Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016)
Abstract
:1. Introduction
- -
- determine the size of organic soil subsidence after 50 years of drainage (1966–2016) and the average annual rate of subsidence;
- -
- compare the field values for average annual subsidence rate (cm year−1) across 50 years (1966–2016) with the subsidence rate values calculated using 14 empirical equations from the literature;
- -
- estimate the future rate of soil subsidence using 4 equations that include time since drainage as a factor;
- -
- use of the measured peat subsidence rate for estimation of groundwater level (using 4 empirical equations) and compare the obtained results with independent field measurements of groundwater level;
- -
- determine the average annual rate of organic matter mineralization and the percentage effect of chemical and physical processes on the total subsidence of drained organic soils.
2. Materials and Methods
2.1. Study Area
2.2. Field Work
2.3. Data Processing
Site (Source) | Equation (Number) | Explanations of Symbols Acc. to Sources | |
---|---|---|---|
Depended on initial depth of deposit | |||
Noteć River Valley; drainage intensity of peatlands: -low (0.4–0.6 m), -medium (0.6–1.0 m), -high (1.0–1.2 m), -total [60] | (1) (2) (3) (4) | y—surface subsidence [cm] x—initial depth of deposit [cm] | |
Noteć River Valley; drainage intensity of peatlands: -medium (0.6–1.0 m), -high (1.0–1.2 m), -total [60] | (5) (6) (7) | y—surface subsidence [cm year−1] x—initial depth of deposit [cm] | |
Peatlands in Central Europe [60] | (8) | y—surface subsidence [cm] x—initial depth of deposit [cm] | |
Peatland of Moscow Reaserch Station [60,61] | (9) | y—surface subsidence [cm] x—initial depth of deposit [cm] | |
Biebrza River Valley; Kuwasy fen [62] | (10) | y—surface subsidence [cm] x—initial depth of deposit [cm] | |
Depended on years after drainage | |||
Stepnica and Góra; fens [63] | (11) * | h—surface subsidence [cm] x—time since drainage [years] a, b—empirical coefficients | |
Various peatlands [45,64] | (12) | S—subsidence [cm year−1] y—time after drainage [years] | |
Depended on initial depth of deposit and years after drainage | |||
Stary Borek; fen [13] | (13) | S—subsidence [cm] H—initial depth of deposit [cm] t—time after drainage [years] | |
Depended on initial depth of deposit, years after drainage and the depth of the ditch | |||
Noteć River valley; fen [60] | (14) | h—surface subsidence [m] H—initial depth of peatland [m] t—depth of ditches [m] L—time after drainage [years] | |
Depended on the depth of ground water level | |||
Zegvelderbroek; low-moor peat [65] | (15) | Y—predicted subsidence [cm year−1] X—average depth to water table [cm] | |
Poland; lowland fen peatland [13] | (16) | S—subsidence of soil surface [cm year−1] D—average depth of ground water in growing period [cm] | |
Zegveld; peatland [66] | (17) | S—subsidence of soil surface [mm year−1] ALGL—average lowest groundwater level in summer [m] | |
High-latitude peatlands [5] | (18) | Subs—subsidence rate [cm year−1] WTD—mean water table depth [cm] | |
Equation for oxidative subsidence | |||
Zegvelderbroek; low-moor peat [65] | (19) | Y—predicted subsidence [cm year−1] X—the average depth to water table [cm] | |
Poland; lowland fen peatland [13] | (20) | M—loss of organic matter due to mineralization process [t ha−1 year−1] D—mean water table depth in growing period [cm] P—bulk density of peat deposit [g cm−3] |
3. Results
3.1. Estimated Size and Rate of Peat Subsidence
3.2. Long-Term Subsidence Size Predictions
3.3. Estimates of Groundwater Level Based on Subsidence Rates
3.4. Estimating Mineralization of Organic Matter
4. Discussion
5. Conclusions
- -
- During 50 years the average lowering of peat deposits from 117 cm (1966) to 67 cm (2016), i.e., 43% was stated. The average annual rate of subsidence varied considerably across the site (from 0.08 to 2.2 cm year−1). The average annual rates of subsidence were fairly similar across different types of land use: 0.96 cm year−1 for fallow land overgrown with herb vegetation, 1.02 cm year−1 for forest areas, and 1.17 cm year−1 for grassland.
- -
- The applicability of the 14 equations was determined by comparing the average annual rate of subsidence measurements with the estimates (calculated with the equations). Values derived from Equations (3) and (11B) most closely matched actual field measurements. Therefore, these equations may be used in similar environmental conditions.
- -
- The 4 equations that included a temporal factor (time since drainage) were used to calculate both past and future subsidence rates. Equation (13) proved to be the most reliable, judging by the measurements and calculations for the period 1966–2016. When the current average annual rate of subsidence (1.03 cm year−1) is fed into this equation, the resultant subsidence rate estimate for the year 2056 is 0.82 cm year−1.
- -
- With the measured values of peat subsidence, it is possible to estimate the groundwater level during the growing season using empirical equations (Equations (15)–(18)), which was estimated at approx. 57–72 cm at Solec and these estimates were positively verified by historical field measurements.
- -
- Based on field measurements of peat subsidence at Solec (1966–2016) and the estimated groundwater level (Equations (15) and (16)), the share of chemical and physical processes in peat subsidence was determined. For this purpose, the empirical equation of Schothorst (Equation (19)) and Jurczuk (Equation (20)) were used. Both equations gave similar results, showing that the subsidence comprised approx. 46% of chemical processes and 54% of physical processes.
