Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specification of the HVO Process
2.1.1. Hydrogenation Reaction
2.1.2. Separation of Products
2.2. Description of Fossil LPG Manufacturing
2.3. Scenarios Definition
2.4. Life Cycle Modeling
2.5. Life Cycle Inventory (LCI)
3. Results and Discussion
Impact of Soybean Oil Supply from Different Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Al2O3 | Aluminum oxide |
CED | Accumulated Energy Demand |
CO2 | Carbon dioxide |
CoMoS2 | Cobalt molybdenum disulfide |
dLUC | direct Land Use Change |
EROI | Energy Return on Investment |
GO | Goiás |
GHG | Green House Gas |
GWP | Global Warming Potential |
H2 | Hydrogen |
HVO | Hydrotreatment of vegetable oils/Hydrotreated vegetable oil |
IPCC | Intergovernmental Panel on Climate Change |
ISO | International Organization for Standardization |
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
LHV | Lower heating value |
LPG | Liquefied Petroleum Gas |
MS | Mato Grosso do Sul |
MT | Mato Grosso |
Ni | Nickel |
NiMoS2 | Nickel molybdenum disulfide |
NiWS2 | Nickel tungsten disulfide |
O2 | Oxygen |
PED | Primary Energy Demand |
PFAD | Palm oil fatty acid distillate |
Pd | Palladium |
PMF | Fine Particulate Matter Formation |
PR | Paraná |
Pt | Platinum |
Rh | Rhodium |
RS | Rio Grande do Sul |
SO | Soybean oil |
SP | São Paulo |
TA | Terrestrial Acidification |
TET | Terrestrial Ecotoxicity |
UCO | Used cooking oil |
References
- ANP—Brazilian National Agency for Petroleum, Natural Gas and Biofuels. Resolution 825. 2020. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-n-825-de-28-de-agosto-de-2020-274891354 (accessed on 8 August 2022).
- Lorenzi, G.; Baptista, P.; Venezia, B.; Silva, C.; Santarelli, M. Use of waste vegetable oil for hydrotreated vegetable oil production with high-temperature electrolysis as hydrogen source. Fuel 2020, 278, 117991. [Google Scholar] [CrossRef]
- D’Ambrosio, S.; Mancarella, A.; Manelli, A. Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps. Energies 2022, 15, 7202. [Google Scholar] [CrossRef]
- Arvidsson, R.; Persson, S.; Fröling, M.; Svanström, M. Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J. Clean. Prod. 2011, 19, 129–137. [Google Scholar] [CrossRef]
- Moore, C.C.S.; Kulay, L. Effect of the implementation of carbon capture systems on the environmental, energy and economic performance of the Brazilian electricity matrix. Energies 2019, 12, 331. [Google Scholar] [CrossRef] [Green Version]
- Rattenmaier, N.; Köppen, S.; Gärtner, S.; Reinhardt, G. Screening Life Cycle Assessment for Hydrotreated Jatropha Oil. Institute for Energy and Environmental Research Heidelberg, 2008. Available online: https://www.ifeu.org/landwirtschaft/pdf/IFEUJatropha%20biofuels%20reportHVO121208.pdf (accessed on 28 August 2022).
