Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass
Abstract
:1. Introduction
1.1. Algal-Iron Relationship
1.2. Role of Ferritin as Storage Form of Iron in Marine Algae (Iron; Homeostasis)
2. Martin’s Hypothesis
2.1. Iron Fertilization
Biological Pump as a Result of Iron Fertilization
2.2. How Is Artificial Iron Fertilization Carried Out
2.3. Iron Fertilization Experiments Outcomes
2.4. Experiment near the Gulf Area
2.5. Why Are Diatoms the Most Dominant Algal Group to Iron Fertilization Experiments?
2.6. Reservations on Iron Fertilization Experiments
- (1)
- Nutrient depletion and co-limitation of both iron and silicate [57]. Colimitation, which means that limiting concentrations of one metal may also affect the requirement for another metal and this can subsequently lead to decreased phytoplankton growth. Silica will become depleted, as well as nitrate, after addition of iron as diatoms growth increases accompanied by silica consumptio. Moreover, co-limitation increases oxidative e stress in diatoms, and as a consequence more Mn is required for superoxide dismutase. On the other hand, low-Fe increases the Cu requirements as it replaces iron in some proteins [64];
- (2)
- The iron dispersed may become, in part, adsorbed onto sinking particles without benefiting the phytoplankton. Therefore, some iron can partly be used by phytoplanktons, but the rest is buried;
- (3)
- The experiments are of short duration, limited range, and the amount of nutrient added may not be good enough for CO2 export;
- (4)
- Any fertilization-enhanced biomass will decrease oxygen levels in the sub-surface ocean. Also, this would affect the release of CO2 to subsurface seawater during decomposition of planktons and reduce pH (acidification) and carbonate ion concentration [57];
- (5)
- Ocean acidification, where global warming with increased carbon dioxide leads to higher concentrations of dissolved CO2 in surface marine waters as grazers feed on blooms of phytoplanktons and respire, resulting in ocean acidification [12]. An increase in ocean acidification in deep water may result from large-scale fertilization as this will lead to an increase in CO2 sequestration at depth. Consequently, this will change the depth at which carbonate biominerals, thereby limiting their supply to deep-ocean organisms that build shells and structures, like sea coral. One important aspect is greenhouse gas emissions. The ocean is an important source of N2O, but the evolution of this gas can increase due to iron fertilization. If fertilization takes place in warm waters low in oxygen, N2O yield will be large. Decomposition of sinking biomass can produce persistent greenhouse gases, nitrous oxide and methane, with much higher global warming potentials than CO2 [57];
- (6)
- Induction of toxic algal blooms such as that of the diatom Pseudo-nizchia or dinoflagellates:
- (a)
- Pseudo-nitzschia spp. produces the neurotoxin domoic acid, which binds iron with a low affinity, but sufficient enough to facilitate iron uptake [65]. The ability to monopolize iron availability via a species specific phytosiderophore could thus explain the dominance of Pseudo-nitzschia in blooms. The fact that domoic acid is neurotoxin adds to the side effects of iron fertilization in promoting toxic algal blooms. Trick et al. [66] demonstrated that the sparse oceanic Pseudo-nitzschia community at the high-nitrate, low-chlorophyll ocean station PAPA (50° N, 145° W), produced approximately 200 pg domoic acid per litre. They reported that in response to iron addition, domoic acid changes phytoplankton community structure in favor of Pseudo-nitzschia, and that oceanic Pseudo-nitzschia are toxic. This further makes large-scale iron fertilizations questionable with regard to benefits and sustainability.
- (b)
- Dinoflagellates overgrowth as a result of iron fertilization. Indeed, community composition of microzooplankton (dinoflagellates and ciliates) of the naturally iron-fertilized Kerguelen area (Southern Ocean) region was characterized. This region has a complex mesoscale circulation resulting in a patchy distribution of phytoplankton blooms. Ninety-seven morphospecies of dinoflagellates and 41 ciliates were identified, in addition to 202 Alveolata-related operational taxonomical units. Diatom-consuming dinoflagellates were the most enhanced taxa in the blooms. A clear difference in the phytoplankton and microzooplankton community structures between the iron-fertilized and HNLC regions was observed. Dinoflagellates and ciliates role as phytoplankton consumers and as prey for mesozooplankton was evaluated. Dinoflagellates were most likely the major phytoplankton grazers, and a potential food source for copepods. Some of the dinoflagellates that were found were Gyrodinium spp., Gymnodinium spp., Amphidinium spp. [67].