- -
- The loss of SOM at the Solec peatland, as a result of its mineralization, was estimated at 6–7 t year−1 (Equation (20)), while the annual rate of loss of peat mass at approx. 15 t ha−1 year−1 as a result of chemical and physical processes resulting in peat subsidence.
- -
- The calculations and field results presented in the paper can be applied to central and western Europe. This is evidenced by similar results of calculating the amount of subsidence using equations developed especially for Dutch and Polish conditions.
- -
- Future research should be directed at further monitoring of the magnitude of peatland subsidence in terms of the climatic changes taking place (high air and soil temperatures, high evaporation values, low precipitation amounts). Such meteorological conditions are not conducive to the wet condition of these soils, especially shallow peat soils often located on mineral subsoil, which in periods of drought at low groundwater levels can additionally act as a drainage layer. In the long term, this can lead to the complete disappearance of peat soils from the environment.
- -
- Verification of the proposed equations for peatlands in other regions for which long-term studies are available would enrich the science with further research results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okruszko, H. Transformation of fen-peat soils under the impact of draining. Zesz. Probl. Postępów Nauk Rol. 1993, 406, 3–73. [Google Scholar]
- Silins, U.; Rothwell, R.L. Forest peatland drainage and subsidence affect soil water retention and transport properties in an Alberta peatland. Soil Sci. Soc. Am. J. 1998, 62, 1048–1056. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Regina, K.; Szajdak, L.; Höper, H.; Maryganowa, V. Impacts of agricultural utilization of peat soils on the greenhouse gas balance. In Peatlands and Climate Change; Strack, M., Ed.; International Peat Society: Jyväskylä, Finland, 2008; pp. 70–97. [Google Scholar]
- Couwenberg, J. Greenhouse gas emissions from managed peat soils: Is the IPCC reporting guidance realistic? Mires Peat 2011, 8, 1–10. [Google Scholar]
- Evans, C.D.; Williamson, J.M.; Kacaribu, F.; Irawan, D.; Suardiwerianto, Y.; Hidayat, M.F.; Laurén, A.; Page, S.E. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 2019, 338, 410–421. [Google Scholar] [CrossRef]
- Sloan, T.J.; Payne, R.J.; Anderson, A.R.; Gilbert, P.; Mauquoy, D.; Newton, A.J.; Andersen, R. Ground surface subsidence in an afforested peatland fifty years after drainage and planting. Mires Peat 2019, 23, 6. [Google Scholar] [CrossRef]
- Kalisz, B.; Urbanowicz, P.; Smólczyński, S.; Orzechowski, M. Impact of siltation on the stability of organic matter in drained peatlands. Ecol. Indic. 2021, 130. [Google Scholar] [CrossRef]
- Smólczyński, S.; Kalisz, B.; Urbanowicz, P.; Orzechowski, M. Effect of peatland siltation on total and labile C, N, P and K. Sustainability 2021, 13, 8240. [Google Scholar] [CrossRef]
- Wittnebel, M.; Tiemeyer, B.; Dettmann, U. Peat and other organic soils under agricultural use in Germany: Properties and challenges for classification. Mires Peat 2021, 27, 19. [Google Scholar] [CrossRef]
- Ostromęcki, J. Design of longitudinal profile of ditches and drains in peatlands with reference to subsidence. Rocz. Nauk Rol. Ser. F 1956, 71, 129–133. (In Polish) [Google Scholar]
- Eggelsmann, R. Oxidativer Torfverzehr in Niedermoor in Abhängigkeit vom Klima und mögliche Schutzmaßnahmen. Telma 1978, 8, 75–81. [Google Scholar]
- Wösten, J.H.M.; Ismail, A.B.; van Wijk, A.L.M. Peat subsidence and its practical implications: A case study in Malaysia. Geoderma 1997, 78, 25–36. [Google Scholar] [CrossRef]
- Jurczuk, S. The influence of water regulations on subsidence and mineralisation of organic soils. Biblioteczka. Wiadomości IMUZ 2000, 96, 120, (In Polish with English Summary). [Google Scholar]
- Hendriks, R.F. An analytical equation for describing the shrinkage characteristics of peat soils. In Proceedings of the 12th International Peat Congress, Tampere, Finland, 6–11 June 2004; pp. 1343–1348. [Google Scholar]
