Nitrite Accumulation at Low Ammonia Concentrations in Wastewater Treatment Plants
Abstract
:1. Introduction
2. Material and Methods
2.1. Cells Cultures and Mineral Media
2.2. Reactor Operation
2.3. Experimental Details
2.3.1. Model Continuous-Stirred Tank Reactor
2.3.2. Continuous Stirrer-Tank Biofilm Reactor
2.4. Substrate Shocks for NOB Suppression
2.4.1. Substrate Shocks during Steady-State Operation
2.4.2. Sludge Treatment
2.4.3. Sampling and Analysis
3. Results and Discussion
3.1. Substrate Shocks and Nitrite Accumulation
3.2. Sludge Treatment and Nitrite Accumulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSTR | continuous stirred-tank reactor |
CSTBR | continuous stirred-tank biofilm reactor |
SBR | sequencing batch reactor |
WWTPs | wastewater treatment plants |
SRT | sludge retention time |
NAR | nitrite accumulation ratio |
AOB | ammonium-oxidizing bacteria |
NOB | nitrite-oxidizing bacteria |
TAN | total ammonium nitrogen |
TANin | tan influent concentration |
TANeff | tan effluent concentration |
FA | free ammonia |
FNA | free nitrous acid |
DO | dissolved oxygen |
BOD | biological oxygen demand |
References
- Turk, O.; Mavinic, D. Preliminary assessment of a shortcut in nitrogen removal from wastewater. Can. J. Civ. Eng. 1986, 13, 600–605. [Google Scholar] [CrossRef]
- Zhou, Y.; Oehmen, A.; Lim, M.; Vadivelu, V.; Ng, W.J. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res. 2011, 45, 4672–4682. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.-C.; Zheng, P.; Mahmood, Q.; Zhang, L. Performance of a nitrifying airlift reactor using granular sludge. Sep. Purif. Technol. 2008, 63, 670–675. [Google Scholar] [CrossRef]
- Ahn, Y.-H. Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 2006, 41, 1709–1721. [Google Scholar] [CrossRef]
- Rostron, W.M.; Stuckey, D.C.; Young, A.A. Nitrification of high strength ammonia wastewaters: Comparative study of immobilisation media. Water Res. 2001, 35, 1169–1178. [Google Scholar] [CrossRef]
- Khan, H.; Bae, W. Optimized operational strategies based on maximum nitritation, stability, and nitrite accumulation potential in a continuous partial nitritation reactor. Process Biochem. 2016, 51, 1058–1068. [Google Scholar] [CrossRef]
- Hellinga, C.; Schellen, A.; Mulder, J.W.; van Loosdrecht, M.v.; Heijnen, J. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 1998, 37, 135–142. [Google Scholar] [CrossRef]
- Anthonisen, A.; Loehr, R.; Prakasam, T.; Srinath, E. Inhibition of nitrification by ammonia and nitrous acid. J. (Water Pollut. Control Fed.) 1976, 48, 835–852. [Google Scholar]
- Pedrouso, A.; del Rio, A.V.; Morales, N.; Vazquez-Padin, J.R.; Campos, J.L.; Méndez, R.; Mosquera-Corral, A. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol. 2017, 186, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Bao, P.; Wei, Y.; Zhu, G.; Yuan, Z.; Peng, Y. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 2015, 5, 13048. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Wei, Y.; Chen, M. In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up. Biochem. Eng. J. 2015, 98, 127–136. [Google Scholar] [CrossRef]
- Pedrouso, A.; del Rio, A.V.; Campos, J.; Méndez, R.; Mosquera-Corral, A. Biomass aggregation influences NaN3 short-term effects on anammox bacteria activity. Water Sci. Technol. 2016, 75, 1007–1013. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 2015, 140, 85–98. [Google Scholar] [CrossRef]
- Choi, O.; Hu, Z. Nitrification inhibition by silver nanoparticles. Water Sci. Technol. 2009, 59, 1699–1702. [Google Scholar] [CrossRef]
- Harper, W.F., Jr.; Terada, A.; Poly, F.; le Roux, X.; Kristensen, K.; Mazher, M.; Smets, B.F. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures. Biotechnol. Bioeng. 2009, 102, 714–724. [Google Scholar] [CrossRef]
- Tang, C.-J.; Duan, C.-S.; Liu, P.; Chai, X.; Min, X.; Wang, S.; Xiao, R.; Wei, Z. Inhibition kinetics of ammonium oxidizing bacteria under Cu(II) and As(III) stresses during the nitritation process. Chem. Eng. J. 2018, 352, 811–817. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, N.; Fu, H.; Chen, T.; Liu, S.; Zheng, S.; Zhang, J. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor. Bioresour. Technol. 2017, 243, 93–99. [Google Scholar] [CrossRef]