- Garraín, D.; Herrera, I.; Lechón, Y.; Lago, C. Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit. Biomass Bioenergy 2014, 63, 239–249. [Google Scholar] [CrossRef]
- Johnson, E. A carbon footprint of HVO biopropane, Biofuels. Bioprod. Biorefining 2017, 11, 887–896. [Google Scholar] [CrossRef] [Green Version]
- FAO. World Food and Agriculture–Statistical Yearbook; FAO—Food & Agriculture Organization of the United Nation: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Furlan, F.F.; Tonon, R.; Pinto, F.H.P.B.; Costa, C.B.B.; Cruz, A.J.G.; Giordano, R.L.C.; Giordano, R.C. Bioelectricity versus bioethanol from sugarcane bagasse: Is it worth being flexible? Biotechnol. Biofuels 2013, 6, 142. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.M.; Cruz, A.J.G.; Costa, C.B.B. Comparison among Proposals for Energy Integration of Processes for 1G/2G Ethanol and Bioelectricity Production. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014; Volume 33, pp. 1585–1590. [Google Scholar]
- Oliveira, C.M.; Cruz, A.J.G.; Costa, C.B.B. Improving second generation bioethanol production in sugarcane biorefineries through energy integration. Appl. Therm. Eng. 2016, 109, 819–827. [Google Scholar] [CrossRef]
- Joppert, C.L.; Santos, M.M.; Costa, H.K.M.; Pereira, A.S.; Coelho, S.T. Bioenergy integration in ethanol plants: An alternative end use for biogas to enable 2G ethanol production. In Proceedings of the 25th European Biomass International Conference, Stockholm, Sweden, 12–15 June 2017; pp. 1883–1889. [Google Scholar]
- Guerra, J.P.; Cardoso, F.H.; Nogueira, A.; Kulay, L. Thermodynamic and environmental analysis of scaling up cogeneration units driven by sugarcane biomass to enhance power exports. Energies 2018, 11, 73. [Google Scholar] [CrossRef]
- Coutinho, D.J.G.; Barbosa, M.O.; de Souza, R.J.C.; da Silva, A.S.; da Silva, S.I.; de Oliveira, A.F.M. Comparative Study of the Physicochemical Properties of FAME from Seed Oils of Some Native Species of Brazilian Atlantic Forest. J. Am. Chem. Soc. 2016, 93, 1519–1528. [Google Scholar] [CrossRef]
- Altamirano, C.A.A.; Yokoyama, L.; de Medeiros, J.L.; Araujo, O.D.F. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment. Appl. Energy 2016, 184, 1246–1263. [Google Scholar] [CrossRef]
- Kunh, S.S.; Kugelmeier, C.L.; Mantovan, F.D.; Lenz, G.F.; Sattolo, N.M.S.; Milinsk, M.C.; Alves, H.J. Valorization of poultry slaughterhouse sludge oil: A strategy to reduce Brazil’s dependency on soybean oil in the biodiesel industry. Environ. Technol. 2021, 43, 2177–2189. [Google Scholar] [CrossRef] [PubMed]
- Julio, A.A.V.; Milessi, T.S.; Maya, D.M.Y.; Lora, E.S.; Palacio, J.C.E. Assessment of the sustainability and economic potential of hydrotreated vegetable oils to complement diesel and biodiesel blends in Brazil. Biofuel Bioprod. Biorefin. 2022. [Google Scholar] [CrossRef]
- ANP—Brazilian National Agency for Petroleum, Natural Gas and Biofuels. Resolution 842. 2021. Available online: https://atosoficiais.com.br/anp/resolucao-n-842-2021-estabelece-a-especificacao-do-diesel-verde-bem-como-as-obrigacoes-quanto-ao-controle-da-qualidade-a-serem-atendidas-pelos-agentes-economicos-que-o-comercializem-em-territorio-nacional (accessed on 26 October 2022). (In Portuguese).
