Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Description of Storm Events and the Corresponding Runoff Monitoring
2.3. SWMM Model Description
2.4. Model Parameterization
2.5. SWMM Model Sensitivity Analysis
2.6. SWMM Model Calibration and Validation
2.7. Goodness-of-Fit Test
3. Results and Discussion
3.1. Sensitivity Analysis Results
3.2. Model Calibration Results
3.2.1. Runoff Quantity
3.2.2. Runoff Quality
3.3. Model Validation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spence, M.; Annez, P.C.; Buckley, R.M. Urbanization and Growth; World Bank Publications: Washington, DC, USA, 2009. [Google Scholar]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Modelling and assessment of hydrological changes in a developing urban catchment. J. Hydrol. Process. 2015, 29, 2880–2894. [Google Scholar] [CrossRef]
- Sowmya, K.; John, C.; Shrivasthava, N. Urban flood vulnerability zoning of Cochin City, southwest coast of India, using remote sensing and GIS. Nat. Hazards 2015, 75, 1271–1286. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. J. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; McCuen, R.H. Stormwater Management for Smart Growth; Springer: New York City, NY, USA, 2005. [Google Scholar]
- Kayhanian, M.; Fruchtman, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of highway runoff characteristics: Comparative analysis and universal implications. J. Water Res. 2012, 46, 6609–6624. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, G.; Pak, H.; Jang, S.; Kim, L.; Yoo, C.; Yun, Z.; Yoon, J. Cost-effectiveness analysis of stormwater best management practices (BMPs) in urban watersheds. Desalination Water Treat. 2010, 19, 92–96. [Google Scholar] [CrossRef]
- Zakizadeh, F. Optimal Placement of Low Impact Development Measures for Urban Runoff Management (Case study: The Part of District 22 of Tehran). Ph.D. Dissertation, Department of Arid and Mountainous Regions Reclamation, University of Tehran, Karaj, Iran, 2020; p. 156 p. (In Persian). [Google Scholar]
- Rauch, W.; Ledin, A.; Eriksson, E.; Deletic, A.; Hunt, W.F., III. Stormwater in urban areas. Water Res. 2012, 46, 6588. [Google Scholar] [CrossRef]
- Choi, K.-S.; Ball, J.E. Parameter estimation for urban runoff modelling. Urban Water 2002, 4, 31–41. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Hamid, R. Modeling and management of urban stormwater runoff quality: A review. Water Resour. Manag. EWRA 1997, 11, 137–164. [Google Scholar]
- Vezzaro, L.; Mikkelsen, P.S. Application of global sensitivity analysis and uncertainty quantification in dynamic modelling of micropollutants in stormwater runoff. Environ. Model. Softw. 2012, 27, 40–51. [Google Scholar] [CrossRef]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling-urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Zoppou, C. Review of urban storm water models. Environ. Model. Softw. 2001, 16, 195–231. [Google Scholar] [CrossRef]
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air Soil Pollut. 2014, 225, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, B.; Pachel, K.; Loigu, E. Modelling stormwater runoff quality and pollutant loads in a large urban catchment. Proc. Est. Acad. Sci. 2017, 66, 225–242. [Google Scholar] [CrossRef]