- Den Haan, E.J.; Kruse, G.A.M. Characterisation and engineering properties of Dutch peats. In Proceedings of the Second International Workshop on Characterisation and Engineering Properties of Natural Soils, Singapore, 29 November–2 December 2006. [Google Scholar]
- Peng, X.; Horn, R. Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. Soil Sci. 2007, 58, 98–107. [Google Scholar] [CrossRef]
- Grzywna, A. The degree of peatland subsidence resulting from drainage of land. Environ. Earth Sci. 2017, 76, 559. [Google Scholar] [CrossRef] [Green Version]
- Zając, E.; Zarzycki, J.; Ryczek, M. Degradation of peat surface on an abandoned post-extracted bog and implications for re-vegetation. App. Ecol. Environ. Res. 2018, 16, 3363–3380. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Zając, E.; Urbański, J. Verification of empirical equations describing subsidence rate of peatland in Central Poland. Wet. Ecol. Manag. 2020, 28, 495–507. [Google Scholar] [CrossRef]
- Ikkala, L.; Ronkanen, A.-K.; Utriainen, O.; Kløve, B.; Marttila, H. Peatland subsidence enhances cultivated lowland flood risk. Soil Tillage Res. 2021, 212, 1–14. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Albiac Borraz, E.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Drösler, M.; Ebli, M.; Eickenscheidt, T.; Fiedler, S.; et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Chang. Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef]
- Okruszko, H.; Ilnicki, P. The moorsh horizons as quality indicators of reclaimed organic soils. In Organic Soils and Peat Materials for Sustainable Agriculture; Parent, L.-E., Ilnicki, P., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–14. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. Ann. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- Hatala, J.A.; Detto, M.; Sonnentag, O.; Deverel, S.J.; Verfaillie, J.; Baldocchi, D.D. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agric. Ecosys. Environ. 2012, 150, 1–18. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Biancalani, R.; Salvatore, M.; Rossi, S.; Conchedda, G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 2016, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, J.L.; Campbell, D.I.; Schipper, L.A.; Wall, A.M.; Clarkson, B.R. Recovery of the CO2 sink in a remnant peatland following water table lowering. Sci. Total Environ. 2020, 718, 134613. [Google Scholar] [CrossRef] [PubMed]
- Kechavarzi, C.; Dawson, Q.; Leeds-Harrison, P.B.; Szatyłowicz, J.; Gnatowski, T. Water-table management in lowland UK peat soils and its potential impact on CO2 emission. Soil Use Manag. 2007, 23, 359–367. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Kahle, P. Nitrogen and dissolved organic carbon (DOC) losses from an artificially drained grassland on organic soils. Biogeosciences 2014, 11, 4123–4137. [Google Scholar] [CrossRef] [Green Version]
- Schwalm, M.; Zeitz, J. Concentrations of dissolved organic carbon in peat soils as influenced by land use and site characteristics—A lysimeter study. Catena 2015, 127, 72–79. [Google Scholar] [CrossRef]
- Glina, B.; Piernik, A.; Mocek-Płóciniak, A.; Maier, A.; Glatzel, S. Drivers controlling spatial and temporal variation of microbial properties and dissolved organic forms (DOC and DON) in fen soils with persistently low water tables. Glob. Ecol. Conserv. 2021, 27, e01605. [Google Scholar] [CrossRef]
- Sari, E.; Yamin, M.; Purba, H.; Sembiring, R. Land Procurement for Public Interest Against Destroyed Land: Natural Events and Legal Certainty. Civ. Eng. J. 2022, 8, 1167–1177. [Google Scholar] [CrossRef]
- Everett, K.R.; Wilding, L.P.; Smeck, N.E.; Hall, G.F. (Eds.) Pedogenesis and Soil Taxonomy II: The Soil Orders; Elsevier Scientific Publishers: Amsterdam, The Netherlands, 1983; pp. 1–53. [Google Scholar]
- Ewing, J.M.; Vepraskas, M.J. Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands 2006, 26, 119–130. [Google Scholar] [CrossRef]
- Eggelsmann, R. Subsidence of peatland caused by drainage, evaporation and oxidation. In Land Subsidence, Proceedings of the Third International Symposium on Land Subsidence, Venice, Italy, 19–25 March 1984; Johnson, A.I., Carbognin, L., Ubertini, L., Eds.; IAHS Publication No. 151; Institute of Hydrology: Wallingford, UK, 1986; pp. 497–505. [Google Scholar]