- MME—Ministry of Mines and Energy; EPE—Energy Research Office. Ten-Year Energy Expansion Plan. 2021. Available online: https://www.epe.gov.br/sites-en/publicacoes-dados-abertos/publicacoes/Paginas/PDE-2031---English-Version.aspx (accessed on 25 October 2022). (In Portuguese)
- MME—Ministry of Mines and Energy; EPE—Energy Research Office. RenovaBio: Biocombustíveis 2030—Nota Técnica 3: Novos Biocombustíveis. 2017. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-155/EPE%20-%20NT3%20-%20NOVOS%20BIOCOMBUST%C3%8DVEIS%20-%20ARQUIVO%203.pdf (accessed on 26 October 2022). (In Portuguese)
- Huo, H.; Wang, M.; Bloyd, C.; Putsche, V. Life-Cycle Assessment of Energy and Greenhouse gas effects of soybean-derived biodiesel and renewable fuels. In Argonne National Laboratory Report ANL/ ESD/08-2; U.S. Department of Energy: Washington, DC, USA, 2008. [Google Scholar]
- Kalnes, T.; Marker, T.; Shonnard, D.R.; Koers, K.P. Green diesel production by hydrorefining renewable feedstocks. Biofuels Technol. 2008, 7–11. Available online: https://scholar.google.com.br/scholar?q=Green+diesel+production+by+hydrorefining+renewable+feedstocks.+Biofuels+Technol.+2008+,+7%E2%80%9311.&hl=pt-BR&as_sdt=0&as_vis=1&oi=scholart (accessed on 28 August 2022).
- Su, J.; van Dyk, S.; Saddler, J. Repurposing oil refineries to “stand-alone units” that refine lipids/ oleochemicals to produce low-carbon intensive, drop-in biofuels. J. Clean. Prod. 2022, 376, 134335. [Google Scholar] [CrossRef]
- Sonthalia, A.; Kumar, N. Hydro processed vegetable oil as a fuel for transportation sector—A review. J. Energy Inst. 2019, 92, 1–17. [Google Scholar] [CrossRef]
- Hilbers, T.J.; Sprakel, L.M.J.; van den Enk, L.B.J.; Zaalberg, B.; van den Berg, H.; van der Ham, L.G.J. Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chem. Eng. Technol. 2015, 38, 651–657. [Google Scholar] [CrossRef]
- Amin, A. Review of diesel production from renewable resources: Catalysis, process kinetics and technologies. Ain Shams Eng. J. 2019, 10, 821–839. [Google Scholar] [CrossRef]
- Tirado, A.; Ancheyta, J. Defining appropriate reaction scheme for hydrotreating of vegetable oil through proper calculation of kinetic parameters. Fuel 2019, 242, 167–173. [Google Scholar] [CrossRef]
- Di Gruttola, F.; Borello, D. Analysis of the EU secondary biomass availability and conversion processes to produce advanced biofuels: Use of existing databases for assessing a metric evaluation for the 2025 perspective. Sustainability 2021, 13, 7882. [Google Scholar] [CrossRef]
- CONAB—National Supply Company. 12 Inventory—Data Chart: Production and Grain Supply and Demand Balance, Crop-Year 2020/2021. 2021. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 11 April 2022). (In Portuguese)
- ABIOVE—Brazilian Association of Vegetable Oil Industries. Monthly Surveys 2020. Available online: https://abiove.org.br/en/statistics/ (accessed on 11 April 2022). (In Portuguese).
- Dimitriadis, A.; Bezergianni, S. Co-hydroprocessing gas-oil with residual lipids: Effect of residence time and H2/Oil ratio. J. Clean Prod. 2016, 131, 321–326. [Google Scholar] [CrossRef]
- Vásquez, M.C.; Silva, E.E.; Castillo, E.F. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 2017, 105, 197–2016. [Google Scholar] [CrossRef]
- Johnson, E. Process Technologies and Projects for BioLPG. Energies 2019, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Hopwood, L.; Mitchell, E.; Sourmelis, S. Biopropane: Feedstocks, Feasibility and Our Future Pathway; The Bioeconomy Consultants NNFCC, Prepared for Liquid Gas UK: Heslington, UK, 2019; 69p. [Google Scholar]
- Fernández-Villamil, J.M.; Paniagua, A.H.M. Preliminary Design of the Green Diesel Production Process by Hydrotreatment of Vegetable Oil 2018. Available online: https://www.chemeng.uliege.be/upload/docs/application/pdf/2020-01/eurecha2018_mainreport_1stprize.pdf (accessed on 16 August 2022).