- Muleta, M.K.; McMillan, J.; Amenu, G.G.; Burian, S.J. Bayesian approach for uncertainty analysis of an urban storm water model and its application to a heavily urbanized watershed. J. Hydrol. Eng. 2012, 18, 1360–1371. [Google Scholar] [CrossRef]
- Barnhart, B.L.; Sawicz, K.A.; Ficklin, D.L.; Whittaker, G.W. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models. Trans. ASABE 2017, 60, 1259–1269. [Google Scholar] [CrossRef]
- Huber, W.C. Deterministic Modeling of Urban Runoff Quality. In NATO Advanced Research Workshop on Urban Runoff Pollution, Series G: Ecological Sciences; Torno, H.C., Marsalek, J., Desbordes, M., Eds.; Springer: New York City, NY, USA, 1986; Volume 10. [Google Scholar]
- Abustan, I. Modelling of Phosphorous Transport in Urban Stormwater Runoff. Ph.D. Dissertation, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia, 1998. [Google Scholar]
- Alamdari, N. Modeling Climate Change Impacts on the Effectiveness of Stormwater Control Measures in Urban Watersheds. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2018; p. 165 p. [Google Scholar]
- Barco, J.; Wong, K.M.; Stenstrom, M.K. Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 2008, 134, 466–474. [Google Scholar] [CrossRef]
- Chow, M.F.; Yusop, Z.; Toriman, M.E. Modelling runoff quantity and quality in tropical urban catchments using Storm Water Management Model. Int. J. Environ. Sci. Technol. 2012, 9, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Hai, D.M. Optimal Planning of Low-Impact Development for TSS Control in the Upper Area of the Cau Bay River Basin, Vietnam. Water 2020, 533, 1–15. [Google Scholar]
- Hood, M.; Reihan, A.; Loigu, E. Modeling urban stormwater runoff pollution in Tallinn, Estonia. In Proceedings of the UWM, International Symposium on New Directions in Urban Water Management, Paris, France, 12–14 September 2007. [Google Scholar]
- Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using SWMM as a tool for hydrologic impact assessment. Desalination 2007, 212, 344–356. [Google Scholar] [CrossRef]
- Lee, S.C.; Park, I.H.; Lee, J.I.; Kim, H.M.; Ha, S.R. Application of SWMM for evaluating NPS reduction performance of BMPs. Desalination Water Treat. 2010, 19, 173–183. [Google Scholar] [CrossRef]
- Mancipe-Munoz, N.A.; Buchberger, S.G.; Suidan, M.T.; Lu, T. Calibration of rainfall-runoff model in urban watersheds for stormwater management assessment. J. Water Resour. Plan-ASCE 2014, 140, 05014001. [Google Scholar] [CrossRef]
- Nazahiyah, R.; Zulkifli, Y.; Abustan, I. Stormwater quality and pollution load estimation from an urban residential catchment in Skudai, Johor, Malaysia. Water Sci. Technol. 2007, 56, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Lee, K.W.; Park, I.H.; Ha, S.R. Effect of the aggregation level of surface runoff fields and sewer network for a SWMM simulation. Desalination 2008, 226, 328–337. [Google Scholar] [CrossRef]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and verification of SWMM for low impact development. JAWRA 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Tan, S.B.K.; Chua, L.H.C.; Shuy, E.B.; Lo, E.Y.M.; Lim, L.W. Performances of rainfall runoff models calibrated over single and continuous storm flow events. J. Hydrol. Eng. 2008, 13, 597–607. [Google Scholar] [CrossRef]
