High-Frequency Monitoring to Estimate Loads and Identify Nutrient Transport Dynamics in the Little Auglaize River, Ohio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. In Situ Nutrient Monitoring
2.3. Nutrient Data Quality Control
2.4. Rainfall and Discharge Monitoring
2.5. Nutrient Load Estimations
2.6. Concentration–Discharge Relations
3. Results
3.1. High-Frequency Nutrient Monitoring
3.2. Rainfall–Runoff Variations
3.3. Nutrient Load Estimation
3.4. Concentration–Discharge Relations
4. Discussion
4.1. Comparing Event-Scale and Seasonal Nutrient Responses
4.2. Implications for Management That Consider Region-Specific Conditions
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieroza, M.Z.; Heathwaite, A.L. Unravelling organic matter and nutrient biogeochemistry in groundwater-fed rivers under baseflow conditions: Uncertainty in in situ high-frequency analysis. Sci. Total Environ. 2016, 572, 1520–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwan, A.; Singh, R.; Patterson, M.; Roygard, J.; Horne, D.; Clothier, B.; Jones, G. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads. Environ. Monit. Assess. 2018, 190, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Birgand, F.; Appelboom, T.W.; Chescheir, G.M.; Skaggs, R.W. Estimating Nitrogen, Phosphorus, and Carbon Fluxes in Forested and Mixed-Use Watersheds of the Lower Coastal Plain of North Carolina: Uncertainties Associated with Infrequent Sampling. Trans. ASABE 2011, 54, 2099–2110. [Google Scholar] [CrossRef]
- Lloyd, C.E.M.; Freer, J.E.; Johnes, P.J.; Coxon, G.; Collins, A.L. Discharge and nutrient uncertainty: Implications for nutrient flux estimation in small streams: Discharge and Nutrient Uncertainty: Implications for Nutrient Fluxes. Hydrol. Process. 2016, 30, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Lessels, J.S.; Bishop, T.F.A. A post-event stratified random sampling scheme for monitoring event-based water quality using an automatic sampler. J. Hydrol. 2020, 580, 123393. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; von Freyberg, J.; Studer, B.; Kiewiet, L.; Kirchner, J.W. Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 2561–2576. [Google Scholar] [CrossRef]
- Robertson, D.M.; Roerish, E.D. Influence of various water quality sampling strategies on load estimates for small streams. Water Resour. Res. 1999, 35, 3747–3759. [Google Scholar] [CrossRef]
- Johnes, P.J. Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. J. Hydrol. 2007, 332, 241–258. [Google Scholar] [CrossRef]
- Clement, A. Improving uncertain nutrient load estimates for Lake Balaton. Water Sci. Technol. 2001, 43, 279–286. [Google Scholar] [CrossRef]
- O′Grady, J.; Zhang, D.; O′Connor, N.; Regan, F. A Comprehensive Review of Catchment Water Quality Monitoring Using a Tiered Framework of Integrated Sensing Technologies. Sci. Total Environ. 2021, 765, 142766. [Google Scholar] [CrossRef]
- Rode, M.; Wade, A.J.; Cohen, M.J.; Hensley, R.T.; Bowes, M.J.; Kirchner, J.W.; Arhonditsis, G.B.; Jordan, P.; Kronvang, B.; Halliday, S.J.; et al. Sensors in the stream: The high-frequency wave of the present. Environ. Sci. Technol. 2016, 50, 10297–10307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieroza, M.Z.; Heathwaite, A.L.; Bechmann, M.; Kyllmar, K.; Jordan, P. The concentration-discharge slope as a tool for water quality management. Sci. Total Environ. 2018, 630, 738–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minaudo, C.; Dupas, R.; Gascuel-Odoux, C.; Roubeix, V.; Danis, P.A.; Moatar, F. Seasonal and event-based concentration-discharge relationships to identify catchment controls on nutrient export regimes. Adv. Water Resour. 2019, 131, 103379. [Google Scholar] [CrossRef]
- Welikhe, P.; Brouder, S.M.; Volenec, J.J.; Gitau, M.; Turco, R.F. Dynamics of dissolved reactive phosphorus loss from phosphorus source and sink soils in tile-drained systems. J. Soil Water Conserv. 2022, 77, 1–14. [Google Scholar] [CrossRef]
- Floury, P.; Gaillardet, J.; Gayer, E.; Bouchez, J.; Tallec, G.; Ansart, P.; Koch, F.; Gorge, C.; Blanchouin, A.; Roubaty, J.-L. The potamochemical symphony: New progress in the high-frequency acquisition of stream chemical data. Hydrol. Earth Syst. Sci. 2017, 21, 6153–6165. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.; Melland, A.R.; Mellander, P.E.; Shortle, G.; Wall, D. The seasonality of phosphorus transfers from land to water: Implications for trophic impacts and policy evaluation. Sci. Total Environ. 2012, 434, 101–109. [Google Scholar] [CrossRef]
- Muenich, R.L.; Kalcic, M.; Scavia, D. Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed. Environ. Sci. Technol. 2016, 50, 8146–8154. [Google Scholar] [CrossRef]
- Lake Erie Commission. Promoting Clean and Safe Water in Lake Erie: Ohio’s Domestic Action Plan 2020 to Address Nutrients. 2020. Available online: https://lakeerie.ohio.gov/planning-and-priorities/02-domestic-action-plan (accessed on 21 July 2022).