2.7. Improvement to Be Made to the Experiments
- (1)
- Fertilization must take place in the center of an eddy where grazing is low and silicates are high;
- (2)
- Duration of the experiment would be favorable if it was over a minimum of ~40 days, with repeated iron discharges of ~2000 kg each within ~10–15 days in region 300 km2 and a ~2 nM concentration;
- (3)
- Tracking of iron fertilized both physically and biogeochemically;
- (4)
- Using neutral sediment traps;
- (5)
- Monitoring of hazardous gases (e.g., N2O, DMS; and halogenated volatile organic compounds
3. Fish Productivity
4. Legal Aspects
5. Future Improvements
Funding
Acknowledgments
Conflicts of Interest
References
- Raven, J.A.; Evans, M.C.W.; Korb, R.E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosyn. Res. 1999, 60, 111–150. [Google Scholar] [CrossRef]
- Whittaker, S.; Bidle, K.D.; Kustka, A.B.; Falkowski, P.G. Quantification of nitrogenase in Trichodesmium IMS 101: Implications for iron limitation of nitrogen fixation in the ocean. Environ. Microbiol. Rep. 2011, 3, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, A.; Maldonado, M.T. Iron. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer: Dordrecht, The Netherland, 2016; pp. 233–279. [Google Scholar]
- Weinberg, E.D. Cellular regulation of iron assimilation. Quart. Rev. Biol. 1989, 64, 261–290. [Google Scholar] [CrossRef] [PubMed]
- Geider, R.J.; La Roche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosyn. Res. 1994, 39, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.S.; Gordon, R.M.; Coale, K.H. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 1997, 57, 137–161. [Google Scholar] [CrossRef]
- Morel, F.M.; Kustka, A.B.; Shaked, Y. The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol. Oceanogr. 2008, 53, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, L.J.; Breitbarth, E.; Boyd, P.W.; Hunter, K.A. Influence of ocean warming and acidification on trace metal biogeochemistry. Mar. Ecol. Prog. Ser. 2012, 470, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Samperio-Ramos, G.; Santana Casiano, J.M.; González Dávila, M. Effect of ocean warming and acidification on the Fe (II) oxidation rate in oligotrophic and eutrophic natural waters. Biogeochemistry 2016, 128, 19–34. [Google Scholar] [CrossRef]
- Gledhill, M.; Buck, K.N. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 2012, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kenshi, K. Biogeochemistry of iron in seawater. Chikyu. Ac. Jp 2001, III, 93–102. [Google Scholar]
- Shi, D.; Xu, Y.; Hopkinson, B.M.; Morel, F.M.M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 2010, 327, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.; Theisen, R.M. Iron (III)-siderophore coordination chemistry: Reactivity of marine siderophores. Coord. Chem. Rev. 2010, 254, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Coale, K.H.; Johnson, K.S.; Fitzwater, S.E.; Gordon, R.M.; Tanner, S.J.; Hunter, C.N.; Elrod, V.A.; Nowicki, J.L.; Coley, T.L.; et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 2010, 371, 123–129. [Google Scholar] [CrossRef]
- Wu, J.; Boyle, E.; Sunda, W.; Wen, L. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 2001, 293, 847–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, F.M.; Rueter, J.; Price, N. Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography 1991, 4, 1991. [Google Scholar] [CrossRef]
- Martin, R.M.; Gordon, S.; Fitzwater, W.W. Broenkow, VERTEX: Phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res. 1994, 36, 649–680. [Google Scholar] [CrossRef]
- Miller, C.B.; Frost, B.W.; Booth, B.; Wheeler, P.A.; Landry, M.R.; Welschmeyer, N. Ecological processes in the subarctic Pacific: Iron-limitation cannot be the whole story. Oceanography 1991, 4, 71–78. [Google Scholar] [CrossRef] [Green Version]