- Temprano, J.; Arango, O.; Cagiao, J.; Suarez, J.; Tejero, I. Stormwater Quality Calibration by SWMM: A Case Study in Northern Spain. Water SA 2006, 32, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Tsihrintzis, V.A.; Hamid, R. Runoff quality prediction from small urban catchments using SWMM. Hydrol. Process. 1998, 12, 311–329. [Google Scholar] [CrossRef]
- Warwick, J.J.; Tadepalli, P. Efficacy of SWMM application. J. Water Resour. Plan. Manag. 1991, 117, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Blansett, K.L. Flow, Water Quality, and Swmm Model Analysis for Five Urban Karst Watersheds. Ph.D. Dissertation, Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA, 2011; p. 408 p. [Google Scholar]
- Modugno, M.D.; Gioia, A.; Gorgoglione, A.; Iacobellis, V.; Forgia, G.L.; Piccinni, A.F.; Ranieri, E. Build-Up/Wash-Off Monitoring and Assessment for Sustainable Management of First Flush in an Urban Area. Sustainability 2015, 7, 5050–5070. [Google Scholar] [CrossRef] [Green Version]
- Swathi, V.; Raju, K.S.; Varma, M.R.R.; Veena, S.S. Automatic calibration of SWMM using NSGA-III and the effects of delineation scale on an urban catchment. J. Hydroinformatics 2019, 21, 781–797. [Google Scholar] [CrossRef]
- Yang, W.; Brüggemann, K.; Seguya, K.D.; Ahmed, E.; Kaeseberg, T.; Dai, H.; Hua, P.; Zhang, J.; Krebs, P. Measuring performance of low impact development practices for the surface runoff management. Environ. Sci. Ecotechnology 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0.; National Risk Management Research Laboratory: Cincinnati, OH, USA, 2010. [Google Scholar]
- Zhang, W.; Li, T. The influence of objective function and acceptability threshold on uncertainty assessment of an urban drainage hydraulic model with generalized likelihood uncertainty estimation methodology. Water Resour. Manag. 2015, 29, 2059–2072. [Google Scholar] [CrossRef]
- Han, K.; Kim, Y.; Kim, B.; Famiglietti, J.S.; Sanders, B.F. Calibration of stormwater management model using flood extent data. Proc. ICE Water Manag. 2014, 167, 17–29. [Google Scholar]
- Burszta-Adamiak, E.; Mrowiec, M. Modelling of green roofs’ hydrologic performance using EPA’s SWMM. Water Sci. Technol. 2013, 68, 36–42. [Google Scholar]
- Zhang, G.; Hamlett, J.M.; Reed, P.; Tang, Y. Multiobjective optimization of low impact development designs in an urbanizing watershed. Open J. Optim. 2013, 2, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.; Huber, W. Storm Water Management Model Reference Manual Volume I—Hydrology (Revised); Environmental Protection Agency: Cincinnati, OH, USA, 2016. [Google Scholar]
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.1, EPA/600/R-14/413b; National Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: King Drive Cincinnati, OH, USA, 2015. [Google Scholar]
- Niyonkuru, P.; Sang, J.K.; Nyadawa, M.O.; Munyaneza, O. Calibration and validation of EPA SWMM for stormwater runoff modelling in Nyabugogo catchment, Rwanda. J. Sustain. Res. Eng. 2018, 4, 152–159. [Google Scholar]
- Park, S.Y. Effect of Spatial Resolution of GIS based Urban Sewer Network and Catchment on Pollutant Load Modeling. Ph.D. Thesis, Chungbuk National University, Cheongju, Korea, 2004. [Google Scholar]
