Potential Range Shift of Snow Leopard in Future Climate Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Models
3. Results
3.1. Model Calibration
3.2. Variable Importance
3.3. Future Range Shift
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kitchener, A.C.; Driscoll, C.A.; Yamaguchi, N. Chapter 1—What is a Snow Leopard? Taxonomy, Morphology, and Phylogeny. In Snow Leopards; McCarthy, T., Mallon, D., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 3–11. [Google Scholar] [CrossRef]
- Farrington, J.D.; Li, J. Chapter 8—Climate Change Impacts on Snow Leopard Range. In Snow Leopards; McCarthy, T., Mallon, D., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 85–95. [Google Scholar] [CrossRef]
- McCarthy, T.; Mallon, D.; Jackson, R.; Zahler, P.; McCarthy, K. Panthera uncia. The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2017. [Google Scholar]
- Li, J.; Weckworth, B.V.; McCarthy, T.M.; Liang, X.; Liu, Y.; Xing, R.; Li, D.; Zhang, Y.; Xue, Y.; Jackson, R.; et al. Defining priorities for global snow leopard conservation landscapes. Biol. Conserv. 2020, 241, 108387. [Google Scholar] [CrossRef]
- Forrest, J.L.; Wikramanayake, E.; Shrestha, R.; Areendran, G.; Gyeltshen, K.; Maheshwari, A.; Mazumdar, S.; Naidoo, R.; Thapa, G.J.; Thapa, K. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Conserv. 2012, 150, 129–135. [Google Scholar] [CrossRef]
- Bai, D.-F.; Chen, P.-J.; Atzeni, L.; Cering, L.; Li, Q.; Shi, K. Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool. Res. 2018, 39, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; McCarthy, T.M.; Wang, H.; Weckworth, B.V.; Schaller, G.B.; Mishra, C.; Lu, Z.; Beissinger, S.R. Climate refugia of snow leopards in High Asia. Biol. Conserv. 2016, 203, 188–196. [Google Scholar] [CrossRef]
- Riordan, P.; Cushman, S.A.; Mallon, D.; Shi, K.; Hughes, J. Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 2016, 39, 419–426. [Google Scholar] [CrossRef]
- Aryal, A.; Shrestha, U.B.; Ji, W.; Ale, S.B.; Shrestha, S.; Ingty, T.; Maraseni, T.; Cockfield, G.; Raubenheimer, D. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 2016, 6, 4065–4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xue, Y.; Hacker, C.E.; Zhang, Y.; Li, Y.; Cong, W.; Jin, L.; Li, G.; Wu, B.; Li, D.; et al. Projected impacts of climate change on snow leopard habitat in Qinghai Province, China. Ecol. Evol. 2021, 11, 17202–17218. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, F.A.; Shafique, F.; Hassan, M.U.; Khalid, S.; Ali, N.; Akbar, N.; Batool, K.; Khalid, M.; Khawaja, S. Ecological impacts of climate change on the snow leopard (Panthera unica) in South Asia. Braz. J. Biol. Rev. Brasleira De Biol. 2021, 82, e240219. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, Y. Applying various algorithms for species distribution modeling. Integr. Zool. 2013, 8, 124–135. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Randin, C.F.; Engler, R.; Normand, S.; Zappa, M.; Zimmermann, N.E.; Pearman, P.B.; Vittoz, P.; Thuiller, W.; Guisan, A. Climate change and plant distribution: Local models predict high-elevation persistence. Glob. Change Biol. 2009, 15, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, L.; Cushman, S.A.; Bai, D.; Wang, J.; Chen, P.; Shi, K.; Riordan, P. Meta-replication, sampling bias, and multi-scale model selection: A case study on snow leopard (Panthera uncia) in western China. Ecol. Evol. 2020, 10, 7686–7712. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Jiang, F.; Gao, H.; Qin, W.; Wu, T.; Zhang, J.; Cai, Z.; Zhang, T. Habitat suitability analysis of snow leopard (Panthera uncia) and bharal (Pseudois nayaur) in the Sanjiangyuan National Park. Acta Theriol. Sin. 2019, 39, 397–409. [Google Scholar]