- Camporese, M.; Gambolati, G.; Putti, M.; Teatini, P. Peatland subsidence in the Venice watershed. In Peatlands: Evolution and Records of Environmental and Climate Changes; Martini, I.P., Martinez Cortizas, A., Chesworth, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 529–550. [Google Scholar] [CrossRef]
- Gambolati, G.; Putti, M.; Teatini, P.; Stori, G.G. Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon. Environ. Geol. 2006, 49, 814–820. [Google Scholar] [CrossRef]
- Berglund, Ö.; Berglund, K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol. Biochem. 2011, 43, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Deverel, S.J.; Ingrum, T.; Leighton, D. Present-day oxidative subsidence of organic soils and mitigation in the Sacrament-San Joaquin Delta, California, USA. Hydrogeol. J. 2016, 24, 569–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipka, K.; Zając, E.; Hlotov, V.; Siejka, Z. Disappearance rate of a peatland in Dublany near Lviv (Ukraine) drained in 19th century. Mires Peat 2017, 19, 1–15. [Google Scholar] [CrossRef]
- Dawson, Q.; Kechavarzi, C.; Leeds-Harrison, P.B.; Burton, R.G.O. Subsidence and degradation of agricultural peatlands in the Fenlands of Norfolk, UK. Geoderma 2010, 154, 181–187. [Google Scholar] [CrossRef]
- Jurczuk, S. Reclamation determinants of organic matter preservation in post-bog soils under meadows. Woda-Środowisko-Obsz. Wiej. Rozpr. Nauk. I Monogr. 2011, 30, 1–81, (In Polish with English Summary). [Google Scholar]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef]
- Erkens, G.; van der Meulen, M.; Middelkoop, H. Double trouble: Subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands cultivation. Hydrogeol. J. 2016, 24, 551–568. [Google Scholar] [CrossRef] [Green Version]
- Koster, K.; Stafleu, J.; Cohen, K.M.; Stouthamer, E.; Busschers, F.S.; Middelkoop, H. Three-dimensional distribution of organic matter in coastal-deltaic peat: Implications for subsidence and carbon dioxide emissions by human-induced peat oxidation. Anthropocene 2018, 22, 1–9. [Google Scholar] [CrossRef]
- Ilnicki, P. Peatlands and Peat; Wydawnictwo Akademii Rolniczej w Poznaniu: Poznań, Poland, 2002. (In Polish) [Google Scholar]
- Rojstaczer, S.; Deverel, S. Land subsidence in drained Histosols and highly organic mineral soils of California. Soil Sci. Soc. Am. J. 1995, 59, 1162–1167. [Google Scholar] [CrossRef]
- Van Hardeveld, H.A.; Driessen, P.P.J.; Schot, P.P.; Wassen, M.J. An integrated modelling framework to assess long-term impacts of water management strategies steering soil subsidence in peatlands. Environ. Impact Assess. Rev. 2017, 66, 66–77. [Google Scholar] [CrossRef]
- Zanello, F.; Teatini, P.; Putti, M.; Gambolati, G. Long term peatland subsidence: Experimental study and modeling scenarios in the Venice coastland. J. Geophys. Res. Earth Surf. 2011, 116, F4. [Google Scholar] [CrossRef]
- Trepel, M. Höhenverluste von Moorböden—Eine Herausforderung für Wasserwirtschaft und Landnutzung. Telma 2015, 45, 41–52. [Google Scholar]
- Koster, K.; Stafleu, J.; Stouthamer, E. Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands. Netherlands J. Geosci. 2018, 97, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezinska-Wojcik, T.; Chabudziński, L.; Dobrowolski, L.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Brandyk, A.; Kaca, E.; Oleszczuk, R.; Urbański, J.; Jadczyszyn, J. Conceptual model of drainage-sub irrigation system functioning—First results from a case study of a lowland valley area in central Poland. Sustainability 2021, 13, 107. [Google Scholar] [CrossRef]
- Brandyk, A.; Oleszczuk, R.; Urbański, J. Estimation of organic soils subsidence in the vicinity of hydraulic structures—Case study of a subirrigation system in central Poland. J. Ecol. Eng. 2020, 21, 64–74. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Gąsowska, M. The Influence of Change in Meadow Use on Physical-Water Properties of Organic Soils. Case study: Łąki Soleckie. Ph.D. Thesis, Warsaw University of Life Sciences—SGGW, Warsaw, Poland, 2017. (In Polish). [Google Scholar]