- El Semary, N.A. Algae and Fishes: Benefits and Hazards. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Ratnarajah, L.; Melbourne-Thomas, J.; Marzloff, M.P.; Lannuzel, D.; Meiners, K.M.; Chever, F.; Nicol, S.; Bowie, A.R. A preliminary model of iron fertilization by Baleen whales and Antarctic krill in the Southern Ocean: Sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Model. 2016, 320, 203–212. [Google Scholar] [CrossRef]
- Morrissey, J.; Bowler, C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front. Microbiol. 2012, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Misumi, K.; Lindsay, K.; Moore, J.K.; Doney, S.C.; Bryan, F.O.; Tsumune, D.; Yoshida, Y. The iron budget in ocean surface waters in the 20th and 21st centuries: Projections by the community earth system model version 1. Biogeosciences 2014, 11, 33–55. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.J.M.; Morel, F.M. Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 1990, 35, 1002–1020. [Google Scholar] [CrossRef]
- Wood, P.M. Interchangeable copper and iron proteins in algal photosynthesis. Eur. Biochem. 1978, 87, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Zumft, W.G.; Spiller, H. Characterization of a flavodoxin from the green alga Chlorella. Biochem. Biophys. Res. Comm. 1971, 45, 112–118. [Google Scholar] [CrossRef]
- Barber, J.; Nield, J.; Duncan, J.; Bibby, T.S. Accessory Chlorophyll Proteins in Cyanobacterial Photosystem I; Golbeck, J.H., Ed.; Springer: Dordrecht, The Netherland, 2006; pp. 99–117. [Google Scholar]
- Palenik, B.; Brahamsha, B.; Larimer, F.W.; Land, M.; Hauser, L.; Chain, P.; Lamerdin, J.; Regala, W.; Allen, E.E.; McCarren, J.; et al. The genome of a motile marine Synechococcus. Nature 2003, 424, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Rocap, G.; Larimer, F.W.; Lamerdin, J.; Malfatti, S.; Chain, P.; Ahlgren, N.A.; Arellano, A.; Coleman, M.; Hauser, L.; Hess, W.R.; et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 2003, 424, 1042–1047. [Google Scholar] [CrossRef]
- Bibby, T.S.; Zhang, Y.; Chen, M. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton. PLoS ONE 2009, 4, e4601. [Google Scholar] [CrossRef] [Green Version]
- Boekema, E.J.; Hifney, A.; Yakushevska, A.E.; Piotrowski, M.; Keegstra, W.; Berry, S.; Michel, K.P.; Pistorius, E.K.; Kruip, J. A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 2001, 412, 745–748. [Google Scholar] [CrossRef] [Green Version]
- Behnke, L.; Laroche, J. Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs). Eur. J. Phycol. 2020, 55, 339–360. [Google Scholar] [CrossRef]
- Kazamia, E.; Sutak, R.; Paz-Yepes, J.; Dorrell, R.G.; Vieira, F.R.J.; Mach, J.; Morrissey, J.; Leon, S.; Lam, F.; Pelletier, E.; et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 2018, 4, eaar4536. [Google Scholar] [CrossRef] [Green Version]
- Sunda, W.; Huntsman, S.A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 1995, 50, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Bidle, K.D.; Bender, S.J. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot. Cell 2007, 7, 223–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mock, T.; Samanta, M.P.; Iverson, V.; Berthiaume, C.; Robison, M.; Holtermann, K.; Durkin, C.; BonDurant, S.S.; Richmond, K.; Rodesch, M.; et al. Wholegenome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc. Natl. Acad. Sci. USA 2008, 105, 1579–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thamatrakoln, K.; Korenovska, O.; Niheu, A.K.; Bidle, K.D. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ. Microbiol. 2011, 14, 67–81. [Google Scholar] [CrossRef]
- Morrissey, J.; Sutak, R.; Paz-Yepes, J.; Tanaka, A.; Moustafa, A.; Veluchamy, A.; Thomas, Y.; Botebol, H.; Bouget, F.Y.; McQuaid, J.B.; et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 2015, 25, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuaid, J.B.; Kustka, A.B.; Oborník, M.; Horák, A.; McCrow, J.P.; Karas, B.J.; Zheng, H.; Kindeberg, T.; Andersson, A.J.; Barbeau, K.A.; et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 2018, 555, 534–537. [Google Scholar] [CrossRef]
