A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU
Abstract
:1. Introduction
- In order to deeply analyze the variation pattern of load and find out the inner connection between load components of different frequencies and external influencing factors, the article uses CEEMDAN algorithm to separate the frequencies of load data. The changing characteristics of the load components at different frequencies are analyzed, and the load fluctuation patterns and customers’ electricity consumption habits in the area are summarized.
- A combinatorial model for short-term load forecasting is proposed. Based on the original GRU algorithm, the algorithm optimization is carried out using the RAdam optimizer. Meanwhile, the optimization of the internal parameters of the GRU algorithm is carried out using the MVO algorithm. Based on this, the network was trained using the frequency components of the load and the main influencing factors, and the load was predicted for the next 24 h.
2. Materials and Methods
2.1. CEEMDAN and GRA
- The allowance signal of the load curve to was calculated as
- The load margin signal was decomposed repeatedly for N times to obtain the second modal component IMF as
- For k = 2, 3, …, K, the Kth residual signal was calculated as
- Step 3 was repeated to obtain the k + 1 modal function as
- Steps 4 and 5 were then repeated until the decomposition termination condition was reached, and K modal components of the load curve could be obtained. The final residual signal was calculated as
2.2. Multiverse Optimizer Algorithm
2.3. GRU Algorithm Based on the RAdam Optimizer
3. Hybrid Forecasting System
4. Data Sets
4.1. Data Preprocessing
4.2. Substation Load Curve Decomposition Based on the CEEMDAN Algorithm
5. Results and Discussion
5.1. Analysis of the Effect of RAdam Optimizer and MVO Algorithm Application
5.2. Selection of Leading Influencing Factors for Load Forecasting
5.3. Load Prediction and Result Analysis Based on the CEEMDAN-MVO-GRU Algorithm
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, J.; Cha, J.; Kim, H.; Wi, Y.-M. Day-Ahead Short-Term Load Forecasting for Holidays Based on Modification of Similar Days’ Load Profiles. IEEE Access 2022, 10, 17864–17880. [Google Scholar] [CrossRef]
- Fan, G.-F.; Liu, Y.-R.; Wei, H.-Z.; Yu, M.; Li, Y.-H. The new hybrid approaches to forecasting short-term electricity load. Electr. Power Syst. Res. 2022, 213, 108759. [Google Scholar] [CrossRef]
- Sina, A.; Kaur, D. An Accurate Hybrid Approach for Electric Short-Term Load Forecasting. IETE J. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Cao, Z.J.; Wan, C.; Zhang, Z.J.; Li, F.R.; Song, Y.H. Hybrid Ensemble Deep Learning for Deterministic and Probabilistic Low-Voltage Load Forecasting. IEEE Trans. Power Syst. 2020, 35, 1881–1897. [Google Scholar] [CrossRef]
- Kozak, D.; Holladay, S.; Fasshauer, G.E. Intraday Load Forecasts with Uncertainty. Energies 2019, 12, 1833. [Google Scholar] [CrossRef] [Green Version]
- Butt, F.M.; Hussain, L.; Mahmood, A.; Lone, K.J. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Math. Biosci. Eng. 2020, 18, 400–425. [Google Scholar] [CrossRef]
- Guo, Y.X.; Li, Y.; Qiao, X.B.; Zhang, Z.Y.; Zhou, W.F.; Mei, Y.J.; Lin, J.J.; Zhou, Y.C.; Nakanishi, Y. BiLSTM Multitask Learning-Based Combined Load Forecasting Considering the Loads Coupling Relationship for Multienergy System. IEEE Trans. Smart Grid 2022, 13, 3481–3492. [Google Scholar] [CrossRef]
- Cai, G.W.; Wang, W.J.; Lu, J.H. A Novel Hybrid Short Term Load Forecasting Model Considering the Error of Numerical Weather Prediction. Energies 2016, 9, 994. [Google Scholar] [CrossRef] [Green Version]
- Paparoditis, E.; Sapatinas, T. Short-Term Load Forecasting: The Similar Shape Functional Time-Series Predictor. IEEE Trans. Power Syst. 2013, 28, 3818–3825. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Guo, H.G.; Wang, J.Z.; Song, A.Y. A Hybrid System Based on LSTM for Short-Term Power Load Forecasting. Energies 2020, 13, 6241. [Google Scholar] [CrossRef]
- Chen, T.; Huang, W.; Wu, R.J.; Ouyang, H.B. Short Term Load Forecasting Based on SBiGRU and CEEMDAN-SBiGRU Combined Model. IEEE Access 2021, 9, 89311–89324. [Google Scholar] [CrossRef]
- Rafi, S.H.; Deeba, S.R.; Hossain, E. A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network. IEEE Access 2021, 9, 32436–32448. [Google Scholar] [CrossRef]
- Cai, C.C.; Li, Y.J.; Su, Z.H.; Zhu, T.Q.; He, Y.Y. Short-Term Electrical Load Forecasting Based on VMD and GRU-TCN Hybrid Network. Appl. Sci. 2022, 12, 6647. [Google Scholar] [CrossRef]