- CoCoRaHS-Community Collaborative Rain, Hail & Snow Network. 2022. Available online: https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx (accessed on 21 July 2022).
- Basu, N.B.; Destouni, G.; Jawitz, J.W.; Thompson, S.E.; Loukinova, N.V.; Darracq, A.; Zanardo, S.; Yaeger, M.; Sivapalan, M.; Rinaldo, A.; et al. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.W.; Clow, D.W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol. Process. 2009, 23, 1844–1864. [Google Scholar] [CrossRef] [Green Version]
- Minaudo, C.; Dupas, R.; Gascuel-Odoux, C.; Fovet, O.; Mellander, P.-E.; Jordan, P.; Shore, M.; Moatar, F. Nonlinear empirical modeling to estimate phosphorus exports using continuous records of turbidity and discharge. Water Resour. Res. 2017, 53, 7590–7606. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2017. Available online: https://www.r-project.org/ (accessed on 21 July 2022).
- Fink, D.F.; Mitsch, W.J. Seasonal and storm event nutrient removal by a created wetland in an agricultural watershed. Ecol. Eng. 2004, 23, 313–325. [Google Scholar] [CrossRef]
- Liu, W.; Youssef, M.A.; Birgand, F.P.; Chescheir, G.M.; Tian, S.; Maxwell, B.M. Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements. Agric. Water Manag. 2020, 232, 106032. [Google Scholar] [CrossRef]
- Royer, T.V.; David, M.B.; Gentry, L.E. Timing of Riverine Export of Nitrate and Phosphorus from Agricultural Watersheds in Illinois: Implications for Reducing Nutrient Loading to the Mississippi River. Environ. Sci. Technol. 2006, 40, 4126–4131. [Google Scholar] [CrossRef] [PubMed]
- Bowes, M.J.; Jarvie, H.P.; Halliday, S.J.; Skeffington, R.A.; Wade, A.J.; Loewenthal, M.; Gozzard, E.; Newman, J.R.; Palmer-Felgate, E.J. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. Sci. Total Environ. 2015, 511, 608–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascott, M.J.; Wang, L.; Stuart, M.E.; Ward, R.S.; Hart, A. Quantification of nitrate storage in the vadose (unsaturated) zone: A missing component of terrestrial N budgets. Hydrol. Process. 2016, 30, 1903–1915. [Google Scholar] [CrossRef] [Green Version]
- Howden, N.J.K.; Burt, T.P.; Worrall, F.; Whelan, M.J.; Bieroza, M. Nitrate concentrations and fluxes in the river Thames over 140 years (1868–2008): Are increases irreversible? Hydrol. Process. 2010, 24, 2657–2662. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Basu, N.B.; Van Cappellen, P. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River basins. Glob. Biogeochem. Cycles 2017, 31, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.A.; Lyon, S.W. Tile drainage causes flashy streamflow response in Ohio watersheds. Hydrol. Process. 2021, 35, e14326. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W.; Ford, W.; Fausey, N.R. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio. J. Soil Water Conserv. 2016, 71, 9A–12A. [Google Scholar] [CrossRef] [Green Version]
- Macrae, M.L.; English, M.C.; Schiff, S.L.; Stone, M. Influence of antecedent hydrologic conditions on patterns of hydrochemical export from a first-order agricultural watershed in Southern Ontario, Canada. J. Hydrol. 2010, 389, 101–110. [Google Scholar] [CrossRef]