- Kokken, T.; Koivusalo, H.; Karvonen, T.; Lepisto, A. A semi-distributed approach to rainfall-runoff modelling-aggregating responses from hydrologically similar areas. In Proceedings of the International Congress on Modelling and Simulation Proceedings, Modelling and Simulation Society of Australia and New Zealand Inc; University of Waikato: Hamilton, New Zealand, 1999. [Google Scholar]
- Soltani, M. Quality Based Modelling of Inland Channels. Master’s Thesis, Dept. of Civil Eng., Sharif University of Technology, Tehran, Iran, 2009; p. 204 p. (In Persian). [Google Scholar]
- Goonetilleke, A.; Thomas, E.C. Water Quality Impacts of Urbanisation: Evaluation of Current Research; Centre for Built Environment and Engineering Research, Faculty of Built Environment and Engineering, Queensland University of Technology: Brisbane, Australia, 2003; 104p. [Google Scholar]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual, Volume III—Water Quality; National Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: King Drive Cincinnati, OH, USA, 2016. [Google Scholar]
- Tu, M.-C.; Smith, P. Modeling Pollutant Buildup and Washoff Parameters for SWMM Based on Land Use in a Semiarid Urban Watershed. Water Air Soil Pollut. 2018, 229, 1–15. [Google Scholar] [CrossRef]
- Sartor, J.D.; Boyd, G.B. Water Pollution Aspects of Street Surface Contaminants; Office of research and monitoring, U.S., Environmental Protection Agency: Washington, DC, USA, 1972; p. 192 p. [Google Scholar]
- Ball, J.E.; Jenks, R.; Aubourg, D. An assessment of the availability of pollutant constituents on road surfaces. Sci. Total Environ. 1998, 209, 243–254. [Google Scholar] [CrossRef]
- Tsunokawa, K.; Hoban, C. Roads and the Environment: A Handbook, the World Bank Technical Paper No. 376; The World Bank: Washington, DC, USA, 1997; 250p. [Google Scholar]
- Shaheen, D.G. Contributions of Urban Roadway Usage to Water Pollution; Environmental Protection Technology Series, Office of Research and Development; U.S. Environmental Protection Agency: Washington, DC, USA, 1975; 352p. [Google Scholar]
- Hamby, D.M. A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models. Environ. Monit. Assess. 1994, 32, 135–154. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S.; Campolongo, F. Sensitivity analysis as an ingredient of modeling. Stat. Sci. 2000, 15, 377–395. [Google Scholar]
- Jewell, T.K.; Nunno, T.J.; Adrian, D.D. Methodology for Calibrating Stormwater Models. J. Environ. Eng. Div. 1978, 104, 485–501. [Google Scholar] [CrossRef]
- ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management Committee, Irrigation and Drainage Division. Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 1993, 119, 429–442. [Google Scholar] [CrossRef]
- Koppel, T.; Vassiljev, A.; Puust, R.; Laanearu, J. Modelling of stormwater discharge and quality in urban area. Int. J. Ecol. Sci. Environ. Eng. 2014, 1, 80–90. [Google Scholar]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Koivusalo, H.; Setälä, H. A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water J. 2013, 10, 394–410. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moafi Rabori, A.; Ghazavi, R.; Ahadnejad Reveshty, M. Sensitivity analysis of SWMM model parameters for urban runoff estimation in semi-arid area. J. Biodivers. Environ. Sci. 2017, 10, 284–294. [Google Scholar]
- Baek, S.-S.; Choi, D.-H.; Jung, J.-W.; Lee, H.-J.; Lee, H.; Yoon, K.-S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef]