- Shang, C.; Gao, J.W.; Liu, H.B.; Liu, F.Z. Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model. IEEE Access 2021, 9, 50344–50357. [Google Scholar] [CrossRef]
- Javed, U.; Ijaz, K.; Jawad, M.; Khosa, I.; Ansari, E.A.; Zaidi, K.S.; Rafiq, M.N.; Shabbir, N. A novel short receptive field based dilated causal convolutional network integrated with Bidirectional LSTM for short-term load forecasting. Expert Syst. Appl. 2022, 205, 117689. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Kuenzel, S.; Colombo, N.; Watkins, C. Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks. J. Mod. Power Syst. Clean Energy 2022, 10, 1216–1228. [Google Scholar] [CrossRef]
- Yu, B.B.; Li, J.J.; Liu, C.; Sun, B. A novel short-term electrical load forecasting framework with intelligent feature engineering. Appl. Energy 2022, 327, 120089. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.J.; Gao, Y.C.; Wu, J.R.; Zhao, S.R.; Ding, Z. An effective dimensionality reduction approach for short-term load forecasting. Electr. Power Syst. Res. 2022, 210, 108067. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, H.; Wu, J.R.; Liu, C.J.; Wang, Y.G. A novel decompose-cluster-feedback algorithm for load forecasting with hierarchical structure. Int. J. Elec. Power 2022, 142, 108249. [Google Scholar] [CrossRef]
- Zhou, M.R.; Hu, T.Y.; Bian, K.; Lai, W.H.; Hu, F.; Hamrani, O.; Zhu, Z.W. Short-Term Electric Load Forecasting Based on Variational Mode Decomposition and Grey Wolf Optimization. Energies 2021, 14, 4089. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Zhao, S.; Wu, J. An integrated federated learning algorithm for short-term load forecasting. Electr. Power Syst. Res. 2022, 214, 108830. [Google Scholar] [CrossRef]
- Semero, Y.K.; Zhang, J.H.; Zheng, D.H. EMD-PSO-ANFIS-based hybrid approach for short-term load forecasting in microgrids. IET Gener. Transm. Distrib. 2020, 14, 470–475. [Google Scholar] [CrossRef]
- Liu, T.X.; Jin, Y.; Gao, Y.Y. A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization. Energies 2019, 12, 1520. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.T.; Huang, Z.H.; Zhang, C.H. Carbon price forecasting based on CEEMDAN and LSTM. Appl. Energy 2022, 311, 118601. [Google Scholar] [CrossRef]
- Huang, N.T.; Qi, J.J.; Li, F.Q.; Yang, D.F.; Cai, G.W.; Huang, G.L.; Zheng, J.; Li, Z.X. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line. Sensors 2017, 17, 2133. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Wang, L.G.; Chen, Y.L.; Hu, N.I.; Jiang, Y. Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. Sensors 2022, 22, 6599. [Google Scholar] [CrossRef]
- Halgamuge, M.N.; Daminda, E.; Nirmalathas, A. Best optimizer selection for predicting bushfire occurrences using deep learning. Nat. Hazards 2020, 103, 845–860. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Learning, J.H.J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv Preprint 2019, arXiv:1908.03265. [Google Scholar]
- Melinte, D.O.; Vladareanu, L. Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer. Sensors 2020, 20, 2393. [Google Scholar] [CrossRef]
- Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomed. Signal Process. Control. 2014, 14, 19–29. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A.; Abraham, P.; Mahe, G. Analysis of Laser Speckle Contrast Images Variability Using a Novel Empirical Mode Decomposition: Comparison of Results with Laser Doppler Flowmetry Signals Variability. IEEE Trans. Med Imaging 2015, 34, 618–627. [Google Scholar] [CrossRef]
- Yang, S.M.; Yuan, A.J.; Yu, Z.Q. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Environ. Sci. Pollut. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Dong, W.J.; Liu, S.F.; Fang, Z.G. On modeling mechanisms and applicable ranges of grey incidence analysis models. Grey Syst. Theory Appl. 2018, 8, 448–461. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, X.H.; Dou, Z.H.; Liu, L.X. A New Medium and Long-Term Power Load Forecasting Method Considering Policy Factors. IEEE Access 2021, 9, 160021–160034. [Google Scholar] [CrossRef]
- Liu, S.F.; Zhang, H.Y.; Yang, Y.J. Explanation of terms of grey incidence analysis models. Grey Syst. Theory Appl. 2017, 7, 136–142. [Google Scholar] [CrossRef]
- Mi, J.W.; Fan, L.B.; Duan, X.C.; Qiu, Y.Y. Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model. Math. Probl. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Mishra, S.; Nayak, P.C.; Prusty, R.C.; Panda, S. Modified multiverse optimizer technique-based two degree of freedom fuzzy PID controller for frequency control of microgrid systems with hydrogen aqua electrolyzer fuel cell unit. Neural Comput. Appl. 2022, 34, 1–17. [Google Scholar] [CrossRef]