- Wagner, L.E.; Vidon, P.; Tedesco, L.P.; Gray, M. Stream nitrate and DOC dynamics during three spring storms across land uses in glaciated landscapes of the Midwest. J. Hydrol. 2008, 362, 177–190. [Google Scholar] [CrossRef]
- Dehaspe, J.; Sarrazin, F.; Kumar, R.; Fleckenstein, J.H.; Musolff, A. Bending of the concentration discharge relationship can inform about in-stream nitrate removal. Hydrol. Earth Syst. Sci. 2021, 25, 6437–6463. [Google Scholar] [CrossRef]
- Heathwaite, A.L.; Bieroza, M. Fingerprinting hydrological and biogeochemical drivers of freshwater quality. Hydrol. Process. 2021, 35, e13973. [Google Scholar] [CrossRef]
- Miller, S.A.; Lyon, S.W. Tile drainage increases runoff and phosphorus export during wet years in the Western Lake Erie Basin. Front. Water 2021, 3, 757106. [Google Scholar] [CrossRef]
- Miller, M.D.; Gall, H.E.; Buda, A.R.; Saporito, L.S.; Veith, T.L.; White, C.M.; Williams, C.F.; Brasier, K.J.; Kleinman, P.J.A.; Watson, J.E. Load-discharge relationships reveal the efficacy of manure application practices on phosphorus and total solids losses from agricultural fields. Agric. Ecosyst. Environ. 2019, 272, 19–28. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Hanrahan, B.R.; King, K.W. Legacy phosphorus concentration–discharge relationships in surface runoff and tile drainage from Ohio crop fields. J. Environ. Qual. 2020, 49, 675–687. [Google Scholar] [CrossRef]
- Stamm, C.; Flühler, H.; Gächter, R.; Leuenberger, J.; Wunderli, H. Preferential transport of phosphorus in drained grassland soils. J. Environ. Qual. 1998, 27, 515–522. [Google Scholar] [CrossRef]
- Welikhe, P.; Brouder, S.M.; Volenec, J.J.; Gitau, M.; Turco, R.F. Development of phosphorus sorption capacity-based environmental indices for tile-drained systems. J. Environ. Qual. 2020, 49, 378–391. [Google Scholar] [CrossRef]
- Williams, M.R.; Buda, A.R.; Elliott, H.A.; Hamlett, J.; Boyer, E.W.; Schmidt, J.P. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. J. Hydrol. 2014, 511, 870–879. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Fausey, N.R. Contributions of systematic tile drainage to watershed-scale phosphorus transport. J. Environ. Qual. 2015, 44, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Simard, R.R.; Beauchemin, S.; Haygarth, P.M. Potential for preferential pathways of phosphorus transport. J. Environ. Qual. 2000, 29, 97–105. [Google Scholar] [CrossRef]
- River, M.; Richardson, C.J. Dissolved reactive phosphorus loads to western Lake Erie: The hidden influence of nanoparticles. J. Environ. Qual. 2019, 48, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Macrae, M.; Jarvie, H.; Brouwer, R.; Gunn, G.; Reid, K.; Joosse, P.; King, K.; Kleinman, P.; Smith, D.; Williams, M.; et al. One size does not fit all: Toward regional conservation practice guidance to reduce phosphorus loss risk in the Lake Erie watershed. J. Environ. Qual. 2021, 50, 529–546. [Google Scholar] [CrossRef]