- Brożek, W. The Description of the Technical Project of Land Reclamation of the Grassland Mała River Site, Piaseczno District, Mazovia Province; Centralne Biuro Studiów i Projektów Wodno-Melioracyjnych (Oddział w Warszawie)—CBSiPWM: Warsaw, Poland, 1987; pp. 1–45. (In Polish) [Google Scholar]
- Brandyk, T. Principles of Moisture Management for Shallow Water Table Soils; Treatises and Monographs No 116; Warsaw Agricultural University Press: Warsaw, Poland, 1990; (In Polish with English Summary). [Google Scholar]
- Oleszczuk, R.; Truba, M. The analysis of some physical properties of drained peat-moorsh layers. Ann. Wars. Univ. Life Sci. Land Reclam. 2013, 45, 41–48. [Google Scholar] [CrossRef]
- Truba, M.; Oleszczuk, R. An analysis of some basic chemical and physical properties of drained fen peat and moorsh soil layers. Ann. Wars. Univ. Life Sci. Land Reclam. 2014, 46, 69–78. [Google Scholar] [CrossRef]
- Ilnicki, P. Subsidence of Fenland Areas in the Noteć Valley under Long-Term Agricultural Use Depending on Their Structure and Drainage Intensity; Dissertation No. 30; Wyższa Szkoła Rolnicza: Szczecin, Poland, 1972; (In Polish with English Summary). [Google Scholar]
- Stankevič, V.S.; Karelin, T.I. Peat subsidence and its effect on work of drainage. Gidroteh. I Melior. 1965, 12. (In Russian) [Google Scholar]
- Krzywonos, K. The subsidence of peatlands after drainage near ZD IMUZ Biebrza. Wiadomości IMUZ 1974, 12, 151–169, (In Polish with English Summary). [Google Scholar]
- Jurczuk, S. The subsidence and minaralization of peat-moorsh soils in sub-irrigation systems. In Progress in Design and Exploitation of Sub-Irrigation Systems; Warsaw University of Life Sciences—SGGW-AR: Warsaw, Poland, 1991; pp. 109–118. (In Polish) [Google Scholar]
- Maslov, B.S.; Kolganov, A.V.; Kreshtapova, V.N. Peat Soils and Their Change Under Amelioration; Rossel’khozizdat: Moscow, Russia, 1996. (In Russian) [Google Scholar]
- Schothorst, C.J. Subsidence of low moor peat soils in the western Netherlands. Geoderma 1977, 17, 265–291. [Google Scholar] [CrossRef]
- Querner, E.P.; Jansen, P.C.; van den Akker, J.J.H.; Kwakernaak, C. Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J. Hydrol. 2012, 446–447, 59–69. [Google Scholar] [CrossRef]
- Androsiuk, W. Assessment of Moisture Content Changes in the Soil Profile at the Solec Site against the Meteorological Condition. Master’s Thesis, Department of Forest and Land Reclamation, Warsaw University of Life Sciences—SGGW-AR, Warsaw, Poland, 1983. (In Polish). [Google Scholar]
- Tkaczewski, T. Assessment of the Operation of Drainage Devices at the Solec Site. Master’s Thesis, Institute of Forest and Land Reclamation, Warsaw University of Life Sciences—SGGW-AR, Warsaw, Poland, 1971. (In Polish). [Google Scholar]
- Kowalczyk, J. Operation of Drainage Devices at the Solec Site. Master’s Thesis, Institute of Forest and Land Reclamation, Warsaw University of Life Sciences—SGGW-AR, Warsaw, Poland, 1978. (In Polish). [Google Scholar]
- Mostowski, Z. Forecasting of the Groundwater Table at the Solec Site. Master’s Thesis, Institute of Land Reclamation and Water Management, Warsaw University of Life Sciences—SGGW-AR, Warsaw, Poland, 1982. (In Polish). [Google Scholar]
- Oleszczuk, R.; Gąsowska, M.; Guz, G.; Urbański, J.; Hewelke, E. The influence of subsidence and disappearance of organic moorsh soils on longitudinal sub-irrigation ditch profiles. Acta Sci. Pol. Form. Cir. 2017, 16, 3–13, (In Polish with English Summary). [Google Scholar] [CrossRef] [Green Version]
- Minkkinen, K.; Laine, J. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Canad. J. For. Res. 1998, 28, 1267–1275. [Google Scholar] [CrossRef]
- Minkkinen, K.; Vasander, H.; Jauhiainen, S.; Karsisto, M.; Laine, J. Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 1999, 207, 107–120. [Google Scholar] [CrossRef]
- Grønlund, A.; Hauge, A.; Hovde, A.; Rasse, D.P. Carbon loss estimates from cultivated soils in Norway: A comparison of three methods. Nutr. Cycl. Agroecosyst. 2008, 81, 157–167. [Google Scholar] [CrossRef]
- Brouns, K.; Eikelboom, T.; Jansen, P.C.; Janssen, R.; Kwakernaak, C.; Van Den Akker, J.J.H.; Verhoeven, J.T.A. Spatial analysis of soil subsidence in peat meadow areas in Friesland in relation to land and water management, climate change, and adaptation. Environ. Manag. 2015, 55, 360–372. [Google Scholar] [CrossRef]
