | 1.01–1.10 | 0.040 | |
Abdominal pain | 1.05 | 0.96–1.15 | 0.286 | ||||
Chest pain | 1.20 | 1.14–1.26 | <0.001 | 0.99 | 0.94–1.05 | 0.909 | |
Articulations pain | 1.07 | 0.99–1.14 | 0.070 | ||||
Anosmia | 1.14 | 0.93–1.39 | 0.217 | ||||
Ageusia | 1.28 | 1.05–1.55 | 0.014 | 0.98 | 0.80–1.21 | 0.853 | |
Earache | 1.08 | 0.61–1.91 | 0.785 | ||||
Signs (Yes) | |||||||
Pharyngeal exudate | 1.04 | 0.92–1.17 | 0.574 | ||||
Conjunctival injection | 1.10 | 0.92–1.31 | 0.283 | ||||
Convulsion | 0.96 | 0.74–1.26 | 0.790 | ||||
Dyspnea/tachypnea | 1.51 | 1.47–1.56 | <0.001 | 1.32 | 1.28–1.37 | <0.001 | |
Abnormal lung auscultation | 1.32 | 1.27–1.38 | <0.001 | 1.04 | 0.99–1.09 | 0.080 | |
Abnormal findings on radiography | 1.13 | 1.03–1.23 | 0.008 | 1.01 | 0.93–1.10 | 0.765 | |
Abnormal findings on ultrasound | 1.03 | 0.66–1.62 | 0.888 | ||||
Heart disease | 1.19 | 1.14–1.24 | <0.001 | 1.01 | 0.96–1.05 | 0.755 | |
Mellitus diabetes | 1.22 | 1.16–1.28 | <0.001 | 1.06 | 0.96–1.05 | 0.033 | |
cerebrovascular disease | 0.74 | 0.39–1.41 | 0.357 | ||||
Obesity | 1.32 | 1.24–1.41 | <0.001 | 1.07 | 1.00–1.15 | 0.032 | |
Pregnancy | 0.97 | 0.88–1.06 | 0.442 | ||||
HIV | 0.54 | 0.32–0.92 | 0.024 | 0.55 | 0.28–1.07 | 0.080 | |
Chronic kidney disease | 0.96 | 0.88–1.05 | 0.367 | ||||
Chronic lung disease | 0.89 | 0.71–1.11 | 0.294 | ||||
Cancer | 0.70 | 0.61–0.80 | <0.001 | 1.02 | 0.88–1.17 | 0.826 | |
Contact with COVID-19 case | |||||||
No | Ref. | ||||||
Yes | 1.39 | 0.98–1.99 | 0.066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valladares-Garrido, M.J.; Alvarez-Risco, A.; Rojas-Alvarado, A.B.; Zuniga-Cáceres, J.A.; Estrella Izarra, N.A.; Peralta, C.I.; Astudillo, D.; Díaz-Vélez, C.; Failoc Rojas, V.E.; Del-Aguila-Arcentales, S.; et al. Factors Associated with SARS-CoV-2 Positivity in Patients Treated at the Lambayeque Regional Hospital, Peru during a Pandemic Period. Sustainability 2022, 14, 14785. https://doi.org/10.3390/su142214785
Valladares-Garrido MJ, Alvarez-Risco A, Rojas-Alvarado AB, Zuniga-Cáceres JA, Estrella Izarra NA, Peralta CI, Astudillo D, Díaz-Vélez C, Failoc Rojas VE, Del-Aguila-Arcentales S, et al. Factors Associated with SARS-CoV-2 Positivity in Patients Treated at the Lambayeque Regional Hospital, Peru during a Pandemic Period. Sustainability. 2022; 14(22):14785. https://doi.org/10.3390/su142214785
Chicago/Turabian StyleValladares-Garrido, Mario J., Aldo Alvarez-Risco, Annel B. Rojas-Alvarado, José A. Zuniga-Cáceres, Naylamp A. Estrella Izarra, Christopher Ichiro Peralta, David Astudillo, Cristian Díaz-Vélez, Virgilio E. Failoc Rojas, Shyla Del-Aguila-Arcentales, and et al. 2022. "Factors Associated with SARS-CoV-2 Positivity in Patients Treated at the Lambayeque Regional Hospital, Peru during a Pandemic Period" Sustainability 14, no. 22: 14785. https://doi.org/10.3390/su142214785
APA StyleValladares-Garrido, M. J., Alvarez-Risco, A., Rojas-Alvarado, A. B., Zuniga-Cáceres, J. A., Estrella Izarra, N. A., Peralta, C. I., Astudillo, D., Díaz-Vélez, C., Failoc Rojas, V. E., Del-Aguila-Arcentales, S., Davies, N. M., Garcia Guerra, A., & Yáñez, J. A. (2022). Factors Associated with SARS-CoV-2 Positivity in Patients Treated at the Lambayeque Regional Hospital, Peru during a Pandemic Period. Sustainability, 14(22), 14785. https://doi.org/10.3390/su142214785