- Harris, G.P.; Heathwaite, A.L. Why is achieving good ecological outcomes in rivers so difficult? Freshw. Biol. 2012, 57, 91–107. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Hollaway, M.J.; Beven, K.J.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A.; et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 2017, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, E.S.; Heffernan, J.B.; Grimm, N.B.; Stanley, E.H.; Harvey, J.W.; Arroita, M.; Appling, A.P.; Cohen, M.J.; McDowell, W.H.; Hall, R.O., Jr.; et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 2018, 63, S99–S118. [Google Scholar] [CrossRef] [Green Version]
- Raymond, P.A.; Saiers, J.E.; Sobczak, W.V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse-shunt concept. Ecology 2016, 97, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.A.; Pellerin, B.A.; Miller, M.P.; Capel, P.D.; Tesoriero, A.J.; Duncan, J.M. Monitoring the riverine pulse: Applying high-frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes. Wiley Interdiscip. Rev. Water 2019, 6, e1348. [Google Scholar] [CrossRef]
Cumulative Load (kg) | Percent Difference Using Daily Concentrations | Percent Difference Using Weekly Concentrations | |||||||
---|---|---|---|---|---|---|---|---|---|
Month | High-Frequency | Min Daily | Max Daily | Min Weekly | Max Weekly | Min | Max | Min | Max |
February | 31,345 | 25,591 | 34,852 | 7531 | 41,331 | −18% | 11% | −76% | 32% |
March | 90,230 | 76,980 | 104,636 | 42,821 | 131,122 | −15% | 16% | −53% | 45% |
April | 126,893 | 106,065 | 149,787 | 63,023 | 188,851 | −16% | 18% | −50% | 49% |
May | 183,203 | 150,437 | 217,420 | 99,203 | 265,578 | −18% | 19% | −46% | 45% |
June | 199,377 | 164,965 | 235,143 | 109,094 | 286,114 | −17% | 18% | −45% | 44% |
July | 202,664 | 167,050 | 239,746 | 110,152 | 292,771 | −18% | 18% | −46% | 44% |
August | 202,768 | 167,126 | 239,890 | 110,215 | 293,037 | −18% | 18% | −46% | 45% |
September | 205,531 | 168,773 | 243,228 | 110,471 | 297,212 | −18% | 18% | −46% | 45% |
October | 267,894 | 214,799 | 315,208 | 135,296 | 373,771 | −20% | 18% | −49% | 40% |
November | 271,450 | 217,640 | 319,429 | 137,974 | 379,100 | −20% | 18% | −49% | 40% |
December | 321,202 | 259,566 | 379,250 | 173,440 | 454,041 | −19% | 18% | −46% | 41% |
January | 331,640 | 268,889 | 390,484 | 179,521 | 468,188 | −19% | 18% | −46% | 41% |
Cumulative Load (kg) | Percent Difference Using Daily Concentrations | Percent Difference Using Weekly Concentrations | |||||||
---|---|---|---|---|---|---|---|---|---|
Month | High-Frequency | Min Daily | Max Daily | Min Weekly | Max Weekly | Min | Max | Min | Max |
February | 285 | 217 | 432 | 56 | 819 | −24% | 51% | −80% | 187% |
March | 965 | 516 | 1512 | 90 | 2205 | −46% | 57% | −91% | 129% |
April | 1042 | 556 | 1599 | 96 | 2524 | −47% | 54% | −91% | 142% |
May | 2428 | 1065 | 3558 | 193 | 4632 | −56% | 47% | −92% | 91% |
June | 2492 | 1112 | 3666 | 209 | 4822 | −55% | 47% | −92% | 93% |
July | 2542 | 1152 | 3732 | 230 | 4948 | −55% | 47% | −91% | 95% |
August | 2544 | 1153 | 3736 | 230 | 4955 | −55% | 47% | −91% | 95% |
September | 2588 | 1187 | 3791 | 251 | 5031 | −54% | 46% | −90% | 94% |
October | 4153 | 2378 | 5582 | 759 | 7151 | −43% | 34% | −82% | 72% |
November | 4202 | 2418 | 5659 | 790 | 7275 | −42% | 35% | −81% | 73% |
December | 6074 | 3857 | 7836 | 1600 | 9935 | −36% | 29% | −74% | 64% |
January | 6271 | 4018 | 8073 | 1703 | 10,349 | −36% | 29% | −73% | 65% |