- Sundaram, A. Multiobjective multi verse optimization algorithm to solve dynamic economic emission dispatch problem with transmission loss prediction by an artificial neural network. Appl. Soft Comput. 2022, 124, 109021. [Google Scholar] [CrossRef]
- Sulaiman, M.; Ahmad, S.; Iqbal, J.; Khan, A.; Khan, R. Optimal Operation of the Hybrid Electricity Generation System Using Multiverse Optimization Algorithm. Comput. Intel. Neurosci. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks. Sensors 2022, 22, 4062. [Google Scholar] [CrossRef]
- Jia, P.T.; Liu, H.D.; Wang, S.J.; Wang, P. Research on a Mine Gas Concentration Forecasting Model Based on a GRU Network. IEEE Access 2020, 8, 38023–38031. [Google Scholar] [CrossRef]
- Ding, G.R.; Wang, W.B.; Zhu, T. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU. IEEE Access 2022, 10, 89402–89413. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, N.; Chen, W.; Zhang, H.; Guo, B.; Shen, J.; Tian, Z. Multi-step ahead forecasting for electric power load using an ensemble model. Expert Syst. Appl. 2022, 211, 118649. [Google Scholar] [CrossRef]
- Kim, N.; Park, H.; Lee, J.; Choi, J.K. Short-Term Electrical Load Forecasting With Multidimensional Feature Extraction. IEEE Trans. Smart Grid 2022, 13, 2999–3013. [Google Scholar] [CrossRef]
- Hu, H.W.; Xia, X.; Luo, Y.L.; Zhang, C.; Nazir, M.S.; Peng, T. Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper optimization algorithm for short-term load forecasting. J. Build. Eng. 2022, 57, 104975. [Google Scholar] [CrossRef]
Forecasting Methods | Representative Algorithms | Features | ||
---|---|---|---|---|
Data Processing | Load Forecasting | |||
Traditional methods | - | Linear regression Kalman filtering Exponential smoothing techniques | Its simple and fast to compute. However, it cannot handle complex data samples. | |
Artificial intelligence methods | Single | - | RNN LSTM GRU CNN | It can handle more complex data. However, it has insufficient processing power and poor prediction accuracy when facing high dimensional data samples. |
Combined | VMD EMD EEMD K-Means | Its ability to mine potential features of data and achieve dimensionality reduction of data samples. However, a lot of work needs to be done in the future to find a more reasonable combination model. |
IMF 1 | IMF 2 | IMF 3 | R | |
---|---|---|---|---|
Max load per-hour | 0.8563 | 0.8555 | 0.8539 | 0.9746 |
Min load per-hour | 0.8556 | 0.8547 | 0.8532 | 0.9619 |
Ave load per-hour | 0.8559 | 0.8551 | 0.8536 | 0.9634 |
Temperature | 0.8483 | 0.8470 | 0.8457 | 0.8603 |
Humidity | 0.8525 | 0.8535 | 0.8508 | 0.9480 |
Atmospheric pressure | 0.8565 | 0.8569 | 0.8548 | 0.9904 |
Wind speed | 0.8425 | 0.8435 | 0.8409 | 0.9452 |
Precipitation | 0.8575 | 0.8587 | 0.8563 | 0.8487 |
Horizontal irradiance | 0.8238 | 0.8209 | 0.8224 | 0.8435 |
Wind direction | 0.8439 | 0.8443 | 0.8402 | 0.9509 |
Direct normal irradiance | 0.8218 | 0.8203 | 0.8203 | 0.8300 |
Diffuse horizontal irradiance | 0.8248 | 0.8223 | 0.8235 | 0.8495 |
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 | IMF11 | R | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of training data | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 | 2880 |
Number of data to predict | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
Number of inputs | 6 | 6 | 6 | 6 | 5 | 6 | 7 | 7 | 5 | 4 | 8 | 8 |
Number of nodes in hidden layer | 50 | 70 | 40 | 100 | 90 | 100 | 80 | 100 | 70 | 80 | 90 | 70 |
Number of outputs | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Algorithm | Evaluation Index | ||||
---|---|---|---|---|---|
RMSE | R | MAE | MAPE (%) | NSE | |
Proposed model | 0.2109 | 0.9977 | 0.1734 | 1.6883 | 0.9978 |
RNN | 0.7020 | 0.9813 | 0.5448 | 4.8801 | 0.4563 |
LSTM | 1.0643 | 0.9593 | 0.8599 | 8.3985 | −0.1474 |
GRU | 0.5612 | 0.9887 | 0.4237 | 3.9586 | 0.9899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, T.; Yao, L.; Yang, G.; He, Q. A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU. Sustainability 2022, 14, 16460. https://doi.org/10.3390/su142416460
Jia T, Yao L, Yang G, He Q. A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU. Sustainability. 2022; 14(24):16460. https://doi.org/10.3390/su142416460
Chicago/Turabian StyleJia, Taorong, Lixiao Yao, Guoqing Yang, and Qi He. 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU" Sustainability 14, no. 24: 16460. https://doi.org/10.3390/su142416460
APA StyleJia, T., Yao, L., Yang, G., & He, Q. (2022). A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU. Sustainability, 14(24), 16460. https://doi.org/10.3390/su142416460