- Kapoor, V.; Elk, M.; Li, X.; Impellitteri, C.A.; Domingo, J.W.S. Effects of Cr(III) and Cr(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments. Chemosphere 2016, 147, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yang, H.; Wang, J.; Liu, Z.; Guan, Q. Effect of free ammonia inhibition on NOB activity in high nitrifying performance of sludge. RSC Adv. 2018, 8, 31987–31995. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Duan, H.; Wei, W.; Ni, B.-J.; Laloo, A.; Yuan, Z. Achieving stable mainstream nitrogen removal via the nitrite pathway by sludge treatment using free ammonia. Environ. Sci. Technol. 2017, 51, 9800–9807. [Google Scholar] [CrossRef] [Green Version]
- Keerio, H.A.; Bae, W.; Park, J.; Kim, M. Substrate uptake, loss, and reserve in ammonia-oxidizing bacteria (AOB) under different substrate availabilities. Process Biochem. 2020, 91, 303–310. [Google Scholar] [CrossRef]
- Federation, W.E.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Briggs, G.E.; Haldane, J.B.S. A note on the kinetics of enzyme action. Biochem. J. 1925, 19, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keerio, H.A. Substrate Uptake Mechanisms, Self-Inhibition, and Nitrite Accumulation by Ammonium Oxidizing Bacteria (AOB). Ph.D. Thesis, Hanyang University, Seoul, Republic of Korea, 2020. [Google Scholar]
- Chung, J.; Kim, S.; Baek, S.; Lee, N.-H.; Park, S.; Lee, J.; Lee, H.; Bae, W. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study. J. Hazard. Mater. 2015, 285, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Zhang, M.; Li, W.; Zhang, J.; Zheng, P. Performance stability of a lab-scale internal-loop airlift bio-particle reactor under substrate concentration shocks for simultaneous partial nitrification and anaerobic ammonia oxidation. Sep. Purif. Technol. 2015, 141, 322–330. [Google Scholar] [CrossRef]
- Keerio, H.A.; Bae, W. Experimental Investigation of Substrate Shock and Environmental Ammonium Concentration on the Stability of Ammonia-Oxidizing Bacteria (AOB). Water 2020, 12, 223. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ye, L.; Jiang, G.; Hu, S.; Yuan, Z. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res. 2014, 55, 245–255. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Wang, S.; Zheng, Y.; Huang, H.; Ge, S. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater. Process Biochem. 2009, 44, 979–985. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Li, B.; Zhang, Q.; Wu, L.; Li, X.; Peng, Y. Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. Bioresour. Technol. 2017, 244, 1158–1165. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Q.; Ma, B.; Li, J.; Ma, L.; Wang, S.; Peng, Y. Rapid achievement of nitritation using aerobic starvation. Environ. Sci. Technol. 2017, 51, 4001–4008. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, Y. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite. Environ. Sci. Technol. 2010, 44, 8957–8963. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, K.; Han, X.; Du, B.; Wei, Q.; Wei, D. Achievement, performance and characteristics of microbial products in a partial nitrification sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation. Chemosphere 2017, 183, 212–218. [Google Scholar] [CrossRef]
- Yin, J.; Xu, H.; Shen, D. Partial nitrification in sequencing batch reactors treating low ammonia strength synthetic wastewater. Water Environ. Res. 2014, 86, 606–614. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, L.; Li, B.; Zhang, Q.; Wang, S.; Peng, Y. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition. Bioresour. Technol. 2017, 231, 36–44. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, M.; Guo, Y.; Peng, Y.; Yuan, Y. Long-term partial nitritation and microbial characteristics in treating low C/N ratio domestic wastewater. Environ. Sci. Water Res. Technol. 2018, 4, 820–827. [Google Scholar] [CrossRef]