Event | Date | Precip. (mm) | Runoff (mm) | Nitrate-N | SRP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | Slope | Std. Err. | R2 | n | p-Value | Intercept | Slope | Std. Err. | R2 | n | p-Value | ||||
1 | Feb 24–Mar 03 | 9.1 | 20.6 | 2.28 | −0.10 | 0.34 | 0.02 | 44 | 0.3461 | −1.90 | −0.30 | 0.74 | 0.04 | 49 | 0.1594 |
2 | Mar 18–Mar 22 | 67.1 | 27.4 | 2.29 | −0.14 | 0.08 | 0.73 | 41 | <0.0001 | −1.87 | −0.22 | 0.69 | 0.09 | 38 | 0.0635 |
3 | Apr 29–May 01 | 45.7 | 23.6 | 2.22 | −0.10 | 0.08 | 0.61 | 31 | <0.0001 | n/a | n/a | n/a | n/a | n/a | n/a |
4 | May 09–May 12 | 58.4 | 40.5 | 2.18 | −0.17 | 0.11 | 0.77 | 35 | <0.0001 | −2.19 | 0.14 | 0.45 | 0.11 | 36 | 0.0490 |
5 | Oct 15–Oct 17 | 26.4 | 7.9 | 2.38 | −0.09 | 0.24 | 0.05 | 25 | 0.2988 | −1.91 | −0.03 | 0.22 | 0.00 | 25 | 0.7563 |
6 | Oct 25–Oct 28 | 53.1 | 22.4 | 2.12 | −0.07 | 0.15 | 0.19 | 36 | 0.0083 | −1.86 | 0.11 | 0.20 | 0.20 | 38 | 0.0048 |
7 | Oct 29–Nov 01 | 26.4 | 8.9 | 2.08 | −0.03 | 0.05 | 0.07 | 33 | 0.1257 | −2.07 | 0.08 | 0.05 | 0.33 | 33 | 0.0005 |
8 | Dec 18–Dec 20 | 20.1 | 5.6 | 2.35 | −0.12 | 0.10 | 0.27 | 20 | 0.0180 | −1.34 | −0.10 | 0.14 | 0.10 | 21 | 0.1521 |
9 | Dec 25–Dec 27 | 37.6 | 5.4 | 2.36 | −0.20 | 0.07 | 0.61 | 19 | <0.0001 | −1.45 | −0.01 | 0.32 | 0.00 | 19 | 0.9388 |
10 | Dec 27–Dec 28 | 13.7 | 8.0 | 2.39 | −0.26 | 0.18 | 0.44 | 18 | 0.0026 | −1.60 | 0.11 | 0.14 | 0.20 | 17 | 0.0700 |
11 | Dec 28–Jan 01 | 21.6 | 15.5 | 2.13 | −0.18 | 0.07 | 0.81 | 39 | <0.0001 | −1.72 | 0.17 | 0.15 | 0.45 | 42 | <0.0001 |
12 | Jan 02–Jan 03 | 9.4 | 3.0 | 1.94 | −0.01 | 0.06 | 0.00 | 15 | 0.9031 | −1.84 | −0.06 | 0.10 | 0.05 | 15 | 0.4306 |
Nitrate-N | SRP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | Slope | Std. Err. | R2 | n | p-Value | Intercept | Slope | Std. Err. | R2 | n | p-Value | |
Non-growing season | 1.82 | 0.05 | 0.36 | 0.08 | 1924 | <0.0001 | −3.05 | 0.18 | 1.06 | 0.11 | 1741 | <0.0001 |
Growing season | 1.53 | 0.28 | 0.67 | 0.39 | 1677 | <0.0001 | −3.43 | 0.04 | 0.84 | 0.01 | 1453 | 0.0008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pace, S.; Hood, J.M.; Raymond, H.; Moneymaker, B.; Lyon, S.W. High-Frequency Monitoring to Estimate Loads and Identify Nutrient Transport Dynamics in the Little Auglaize River, Ohio. Sustainability 2022, 14, 16848. https://doi.org/10.3390/su142416848
Pace S, Hood JM, Raymond H, Moneymaker B, Lyon SW. High-Frequency Monitoring to Estimate Loads and Identify Nutrient Transport Dynamics in the Little Auglaize River, Ohio. Sustainability. 2022; 14(24):16848. https://doi.org/10.3390/su142416848
Chicago/Turabian StylePace, Shannon, James M. Hood, Heather Raymond, Brigitte Moneymaker, and Steve W. Lyon. 2022. "High-Frequency Monitoring to Estimate Loads and Identify Nutrient Transport Dynamics in the Little Auglaize River, Ohio" Sustainability 14, no. 24: 16848. https://doi.org/10.3390/su142416848
APA StylePace, S., Hood, J. M., Raymond, H., Moneymaker, B., & Lyon, S. W. (2022). High-Frequency Monitoring to Estimate Loads and Identify Nutrient Transport Dynamics in the Little Auglaize River, Ohio. Sustainability, 14(24), 16848. https://doi.org/10.3390/su142416848