- Rathore, V.; Newalkar, B.L.; Badoni, R.P. Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy Sustain. Dev. 2016, 31, 24–49. [Google Scholar] [CrossRef]
- ANP—National Agency of Petroleum, Natural Gas and Biofuels. Resource Bulletin and Oil Reserves and Natural Gas 2021; ANP: Brasília, Brazil, 2022. (In Portuguese) [Google Scholar]
- Thomas, J.E. Fundamentos de Engenharia de Petróleo, 2nd ed.; Editora Interciência: Rio de Janeiro, Brazil, 2004. (In Portuguese) [Google Scholar]
- Gauto, M.A.; Apoluceno, D.M.; Amaral, M.C.; Auriquio, P.C.; Pinto, V.R. (Org), Petróleo e Gás—Princípios de Exploração, Produção e Refino, 1st ed.; Bookman: Porto Alegre, Brazil, 2016. (In Portuguese) [Google Scholar]
- EPE—Energy Research Company. Baseline to Support the Brazilian Hydrogen Strategy; EPE: Brasília, Brazil, 2021. (In Portuguese) [Google Scholar]
- EPE—Energy Research Company. Brazilian Energy Balance 2021—Base Year 2020; EPE: Rio de Janeiro, Brazil, 2021. (In Portuguese) [Google Scholar]
- ISO 14044:2006; Environmental Management e Life Cycle Assessment—Requirements and Guidelines. ISO—International Organization for Standardization: Geneva, Switzerland, 2006.
- Schneider, L.; Finkbeiner, M. Life Cycle Assessment of EU Oilseed Crushing and Vegetal Oil Refining. Commissioned by EU Vegetable Oil and Protein Meal Industry association—FEDIOL. Available online: https://www.fediol.eu/data/1521124882Full%20FEDIOL%20LCA%20report_05062013_CR%20statement.pdf (accessed on 19 September 2022).
- Myhre, G.; Shindell, D.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V. (Eds.) The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Chapter 8. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Hischier, R.; Hellweg, S.; Humbert, S.; Köllner, T.; et al. Implementation of Life Cycle Impact Assessment Methods: Data v 2.0; Ecoinvent Final Report n. 3; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Zelm, R. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Donke, A.; Nogueira, A.; Matai, P.; Kulay, L. Environmental and Energy Performance of Ethanol Production from the Integration of Sugarcane, Corn, and Grain Sorghum in a Multipurpose Plant. Resources 2016, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, T. Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A reasoned overview of Potentials and Limits. Sustainability 2015, 7, 8491–8521. [Google Scholar] [CrossRef] [Green Version]
- Sandler, S. Chemical, Biochemical and Engineering Thermodynamics, Appendix, 5th ed.; A.V: Heats of Combustion; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Oele, M.; Dolfing, R. SimaPro 9.1.1|Full Update Instructions; PRé Sustainability, B.V.: Amersfoort, The Netherlands, 2020; Available online: https://simapro.com/wp-content/uploads/2020/10/FullUpdateInstructionsToSimaPro911.pdf (accessed on 31 August 2022).
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3; Ecoinvent Report 1(v3); The Ecoinvent Centre: St Gallen, Switzerland, 2013. [Google Scholar]
- ANP—National Agency of Petroleum. Natural Gas and Biofuels. In Annual Operational Safety Report of Oil and Natural Gas Exploration and Production Activities—2021; ANP: Brasília, Brazil, 2022. (In Portuguese) [Google Scholar]
- Borghi, E.; Karam, D.; Foloni, J.S.S.; Magalhães, P.C.; Garcia, R.A. Aspectos Agronômicos da Cultura da Soja a Serem Considerados na Implantação do Cultivo Intercalar Antecipado—Antecipe. Empresa Brasileira de Pesquisa Agropecuária—Embrapa Comunicado Técnico n. 251. , 2021. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/226752/1/COT-251-Aspectos-agronomicos-da-cultura-da-soja-no-Antecipe-Emerson-Borghi.pdf (accessed on 29 October 2022). (In Portuguese).