- Huber, W.C.; Dickinson, R.E. Stormwater Management Model User’s Manual, Version 4. EPA/600/3e88/011a; U.S. Environmental Protection Agency: Athens, GA, USA, 1998. [Google Scholar]
- Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Model. Softw. 2017, 95, 132–142. [Google Scholar] [CrossRef]
- Rezaei, A.R.; Ismail, Z.; Niksokhan, M.H.; Dayarian, M.A.; Ramli, A.H.; Moniruzzaman Shirazi, S. A Quantity–Quality Model to Assess the Effects of Source Control Stormwater Management on Hydrology and Water Quality at the Catchment Scale. Water 2019, 11, 1415. [Google Scholar] [CrossRef] [Green Version]
- Ketabchy, M. Thermal Evaluation of an Urbanized Watershed Using SWMM and MINUHET: A Case Study of the Stroubles Creek Watershed, Blacksburg, VA. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2017; 117p. [Google Scholar]
Date | Storm Total Rainfall (mm) | Duration (Minutes) | Antecedent Dry Period (Days) | No. of Samples |
---|---|---|---|---|
22 May 2018 | 1.8 | 60 | 5 | 19 |
11 June 2018 | 2 | 25 | 3 | 20 |
14 November 2018 | 2.8 | 60 | 1 | 20 |
Land Use | Pollutant | Build-Up C1 (Kg/100 m) | Build-Up C2 (Kg/Day/100 m) | Wash-Off D1 | Wash-Off D2 |
---|---|---|---|---|---|
RLD * | TSS | 29.8 a | 0.983 a | 0.4a | 2 a |
TP | 0.745 a | 4.5 × 10−5 a | 0.4 a | 0.02 a | |
TKN | 2.086 a | 4.5 × 10−4 a | 0.1 a | 0.7 a | |
RHD ** | TSS | 74.5 a | 3.069 a | 0.7a | 2.2 a |
TP | 1.043 a | 1.8 × 10−4 a | 0.9 a | 0.09 a | |
TKN | 1.788 a | 1.68 × 10−3 a | 0.3 a | 0.4 a | |
Undeveloped | TSS | 59.6 a | 1.982 a | 0.1a | 1.7 a |
TP | 0.596 a | 2.98 × 10−5 a | 0.2 a | 0.04 a | |
TKN | 2.235 a | 6.7 × 10−4 a | 0.02 a | 0.3 a | |
Commercial | TSS | 1.5 b | 1.2b | 1.4 b | 0.9 b |
TP | 0.009 c | 5.56 × 10−4 d | 4.68 e | 3.41 e | |
TKN | 0.0113 f | 0.0034 f | 49.71 e | 5.85 e | |
Transportation | TSS | 1.873 g | 0.75 h | 5.46 e | 5.52 e |
TP | 4.06 × 10−8 i | 1 | 4.73 e | 2.92 e | |
TKN | 1.05 × 10−8 i | 1 | 37.01 e | 5.51 e |
Parameters | Initial Value | Range of Variation Allowed | Calibrated Value | Sensitivity Rank |
---|---|---|---|---|
Dstore-Imperv. (mm) | 1.9 | 0.25–2.48 a | 1.35 | 3 |
Dstore-Perv. (mm) | 3.8 | 2.48–5.08 a | 3.8 | 8 |
N-impervious | 0.011 | 0.011–0.033 a | 0.023 | 5 |
N-pervious | 0.15 | 0.02–0.8 a | 0.15 | 8 |
% Imp. factor | * | ±15% b | * | 1 |
Width factor (m) | * | ± 30% c | * | 4 |
% Zero-Imperv. | 25 | 1–45 d | 32 | 6 |
% Slope | * | ± 30% c | * | 7 |
SCS curve number | * | ±60% e | * | 2 |
Statistical Criterion | Value Range | Model Performance Rating |
---|---|---|
NSC | 0.65 | Good |
0.50 | Satisfactory | |
0.50 | Unsatisfactory | |
R2 | 0.8 | Good |
0.6 | Satisfactory | |
0.6 | Unsatisfactory | |
RSR | 0.55 | Good |
0.70 | Satisfactory | |
0.70 | Unsatisfactory | |
PBIAS | ±15% | Good |
±25% | Satisfactory | |
±25% | Unsatisfactory |
Modelling Phase | Event Date | Evaluation Statistic | Performance Rating For Hydrograph Simulation |
---|---|---|---|
Calibration | 22 May 2018 | NSC | 0.65 (S *) |
R2 | 0.65 (S) | ||
RSR | 0.59 (S) | ||
PBIAS (%) | 9.61 (G **) | ||
NSC | 0.78 (G) | ||
14 November 2018 | R2 | 0.81 (G) | |
RSR | 0.47 (G) | ||
PBIAS (%) | 22.05 (S) | ||
Validation | NSC | 0.72 (G) | |
1 June 2018 | R2 | 0.73 (S) | |
RSR | 0.53 (G) | ||
PBIAS (%) | 6.21 (G) |
Process | Parameter | Land Use | TSS (mg/L) | TP (mg/L) | TKN (mg/L) |
---|---|---|---|---|---|