- Schipper, L.A.; McLeod, M. Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato region, New Zealand. Soil Use Manag. 2002, 18, 91–93. [Google Scholar] [CrossRef]
- Liu, H.; Price, J.; Rezanezhad, F.; Lennartz, B. Centennial-scale shifts in hydrophysical properties of peat induced by drainage. Water Resour. Res. 2020, 56, e2020WR027538. [Google Scholar] [CrossRef]
- Segeberg, H. Peatland subsidence by lowering of the groundwater level and predicting it with use of empirical formulae. Z. Für Kult. 1960, 1, 144–161. (In German) [Google Scholar]
- Wertz, G. A Contribution to the Design of Drainage Systems Considering Maintenance and Improvement of Functional Efficiency; Rostock University: Rostock, Germany, 1967. (In German) [Google Scholar]
- Hoogland, T.; van den Akker, J.J.H.; Brus, D.J. Modeling the subsidence of peat soils in the Dutch coastal area. Geoderma 2012, 171–172, 92–97. [Google Scholar] [CrossRef]
- Kurnain, A.; Notohadikusomo, T.; Radgjagukguk, B.; Hastuti, S. Peat soil properties related to degree of decomposition under different land use systems. Int. Peat J. 2001, 11, 67–77. [Google Scholar]
- Laiho, R. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 2006, 38, 2011–2024. [Google Scholar] [CrossRef]
- Nieuwenhuis, H.S.; Schokking, F. Land subsidence in drained peat areas of the Province of Friesland, The Netherlands. Q. J. Eng. Geol. Hydrogeol. 1997, 30, 37–48. [Google Scholar] [CrossRef]
- Nagano, T.; Osawa, K.; Ishida, T.; Sakai, K.; Vijarnsorn, P.; Jongskul, A.; Phetsuk, S.; Waijaroen, S.; Yamanoshita, T.; Norisada, M.; et al. Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. Mires Peat 2013, 11, 6. [Google Scholar]
- Camporese, M.; Putti, M.; Salandin, P.; Teatini, P. Modeling peatland hydrology and related elastic deformation. In Proceedings of the 15th International Conference on Computational Methods in Water Resources, Chapel Hill, NC, USA, 13–17 June 2004; Miller, C.T., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, pp. 1453–1464. [Google Scholar]
- Renger, M.; Wessolek, G.; Schwaerzel, K.; Sauerbrey, R.; Siewert, C. Aspects of peat conservation and water management. J. Plant Nutr. Soil Sci. 2002, 165, 487–493. [Google Scholar] [CrossRef]
- Leiber-Sauheitl, K.; Fuß, R.; Voigt, C.; Freibauer, A. High CO2 fluxes from grassland on histic Gleysol along soil carbon and drainage gradients. Biogeosciences 2014, 11, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Byearne, K.A.; Chojnicki, B.; Christensen, T.R.; Drösler, M.; Freibauer, A.; Friborg, T.; Frolking, S.; Lindroth, A.; Mailhammer, J.; Malmer, N.; et al. EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes; University of Lund: Lund, Sweden, 2004. [Google Scholar]
- Holden, J. Peatland hydrology and carbon release: Why small-scale process matters. Philos. Trans. R. Soc. Lond. Ser. A 2005, 363, 2891–2913. [Google Scholar] [CrossRef] [Green Version]
- Leifeld, J.; Müller, M.; Fuhrer, J. Peatland subsidence and carbon loss from drained temperate fens. Soil Use Manag. 2011, 27, 170–176. [Google Scholar] [CrossRef]
Study Point No. | Mean Ground Water Level (cm) | Mean Thickness of Peat Deposit—H (cm) | Difference H(1966)—H(2016) | Reduction of H | Peat Subsidence Rate | Land Use | ||||
---|---|---|---|---|---|---|---|---|---|---|
1966 | 2016 | 1966 | SD * | 2016 | SD | cm | % | cm Year−1 | ||
1 | 20 (±12) | 45 (±13) | 150 | 2.3 | 57 | 1.8 | 93 | 62.0 | 1.86 | extensive grassland |
2 | 20 (±10) | 38 (±19) | 60 | 1.8 | 56 | 2.2 | 4 | 6.7 | 0.08 | herb vegetation ** |
3 | 35 (±13) | 41 (±26) | 100 | 2.4 | 56 | 1.1 | 44 | 44.0 | 0.88 | herb vegetation |
4 | 20 (±14) | 61 (±18) | 90 | 1.6 | 31 | 2.3 | 59 | 65.5 | 1.18 | herb vegetation |
5 | 35 (±17) | 49 (±12) | 150 | 2.9 | 83 | 1.6 | 67 | 44.7 | 1.34 | herb vegetation |
6 | 25 (±12) | 52 (±15) | 120 | 3.6 | 61 | 1.4 | 59 | 49.2 | 1.18 | herb vegetation |
7 | 70 (±15) | 38 (±11) | 120 | 1.8 | 105 | 2.5 | 15 | 12.5 | 0.30 | herb vegetation |
8 | 55 (±26) | 41 (±14) | 150 | 2.9 | 100 | 3.2 | 50 | 33.3 | 1.00 | herb vegetation |