- Florindo, T.J.; Florindo, G.I.B.D.M.; Talamini, E.; Pinto, A.T. Ruviaro, Application of the multiple criteria decision-making (MCDM) approach in the identification of Carbon Footprint reduction actions in the Brazilian beef production chain. J. Clean. Prod. 2018, 196, 1379–1389. [Google Scholar] [CrossRef]
- Morita, A.M.; Moore, C.C.S.; Nogueira, A.R.; Kulay, L.; Ravagnani, M.A.D.S.S. Assessment of potential alternatives for improving environmental trouser jeans manufacturing performance in Brazil. J. Clean. Prod. 2020, 247, 119156. [Google Scholar] [CrossRef]
- Sakamoto, H.; Ronquim, F.M.; Seckler, M.M.; Kulay, L. Environmental performance of effluent conditioning systems for reuse in oil refining plants: A case study in Brazil. Energies 2019, 12, 326. [Google Scholar] [CrossRef]
Geographic Zone (Brazilian States) | Production Volume (Mtons) | Agricultural Productivities (ton/ha) |
---|---|---|
GO | 13.7 | 3.10 |
MT | 35.9 | 3.00 |
MS | 11.4 | 3.12 |
PR | 19.9 | 3.30 |
RS | 20.8 | 2.70 |
Scenario | SO Origin | H2 Source | [SO/H2]mol/mol | ||||||
---|---|---|---|---|---|---|---|---|---|
GO | MT | MS | PR | RS | Electrolysis | Oil Refinery | 1:30 | 1:50 | |
1 | + | – | – | – | – | + | – | + | – |
2 | – | + | – | – | – | + | – | + | – |
3 | – | – | + | – | – | + | – | + | – |
4 | – | – | – | + | – | + | – | + | – |
5 | – | – | – | – | + | + | – | + | – |
6 | + | – | – | – | – | + | – | – | + |
7 | – | + | – | – | – | + | – | – | + |
8 | – | – | + | – | – | + | – | – | + |
9 | – | – | – | + | – | + | – | – | + |
10 | – | – | – | – | + | + | – | – | + |
11 | + | – | – | – | – | – | + | + | – |
12 | – | + | – | – | – | – | + | + | – |
13 | – | – | + | – | – | – | + | + | – |
14 | – | – | – | + | – | – | + | + | – |
15 | – | – | – | – | + | – | + | + | – |
16 | + | – | – | – | – | – | + | – | + |
17 | – | + | – | – | – | – | + | – | + |
18 | – | – | + | – | – | – | + | – | + |
19 | – | – | – | + | – | – | + | – | + |
20 | – | – | – | – | + | – | + | – | + |
SO Origin | L1 | L2 | L3 |
---|---|---|---|
(km) | |||
MT | 90 | 1000 | 130 |
GO | 825 | ||
MS | 20 | 1825 | |
PR | 920 | ||
RS | 1330 |
Scenario | Environmental Performance (/RF) | ||||||
---|---|---|---|---|---|---|---|
GWP (kg CO2eq) | PED (MJ) | EROI | PMF (g PM 2.5 eq) | TA (g SO2 eq) | TET (kg 1,4-DB eq) | dLUC (m2a crop eq) | |
S1 | 3.12 | 49.6 | 0.93 | 3.13 | 3.72 | 2.27 | 37.5 |
S2 | 1.99 | 38.7 | 1.20 | 0.90 | 2.18 | 2.08 | 23.2 |
S3 | 6.09 | 79.9 | 0.58 | 8.58 | 6.04 | 2.41 | 39.0 |
S4 | 1.63 | 38.7 | 1.20 | 0.87 | 2.41 | 1.93 | 24.6 |