Build-up | C1 (Kg/100 m) | RLD * | 29.8 | 0.745 | 2.086 |
C2 (Kg/day/100 m) | 1.033 | 4.5 × 10−5 | 6.7 × 10−4 | ||
Wash-off | D1 | 0.38 | 0.6 | 0.15 | |
D2 | 1.9 | 0.017 | 0.35 | ||
Build-up | C1 (Kg/100 m) | RHD ** | 74.5 | 1.043 | 1.788 |
C2 (Kg/day/100 m) | 2.916 | 1.8 × 10−4 | 3.2 × 10−3 | ||
Wash-off | D1 | 0.455 | 1.35 | 0.57 | |
D2 | 1.65 | 0.045 | 0.04 | ||
Build-up | C1 (Kg/100 m) | Undeveloped | 59.6 | 0.596 | 2.235 |
C2 (Kg/day/100 m) | 1.486 | 2.98 × 10−5 | 1.14 × 10−3 | ||
Wash-off | D1 | 0.08 | 0.2 | 0.034 | |
D2 | 1.275 | 0.04 | 0.15 | ||
Build-up | C1 (Kg/100 m) | Commercial | 1.125 | 0.009 | 0.016 |
C2 (Kg/day/100 m) | 1.2 | 9.45 × 10−4 | 0.004 | ||
Wash-off | D1 | 1.05 | 7.254 | 72.080 | |
D2 | 0.855 | 0.341 | 3.218 | ||
Build-up | C1 (Kg/100 m) | Transportation | 0.937 | 4.06 × 10−8 | 1.05 × 10−8 |
C2 (Kg/day/100 m) | 0.75 | 1 | 1 | ||
Wash-off | D1 | 2.73 | 4.73 | 37.01 | |
D2 | 3.588 | 2.92 | 5.51 |
Modeling Phase | Event Date | Evaluation Statistic | Performance Rating for Pollutograph Simulation | ||
---|---|---|---|---|---|
TSS (mg/L) | TP (mg/L) | TKN (mg/L) | |||
Calibration | NSC | 0.72 (G **) | 0.66 (G) | 0.60 (S) | |
22 May 2018 | R2 | 0.82 (G) | 0.68 (S) | 0.70 (S) | |
RSR | 0.53 (G) | 0.58 (S) | 0.63 (S) | ||
PBIAS (%) | 1.35 (G) | −6.99 (G) | 7.47 (G) | ||
NSC | 0.60 (S *) | 0.63 (S) | 0.64 (S) | ||
14 November 2018 | R2 | 0.74 (S) | 0.71 (S) | 0.81 (G) | |
RSR | 0.63 (S) | 0.61 (S) | 0.60 (S) | ||
PBIAS (%) | 10.80 (G) | 8.42 (G) | 16.71 (S) | ||
Validation | NSC | 0.62 (S) | 0.57 (S) | 0.52 (S) | |
1 June 2018 | R2 | 0.84 (G) | 0.72 (S) | 0.82 (G) | |
RSR | 0.62 (S) | 0.65 (S) | 0.70 (S) | ||
PBIAS (%) | 7.37 (G) | 8.82 (G) | 23.08 (S) |
Modeling Phase | Event Date | Parameters | Numerical Comparison between the Simulated and Measured Pollutographs | ||
---|---|---|---|---|---|
%Relative Error (RE) | |||||
TSS (mg/L) | TP (mg/L) | TKN (mg/L) | |||
Calibration | EMC * (mg/L) | −18.54 | −10.89 | 20.37 | |
22 May 2018 | Load (Kg) | 22.14 | 27.17 | 47.70 | |
Peak conc. (mg/L) | −10.67 | 7.30 | 3.08 | ||
EMC (mg/L) | 12.89 | 24.77 | 32.67 | ||
14 November 2018 | Load (Kg) | 19.97 | 30.88 | 38.14 | |
Peak conc. (mg/L) | −19.86 | 4.71 | 5.01 | ||
Validation | EMC (mg/L) | −14.93 | 20.63 | 34.65 | |
1 June 2018 | Load (Kg) | −4.05 | 28.15 | 40.84 | |
Peak conc. (mg/L) | −16.76 | 6.01 | 17.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakizadeh, F.; Moghaddam Nia, A.; Salajegheh, A.; Sañudo-Fontaneda, L.A.; Alamdari, N. Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis. Sustainability 2022, 14, 1086. https://doi.org/10.3390/su14031086
Zakizadeh F, Moghaddam Nia A, Salajegheh A, Sañudo-Fontaneda LA, Alamdari N. Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis. Sustainability. 2022; 14(3):1086. https://doi.org/10.3390/su14031086
Chicago/Turabian StyleZakizadeh, Fariba, Alireza Moghaddam Nia, Ali Salajegheh, Luis Angel Sañudo-Fontaneda, and Nasrin Alamdari. 2022. "Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis" Sustainability 14, no. 3: 1086. https://doi.org/10.3390/su14031086
APA StyleZakizadeh, F., Moghaddam Nia, A., Salajegheh, A., Sañudo-Fontaneda, L. A., & Alamdari, N. (2022). Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis. Sustainability, 14(3), 1086. https://doi.org/10.3390/su14031086