- Maldonado, M.T.; Price, N.M. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 2447–2473. [Google Scholar] [CrossRef]
- Maldonado, M.T.; Price, N.M. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J. Phycol. 2001, 37, 298–309. [Google Scholar] [CrossRef]
- Terzulli, A.; Kosman, D.J. Analysis of the highaffinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane. Euk. Cell 2010, 9, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.E.; Laroche, J.; Maheswari, U.; Lommer, M.; Schauer, N.; Lopez, P.J.; Finazzi, G.; Fernie, A.R.; Bowler, C. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. USA 2008, 105, 10438–10443. [Google Scholar] [CrossRef] [Green Version]
- Shaked, Y.; Lis, H. Disassembling iron availability to phytoplankton. Front. Microbiol. 2012, 3, 123. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, A.; Guerinot, M. Metal transport. In The Plant Plasma Membrane; Murphy, A.S., Schulz, B., W. Peer, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–330. [Google Scholar]
- Emerson, D. Biogenic iron dust: A novel approach to ocean iron fertilization as a means of large scale removal of carbon dioxide from the atmosphere. Hypothesis Theory Artic. Front. Mar. Sci. 2019, 7, 2019. [Google Scholar] [CrossRef]
- Anderson, R.F.; Cheng, H.; Edwards, R.L.; Fleisher, M.Q.; Hayes, C.T.; Huang, K.-F.; Kadko, D.; Lam, P.J.; Landing, W.M.; Lao, Y.; et al. How well can we quantify dust deposition to the ocean? Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150285. [Google Scholar] [CrossRef] [Green Version]
- Jickells, T.D. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, B.A.; Prospero, J.M.; Mackie, D.; Gaiero, D.; Hesse, P.P.; Balkanski, Y. Global Connections between Aeolian Dust, Climate and Ocean Biogeoche-mistry at the Present Day and at the Last Glacial Maximum. Earth-Sci. Rev. 2010, 99, 61–97. [Google Scholar] [CrossRef]
- Botebol, H.; Lesuisse, E.; Šuták, R.; Six, C.; Lozano, J.C.; Schatt, P.; Vergé, V.; Kirilovsky, A.; Morrissey, J.; Léger, T.; et al. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton. Proc. Natl. Acad. Sci. USA 2015, 112, 14652–14657. [Google Scholar] [CrossRef] [Green Version]
- Twining, B.S.; Baines, S. The Trace Metal Composition of Marine Phytoplankton. Annu. Rev. Mar. Sci. 2013, 5, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, A.; Parker, M.S.; Moccia, L.P.; Lin, E.O.; Arrieta, A.L.; Ribalet, F.; Murphy, M.E.P.; Maldonado, M.T.; Armbrust, E.V. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 2009, 457, 467–470. [Google Scholar] [CrossRef]
- Pfaffen, S.; Bradley, J.M.; Abdulqadir, R.; Firme, M.R.; Moore, G.R.; Brun, N.E.L.; Murphy, M.E.P. A diatom ferritin optimized for iron oxidation but not iron storage. J. Biol. Chem. 2015, 290, 28416–28427. [Google Scholar] [CrossRef] [Green Version]
- Smetacek, Y.V.; Naqvi, S.W.A. The next generation of iron fertilization experiments in the Southern Ocean. Phil. Trans. R. Soc. A 2008. [Google Scholar] [CrossRef]
- Boyd, P.W.; Jickells, T.; Law, C.S.; Blain, S.; Boyle, E.A.; Buesseler, K.O.; Coale, K.H.; Cullen, J.J.; De Baar, H.J.W.; Follows, M.; et al. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 2007, 315, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Langmann, B. On the Role of Climate Forcing by Volcanic Sulphate and Volcanic Ash. Adv. Meteorol 2014, 340123. [Google Scholar] [CrossRef]
- Kim, T.; Hong, G.; Kim, D.; Baskaran, M. Iron Fertilization with Enhanced Phytoplankton Productivity under Minimal Sulfur Compounds and Grazing Control Analysis in HNLC Region. Amer. J. Clim. Chang. 2019, 8, 14–39. [Google Scholar] [CrossRef] [Green Version]
- De La Rocha, C.L.; Passow, U. 8.4—The Biological Pump. In Treatise on Geochemistry, 2nd ed.; Turekian, H.D.H.K., Ed.; Elsevier: Oxford, UK, 2014. [Google Scholar]
- UN Report; Ocean Fertilization, Scientific Summary for Policy Makers; UN: Washington, DC, USA, 2010.