9 | 80 (±19) | 55 (±13) | 70 | 2.4 | 49 | 1.9 | 21 | 30.0 | 0.42 | extensive grassland |
10 | 40 (±17) | 29 (±17) | 150 | 2.9 | 125 | 2.8 | 25 | 16.7 | 0.50 | herb vegetation |
11 | 120 (±24) | 22 (±14) | 180 | 1.8 | 171 | 2.0 | 9 | 5.0 | 0.18 | herb vegetation |
12 | 120 (±15) | 55 (±16) | 110 | 4.1 | 35 | 3.1 | 75 | 68.2 | 1.50 | extensive grassland |
13 | 60 (±24) | 62 (±15) | 100 | 3.8 | 13 | 1.8 | 87 | 87.0 | 1.74 | herb vegetation |
14 | 70 (±13) | 45 (±16) | 90 | 1.5 | 45 | 2.7 | 45 | 50.0 | 0.90 | extensive grassland |
15 | 90 (±24) | 65 (±19) | 150 | 3.5 | 40 | 3.2 | 110 | 73.3 | 2.20 | herb vegetation |
16 | 60 (±13) | 71 (±24) | 150 | 3.1 | 94 | 2.1 | 56 | 37.3 | 1.12 | forest |
17 | 60 (±22) | 63 (±19) | 150 | 4.1 | 49 | 1.7 | 101 | 67.3 | 2.02 | forest |
18 | 80 (±25) | 46 (±21) | 60 | 2.9 | 39 | 2.6 | 21 | 35.0 | 0.42 | forest |
19 | 70 (±18) | 48 (±18) | 70 | 1.8 | 44 | 2.9 | 26 | 37.1 | 0.52 | forest |
Mean | 117 | 66 | 51 | 43.5 | 1.02 |
Study Point No. | Peat Loss (cm Year−1) | Ilnicki | Stankevič and Karelin | Krzywonos | Jurczuk | Maslov et al. | Jurczuk | Ilnicki | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11A | 11B | 12 | 13 | 14 | ||
1 | 1.86 | 0.32 | 0.51 | 0.93 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
2 | 0.08 | 0.23 | 0.42 | 0.79 | 0.31 | 0.40 | 0.61 | 0.29 | 0.60 | 0.57 | 0.17 | 0.77 | 1.25 | 1.25 | 0.91 | 0.17 |
3 | 0.88 | 0.27 | 0.46 | 0.85 | 0.39 | 0.45 | 0.70 | 0.38 | 0.70 | 0.69 | 0.25 | 0.77 | 1.25 | 1.25 | 1.00 | 0.28 |
4 | 1.18 | 0.26 | 0.45 | 0.83 | 0.37 | 0.44 | 0.67 | 0.35 | 0.68 | 0.66 | 0.24 | 0.77 | 1.25 | 1.25 | 0.98 | 0.25 |
5 | 1.34 | 0.32 | 0.51 | 0.93 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
6 | 1.18 | 0.29 | 0.48 | 0.88 | 0.43 | 0.47 | 0.74 | 0.42 | 0.75 | 0.76 | 0.29 | 0.77 | 1.25 | 1.25 | 1.04 | 0.34 |
7 | 0.30 | 0.29 | 0.48 | 0.88 | 0.43 | 0.47 | 0.74 | 0.42 | 0.75 | 0.76 | 0.29 | 0.77 | 1.25 | 1.25 | 1.04 | 0.34 |
8 | 1.00 | 0.32 | 0.51 | 0.94 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
9 | 0.42 | 0.24 | 0.43 | 0.81 | 0.33 | 0.41 | 0.63 | 0.32 | 0.63 | 0.60 | 0.19 | 0.77 | 1.25 | 1.25 | 0.93 | 0.20 |
10 | 0.50 | 0.32 | 0.51 | 0.94 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
11 | 0.18 | 0.35 | 0.54 | 0.98 | 0.55 | 0.53 | 0.88 | 0.55 | 0.89 | 0.95 | 0.41 | 0.77 | 1.25 | 1.25 | 1.13 | 0.50 |
12 | 1.50 | 0.28 | 0.47 | 0.87 | 0.41 | 0.45 | 0.72 | 0.40 | 0.72 | 0.73 | 0.27 | 0.77 | 1.25 | 1.25 | 1.02 | 0.31 |
13 | 1.74 | 0.27 | 0.46 | 0.85 | 0.39 | 0.45 | 0.70 | 0.38 | 0.70 | 0.70 | 0.25 | 0.77 | 1.25 | 1.25 | 1.00 | 0.28 |
14 | 0.90 | 0.26 | 0.45 | 0.84 | 0.37 | 0.44 | 0.67 | 0.36 | 0.67 | 0.66 | 0.24 | 0.77 | 1.25 | 1.25 | 0.98 | 0.25 |
15 | 2.20 | 0.32 | 0.51 | 0.94 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
16 | 1.12 | 0.32 | 0.51 | 0.94 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
17 | 2.02 | 0.32 | 0.51 | 0.94 | 0.49 | 0.50 | 0.81 | 0.48 | 0.82 | 0.85 | 0.35 | 0.77 | 1.25 | 1.25 | 1.09 | 0.42 |
18 | 0.42 | 0.23 | 0.42 | 0.79 | 0.31 | 0.40 | 0.61 | 0.30 | 0.60 | 0.57 | 0.18 | 0.77 | 1.25 | 1.25 | 0.91 | 0.17 |
19 | 0.52 | 0.24 | 0.43 | 0.81 | 0.33 | 0.41 | 0.63 | 0.32 | 0.63 | 0.60 | 0.20 | 0.77 | 1.25 | 1.25 | 0.93 | 0.20 |
Mean | 1.02 | 0.29 | 0.47 | 0.88 | 0.42 | 0.46 | 0.74 | 0.42 | 0.74 | 0.75 | 0.29 | 0.77 | 1.25 | 1.25 | 1.04 | 0.33 |
Conformity * | 1 | 3 | 3 | 1 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 3 | 3 | 0 |
Period | Measured | Jurczuk (11A) | Jurczuk (11B) | Maslov et al., (12) | Jurczuk (13) | Ilnicki (14) |
---|---|---|---|---|---|---|
(cm year−1) | ||||||
1966–2016 | 1.02 | 0.69 | 1.25 | 1.25 | 1.03 | 0.33 |
1966–2036 | - | 0.61 | 1.08 | 1.21 | 0.91 | 0.23 |
1966–2046 | - | 0.56 | 1.02 | 1.20 | 0.86 | 0.21 |
1966–2056 | - | 0.52 | 0.97 | 1.20 | 0.82 | 0.18 |
Study Point No. | Peat Loss 1966–2016 (cm year−1) | Ground Water Levels (cm) during the Growing Period Calculated with Equations | |||
---|---|---|---|---|---|
Schothorst (Equation (15)) | Jurczuk (Equation (16)) | Querner et al., (Equation (17)) | Evans et al., (Equation (18)) | ||
1 | 1.86 | 86.8 | 100.0 | 107.4 | 108.0 |
2 | 0.08 | 23.5 | 25.8 | 31.8 | 24.0 |
3 | 0.88 | 52.0 | 59.2 | 65.7 | 61.8 |