S5 | 3.11 | 52.5 | 0.88 | 2.98 | 3.56 | 2.26 | 30.5 |
S6 | 3.20 | 51.4 | 0.90 | 3.17 | 3.87 | 2.29 | 37.6 |
S7 | 2.07 | 40.6 | 1.14 | 0.95 | 2.32 | 2.10 | 23.2 |
S8 | 6.16 | 81.8 | 0.56 | 8.63 | 6.18 | 2.43 | 39.0 |
S9 | 1.71 | 40.5 | 1.14 | 0.91 | 2.56 | 1.95 | 24.6 |
S10 | 3.19 | 54.4 | 0.85 | 3.03 | 3.70 | 2.28 | 30.5 |
S11 | 3.38 | 79.0 | 0.59 | 3.35 | 4.36 | 2.56 | 37.5 |
S12 | 2.25 | 68.2 | 0.68 | 1.12 | 2.82 | 2.37 | 23.1 |
S13 | 6.34 | 109 | 0.42 | 8.80 | 6.68 | 2.70 | 38.9 |
S14 | 1.89 | 68.1 | 0.68 | 1.08 | 3.05 | 2.22 | 24.5 |
S15 | 3.37 | 81.9 | 0.56 | 3.20 | 4.20 | 2.55 | 30.4 |
S16 | 3.62 | 100 | 0.46 | 3.54 | 4.93 | 2.78 | 37.5 |
S17 | 2.49 | 89.6 | 0.52 | 1.31 | 3.38 | 2.58 | 23.1 |
S18 | 6.59 | 131 | 0.35 | 9.00 | 7.25 | 2.92 | 38.9 |
S19 | 2.13 | 89.5 | 0.52 | 1.28 | 3.62 | 2.44 | 24.5 |
S20 | 3.61 | 103 | 0.45 | 3.39 | 4.72 | 2.76 | 30.4 |
Fossil LPG | 0.62 | 58.3 | 0.80 | 1.48 | 4.35 | 1.80 | 0.028 |
Arrangement | Soybean Oil Origins | ||||
---|---|---|---|---|---|
MT | GO | RS | MS | PR | |
A1 | + | + | − | − | − |
A2 | + | − | + | − | − |
A3 | + | − | – | + | − |
A4 | + | − | − | − | + |
A5 | − | + | + | − | − |
A6 | − | + | − | + | − |
A7 | − | + | − | − | + |
A8 | − | − | + | + | − |
A9 | − | − | + | − | + |
A10 | − | − | − | + | + |
Impact Category | MT | GO | RS | MS | PR |
---|---|---|---|---|---|
GWP | 3.88 | 1.96 | 1.96 | 1.23 | 1.00 |
PED | 2.12 | 1.30 | 1.38 | 1.00 | 1.00 |
PMF | 9.92 | 3.62 | 3.45 | 1.04 | 1.00 |
TA | 2.51 | 1.54 | 1.48 | 0.90 | 1.00 |
TET | 1.25 | 1.18 | 1.17 | 1.08 | 1.00 |
dLUC | 1.59 | 1.52 | 1.24 | 0.94 | 1.00 |
SSI | 21.3 | 11.1 | 10.7 | 6.20 | 6.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes, N.d.A.; Cunha, I.L.C.; dos Santos, M.T.; Kulay, L. Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach. Sustainability 2022, 14, 15734. https://doi.org/10.3390/su142315734
Menezes NdA, Cunha ILC, dos Santos MT, Kulay L. Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach. Sustainability. 2022; 14(23):15734. https://doi.org/10.3390/su142315734
Chicago/Turabian StyleMenezes, Natália de Almeida, Isadora Luiza Clímaco Cunha, Moisés Teles dos Santos, and Luiz Kulay. 2022. "Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach" Sustainability 14, no. 23: 15734. https://doi.org/10.3390/su142315734
APA StyleMenezes, N. d. A., Cunha, I. L. C., dos Santos, M. T., & Kulay, L. (2022). Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach. Sustainability, 14(23), 15734. https://doi.org/10.3390/su142315734