- Qian, F.; Wang, J.; Shen, Y.; Wang, Y.; Wang, S.; Chen, X. Achieving high performance completely autotrophic nitrogen removal in a continuous granular sludge reactor. Biochem. Eng. J. 2017, 118, 97–104. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, J.; Horn, H.; Yang, X.; Wang, S. Achieving nitrite accumulation in a continuous system treating low-strength domestic wastewater: Switchover from batch start-up to continuous operation with process control. Appl. Microbiol. Biotechnol. 2012, 94, 517–526. [Google Scholar] [CrossRef]
Sr. NO | Operational Day | Shock (mg TAN/L) * | Shock (mg FAN/L) * | NO2 (mg/L) | NO3 (mg/L) | TANinf (mg/L) | TANeff (mg/L) ** |
---|---|---|---|---|---|---|---|
CSTR | |||||||
1 | 65.0 | ~5 | 0.45 | 11 | 37 | ~50 | ~1 |
2 | 66.0 | ~5 | 0.45 | -- | -- | ~50 | ~1 |
3 | 67.0 | ~5 | 0.45 | -- | -- | ~50 | ~1 |
4 | 68.0 | ~5 | 0.45 | -- | -- | ~50 | ~1 |
5 | 69.0 | ~5 | 0.45 | -- | -- | ~50 | ~1 |
6 | 70.0 | ~20 | 1.81 | 16.1 | 32.6 | ~50 | ~1 |
7 | 71.5 | ~20 | 1.81 | ~50 | ~1 | ||
8 | 73.0 | ~50 | 4.54 | 17.7 | 30.6 | ~50 | ~1 |
9 | 80.0 | ~100 | 9.07 | 21.2 | 29.3 | ~50 | ~1 |
10 | 84.0 | ~200 | 18.1 | 34.2 | 23.3 | ~50 | ~1 |
11 | 86.0 | ~200 | 18.1 | -- | -- | ~50 | ~1 |
12 | 88.0 | ~200 | 18.1 | -- | -- | ~50 | ~1 |
13 | 90.0 | ~200 | 18.1 | -- | -- | ~50 | ~1 |
14 | 92.0 | ~200 | 18.1 | -- | -- | ~50 | ~1 |
15 | 95.0 | ~500 | 45.4 | 56.3 | 4.0 | ~50 | ~1 |
16 | 98.0 | ~500 | 45.4 | -- | -- | ~50 | ~1 |
17 | 100 | ~500 | 45.4 | -- | -- | ~50 | ~1 |
18 | 103 | ~500 | 45.4 | -- | -- | ~50 | ~1 |
19 | 106 | ~1000 | 90.7 | 55.7 | 3 | ~50 | ~1 |
20 | 110 | ~2000 | 181.4 | 65.7 | 2 | ~50 | ~1 |
CSTBR | |||||||
1 | 62 | ~1000 | 90.7 *** | 44.4 | 5.2 | ~50 | ~1 |
2 | 76 | ~1000 | 90.7 | 45.2 | 4.6 | ~50 | ~1 |
3 | 90 | ~1000 | 90.7 | 45.5 | 4.62 | ~50 | ~1 |
Reactor | NOB Suppression Technique | Nitrite Accumulation Ratio (%) | AOB (%) | NOB (%) | SRT (d) | TANin (mgTAN/L) | TANeff (mgTAN/L) | T (°C) | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
1 | SBR | Real-time aeration control | >90% | 8.3 ± 1.1 | 0 | 30 | ~50 | ~5 | 12–25 | [29] |
2 | SBR containing immobilized cells | FA inhibition and insufficient DO and chemical inhibitor | Over 97% | N/R | N/R | N/R | ~30 | ~1 | 11–30 | [5] |
3 | SBR | FNA treatment | 80% | N/R | N/R | N/R | N/R | ~0.2 | [23] | |
4 | Anaerobic aerobic anoxic SBR | Real-time control, low DO concentration and sludge fermentation products | 99% | 1.32 | 0 | 15 | ~60 | ~20 | 25 | [30,31] |
5 | SBR | Sludge fermentation, anoxic, acid | 81.8–98.7% | N/R | N/R | 13 | 35 | N/R | 21 | [32] |
6 | SBR | Low DO, FA | 90.8% | N/R | N/R | N/R | 450 | 200 | 25 | [33] |
7 | SBR | Aerobic starvation and short SRT | >95 | 96.21 | 3.79 | 15 | N/R | 30 | 29 | [26] |
8 | SBR | Sludge treatment using FA | >90% | 7.6 | 0.2 | 15 | <20 | ~0.1 | 22 | [20] |
9 | SBR | Aeration duration control | 59–97% | N/R | N/R | N/T | ~49.4 | ~4 | 30 | [34] |
10 | SBR | Intermittent aeration | 0.16 | 1 | 50 | ~70 | ~40 | 32 | [35] | |
11 | SBR | Humic acid and fulvic acid | Above 95% | 2.31 | 0 | Above 40 | ~60 | ~20 | 15–30 | [36] |
12 | CSTR granular (phases 1 and 2) | DO, short HRT | 80% | 24.34 | 1.30 | N/R | ~120 | ~10 | 28 | [37] |
13 | CSTR | DO control/NOB inhibited sludge from SBR | 85% | N/R | N/R | 12 | ~60 | ~5 | 25 ± 1 | [38] |
12 | CSTR cell recycle | Sludge-treatment method | ≥98% | 5.28 | 1.01 | All cells were recycled * | ~35 and ~50 | ~1 | 30 | This study |
13 | CSTBR | Substrate shock | ~90% | ~50 | ~1 | 30 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keerio, H.A.; Bae, W.; Panhwar, S. Nitrite Accumulation at Low Ammonia Concentrations in Wastewater Treatment Plants. Sustainability 2022, 14, 16449. https://doi.org/10.3390/su142416449
Keerio HA, Bae W, Panhwar S. Nitrite Accumulation at Low Ammonia Concentrations in Wastewater Treatment Plants. Sustainability. 2022; 14(24):16449. https://doi.org/10.3390/su142416449
Chicago/Turabian StyleKeerio, Hareef Ahmed, Wookeun Bae, and Sallahuddin Panhwar. 2022. "Nitrite Accumulation at Low Ammonia Concentrations in Wastewater Treatment Plants" Sustainability 14, no. 24: 16449. https://doi.org/10.3390/su142416449
APA StyleKeerio, H. A., Bae, W., & Panhwar, S. (2022). Nitrite Accumulation at Low Ammonia Concentrations in Wastewater Treatment Plants. Sustainability, 14(24), 16449. https://doi.org/10.3390/su142416449