- Yoon, J.-E.; Yoo, K.-C.; Macdonald, A.M.; Yoon, H.-I.; Park, K.-T.; Yang, E.J.; Kim, H.-C.; Lee, J.I.; Lee, M.K.; Jung, J.; et al. Reviews and syntheses: Ocean iron fertilization experiments—Past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project. Biogeosciences 2018, 15, 5847–5889. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Blain, S.; Quéguiner, B.; Armand, L.; Belviso, S.; Bombled, B.; Bopp, L.; Bowie, A.; Brunet, C.; Brussaard, C.; Carlotti, F.; et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 2007, 446, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Savoye, T.W.; Trull, S.H.M.; Jacquet, J.; Navez, F.D. 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS) Deep Sea Research Part II: Trop. Stud. Oceanogr. 2008, 55, 841–855. [Google Scholar] [CrossRef]
- Naqvi, S.W.A.; Moffett, W.; Gauns, M.U.; Narvekar, P.V.; Pratihary, A.K.; Naik, H.; Shenoy, D.M.; Jayakumar, D.A. The Arabian Sea as a High-Nutrient, Low-Chlorophyll Region during the Late Southwest Monsoon. Biogeosciences 2010, 7, 2091–2100. [Google Scholar] [CrossRef] [Green Version]
- Mofftt, J.; Vedamati, J.; Goepfert, T.; Pratihary, A.; Gauns, M.; Naqvi, S.W.A. Biogeochemistry of iron in the Arabian Sea. Limnol. Oceanogr. 2015, 60, 10132. [Google Scholar] [CrossRef]
- Peers, G.; Price, N.M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 2006, 441, 341–344. [Google Scholar] [CrossRef]
- Rue, E.; Bruland, K. Domoic acid binds iron and copper: A possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Mar. Chem. 2001, 76, 127–134. [Google Scholar] [CrossRef]
- Trick, C.G.; Bill, B.D.; Cochlan, W.P.; Wells, M.L.; Trainer, V.L.; Pickell, L.D. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc. Natl. Acad. Sci. USA 2010, 107, 5887–5892. [Google Scholar] [CrossRef] [Green Version]
- Christaki, U.; Georges, C.; Genitsaris, S.; Monchy, S. Microzooplankton community associated with phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). FEMS Microbiol. Ecol. 2015, 91, fiv068. [Google Scholar] [CrossRef] [PubMed]
- Assmy, P.; Jansen, S.; Fuchs, N.; Kragefsky, S.; Latasa, M.; Steigenberger, S.; Herndl, G.J.; Webb, A.; Breitbarth, E.; Berg, G.M.; et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl. Acad. Sci. USA 2013, 110, 20633–20638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batten, S.D.; James, F.; Gower, R. Did the iron fertilization near Haida Gwaii in 2012 affect the pelagic lower trophic level ecosystem? J. Plank. Res. 2014, 36, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, E.D.; Le Mézo, P.; Solanes Hernandez, G.; Bianchi, D.; Kroodsma, D. Growth Limitation of Marine Fish by low Iron availability in the open Ocean. Front. Mar. Sci. 2019, 6, 509. Available online: https://www.frontiersin.org/article/10.3389/fmars.2019.00509 (accessed on 16 May 2022). [CrossRef]
- Oceanus. Available online: https://www.whoi.edu/oceanus/feature/dumping-iron-and-trading-carbon (accessed on 16 May 2022).
- IMO. Resolution LC-LP.1. Regulation of Ocean Fertilization, LC 30/16, Annex 6; IMO: London, UK, 2008. [Google Scholar]
- IMO. Resolution LC-LP.2. Assessment Framework for Scientific Research Involving Ocean Fertilization, LC 32/15, Annex 6; IMO: London, UK, 2010. [Google Scholar]
- IMO. Resolution LP.4 (8). Amendment to the London Protocol to Regulate the Placement of Matter for Ocean Fertilization and Other Marine Geoengineering Activities, LP.8, LC 35/15, Annex 4, Annex 5; IMO: London, UK, 2013. [Google Scholar]
- Ito, A.; Ye, Y.; Baldo, C.; Shi, Z. Ocean fertilization by pyrogenic aerosol iron. NPJ Clim. Atmos. Sci. 2021, 4, 30. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Semary, N.A. Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass. Sustainability 2022, 14, 10372. https://doi.org/10.3390/su141610372
El Semary NA. Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass. Sustainability. 2022; 14(16):10372. https://doi.org/10.3390/su141610372
Chicago/Turabian StyleEl Semary, Nermin A. 2022. "Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass" Sustainability 14, no. 16: 10372. https://doi.org/10.3390/su141610372
APA StyleEl Semary, N. A. (2022). Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass. Sustainability, 14(16), 10372. https://doi.org/10.3390/su141610372