4 | 1.18 | 62.7 | 71.7 | 78.5 | 75.9 |
5 | 1.34 | 68.4 | 78.3 | 85.3 | 83.5 |
6 | 1.18 | 62.7 | 71.7 | 78.5 | 75.9 |
7 | 0.30 | 31.3 | 35.0 | 41.1 | 34.4 |
8 | 1.00 | 56.3 | 64.2 | 70.8 | 67.4 |
9 | 0.42 | 35.6 | 40.0 | 46.2 | 40.1 |
10 | 0.50 | 38.5 | 43.3 | 49.6 | 43.8 |
11 | 0.18 | 27.1 | 30.0 | 36.0 | 28.8 |
12 | 1.50 | 74.1 | 85.0 | 92.1 | 91.0 |
13 | 1.74 | 82.6 | 95.0 | 102.3 | 102.3 |
14 | 0.90 | 52.7 | 60.0 | 66.6 | 62.7 |
15 | 2.20 | 98.9 | 114.2 | 121.8 | 124.0 |
16 | 1.12 | 60.5 | 69.2 | 75.9 | 73.1 |
17 | 2.02 | 92.5 | 106.7 | 114.2 | 115.6 |
18 | 0.42 | 35.6 | 40.0 | 46.2 | 40.1 |
19 | 0.52 | 39.2 | 44.2 | 50.4 | 44.8 |
Mean | 1.02 | 56.9 | 64.9 | 71.6 | 68.3 |
Study Point No. | Calculated Ground Water Levels (cm) Using Equations | Measured Ground Water Levels (cm) | Reference | |||
---|---|---|---|---|---|---|
Schothorst (Equation (15)) | Jurczuk (Equation (16)) | Querner et al., (Equation (17)) | Evans et al., (Equation (18)) | |||
2 | 23 | 25 | 31 | 24 | 31 (Apr.-Sept. 2013–2015) * | [54] |
3 | 52 | 59 | 65 | 61 | 71 (Jun.-Sept. 1976) | [66] |
40 (Jun.-Sept. 1977) | ||||||
56 (Jun.-Sept. 1978) | ||||||
54 (Jun.-Sept. 1979) | ||||||
60 (Jun.-Sept. 1980) | ||||||
6 | 62 | 71 | 78 | 76 | 55 (Mar.-May 1970) | [67] |
10 | 38 | 43 | 49 | 43 | 61 (Mar.-May 1970) | [67] |
57 (May-Aug. 1977) | [68] | |||||
45 (Oct-Nov. 1981) | [69] | |||||
42 (Apr.-Sept. 2013–2015) | [54] | |||||
11 | 27 | 30 | 36 | 28 | 24 (Apr-Sept. 2013–2015) | [54] |
12 | 74 | 85 | 92 | 91 | 38 (May-Aug. 1977) | [68] |
Study Point No. | Peat Loss (cm year−1) | Ground Water Level (cm) | Subsidence (cm year−1) | Process (%) | Ground Water Level (cm) | Peat Loss (t ha−1 year−1) | Total Peat Loss (t ha−1 year−1) | Process (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Schothorst (Equation (15)) | Schothorst (Equation (19)) | Chemical | Physical | Jurczuk (Equation (16)) | Jurczuk (Equation (20)) | Chemical | Physical | |||
1 | 1.86 | 86.8 | 0.87 | 46.9 | 53.1 | 100.0 | 14.1 | 27.9 | 50.5 | 49.5 |
2 | 0.08 | 23.5 | 0.02 | 30.2 | 69.8 | 25.8 | 0.1 | 1.2 | 9.0 | 91.0 |
3 | 0.88 | 51.9 | 0.40 | 46.1 | 53.9 | 59.1 | 6.0 | 13.2 | 45.4 | 54.6 |
4 | 1.18 | 62.6 | 0.54 | 46.5 | 53.5 | 71.6 | 8.5 | 17.7 | 47.8 | 52.2 |
5 | 1.34 | 68.3 | 0.62 | 46.6 | 53.4 | 78.3 | 9.8 | 20.1 | 48.7 | 51.3 |
6 | 1.18 | 62.6 | 0.54 | 46.5 | 53.5 | 71.6 | 8.5 | 17.7 | 47.9 | 52.2 |
7 | 0.3 | 31.3 | 0.12 | 43.0 | 57.0 | 35.0 | 1.2 | 4.5 | 26.8 | 73.2 |
8 | 1.0 | 56.2 | 0.46 | 46.2 | 53.8 | 64.1 | 7.0 | 15 | 46.6 | 53.4 |
9 | 0.42 | 35.6 | 0.18 | 44.3 | 55.4 | 40.0 | 2.2 | 6.3 | 34.9 | 65.1 |
10 | 0.5 | 38.4 | 0.22 | 44.8 | 55.2 | 43.3 | 2.8 | 7.5 | 38.1 | 61.9 |
11 | 0.18 | 27.0 | 0.07 | 39.9 | 60.1 | 30.0 | 0.2 | 2.7 | 8.0 | 92.0 |
12 | 1.5 | 74.0 | 0.70 | 46.7 | 53.3 | 85.0 | 11.1 | 22.5 | 49.4 | 50.6 |
13 | 1.74 | 82.5 | 0.81 | 46.8 | 53.2 | 95.0 | 13.1 | 26.1 | 50.2 | 49.8 |
14 | 0.9 | 52.7 | 0.41 | 46.1 | 53.9 | 60.0 | 6.2 | 13.5 | 45.7 | 54.3 |
15 | 2.2 | 98.9 | 1.03 | 47.0 | 53.0 | 114.1 | 16.9 | 33 | 51.2 | 48.8 |
16 | 1.12 | 60.5 | 0.52 | 46.4 | 53.6 | 69.1 | 7.9 | 16.8 | 47.5 | 52.5 |
17 | 2.02 | 92.5 | 0.95 | 46.9 | 53.1 | 106.6 | 15.4 | 30.3 | 50.9 | 49.2 |
18 | 0.42 | 35.6 | 0.18 | 44.3 | 55.7 | 40.0 | 2.2 | 6.3 | 34.9 | 65.1 |
19 | 0.52 | 39.1 | 0.23 | 45.0 | 55.0 | 44.1 | 3.0 | 7.8 | 38.8 | 61.2 |
Mean | 1.02 | 56.9 | 0.47 | 46.3 | 53.7 | 64.9 | 7.1 | 15.3 | 46.7 | 53.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleszczuk, R.; Łachacz, A.; Kalisz, B. Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016). Sustainability 2022, 14, 16459. https://doi.org/10.3390/su142416459
Oleszczuk R, Łachacz A, Kalisz B. Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016). Sustainability. 2022; 14(24):16459. https://doi.org/10.3390/su142416459
Chicago/Turabian StyleOleszczuk, Ryszard, Andrzej Łachacz, and Barbara Kalisz. 2022. "Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016)" Sustainability 14, no. 24: 16459. https://doi.org/10.3390/su142416459
APA StyleOleszczuk, R., Łachacz, A., & Kalisz, B. (2022). Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016). Sustainability, 14(24), 16459. https://doi.org/10.3390/su142416459