- Poyarkov, A.; Rozhnov, V. Potential habitat of snow leopard (Panthera uncia, Felinae) in south Siberia and adjacent territories based on the maximum entropy distribution model. Зooлoгичecкий Жypнaл 2019, 98, 332–342. [Google Scholar]
- Watts, S.M.; McCarthy, T.M.; Namgail, T. Modelling potential habitat for snow leopards (Panthera uncia) in Ladakh, India. PLoS ONE 2019, 14, e0211509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetri, M.; Odden, M.; Devineau, O.; McCarthy, T.; Wegge, P. Multiple factors influence local perceptions of snow leopards and Himalayan wolves in the central Himalayas, Nepal. PeerJ 2020, 8, e10108. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Din, J.U.; Ali, H.; Kabir, M.; Younas, M.; Ur Rehman, E.; Bari, F.; Hao, W.; Bischof, R.; Nawaz, M.A. Identifying priority landscapes for conservation of snow leopards in Pakistan. PLoS ONE 2020, 15, e0228832. [Google Scholar] [CrossRef]
- Holt, C.D.S.; Nevin, O.T.; Smith, D.; Convery, I. Environmental niche overlap between snow leopard and four prey species in Kazakhstan. Ecol. Inform. 2018, 48, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Loonam, K.E.; Ausband, D.E.; Lukacs, P.M.; Mitchell, M.S.; Robinson, H.S. Estimating abundance of an unmarked, low-density species using cameras. J. Wildl. Manage. 2021, 85, 87–96. [Google Scholar] [CrossRef]
- Ahumada, J.A.; Fegraus, E.; Birch, T.; Flores, N.; Kays, R.; O’Brien, T.G.; Palmer, J.; Schuttler, S.; Zhao, J.Y.; Jetz, W. Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 2020, 47, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O. Estimating snow leopard population abundance using photography and capture-recapture techniques. Wildl. Soc. Bull. 2006, 34, 772–781. [Google Scholar] [CrossRef]
- McCarthy, K.P.; Fuller, T.K.; Ming, M.; McCarthy, T.M.; Waits, L.; Jumabaev, K. Assessing estimators of snow leopard abundance. J. Wildl. Manag. 2008, 72, 1826–1833. [Google Scholar] [CrossRef]
- Zhang, L.; Lian, X.; Yang, X. Population density of snow leopards (Panthera uncia) in the Yage Valley Region of the Sanjiangyuan National Park: Conservation implications and future directions. Arct. Antarct. Alp. Res. 2020, 52, 541–550. [Google Scholar] [CrossRef]
- GBIF.org. Available online: https://www.gbif.org (accessed on 27 July 2021).
- Liu, Y.; Li, X.; Liang, X.; Liu, Y.; Cheng, C.; Li, J.; Tang, P.; Qi, H.; Bian, X.; He, B.; et al. Where and How many? The status of snow leopard (Panthera uncia) density surveys and knowledge gaps in China. Biodivers. Sci. 2019, 27, 919–931. [Google Scholar]
- Xiao, L.; Cheng, C.; Wan, H.; Zhang, D.; Wang, Y. Defining conservation priority areas of snow leopard habitat in the Sanjiangyuan Region. Biodivers. Sci. 2019, 27, 943–950. [Google Scholar]
- Wolong National Nature Reserve. Ten-Year Monitoring of Snow Leopard at Wolong; Wolong National Nature Reserve: Chengdu, China, 2019. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Stute, M.; Clement, A.; Lohmann, G. Global climate models: Past, present, and future. Proc. Natl. Acad. Sci. USA 2001, 98, 10529–10530. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Righi, M.; Lauer, A.; Evaldsson, M.; Wenzel, S.; Jones, C.; Anav, A.; Andrews, O.; Cionni, I.; Davin, E.L.; et al. ESMValTool (v1.0)—A community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci. Model Dev. 2016, 9, 1747–1802. [Google Scholar] [CrossRef] [Green Version]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- USGS 30 ARC-Second Global Elevation Data, GTOPO30; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 1997. [CrossRef]
- Wildlife Conservation Society—WCS; Center for International Earth Science Information Network-CIESIN-Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2005.
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kampichler, C.; Wieland, R.; Calmé, S.; Weissenberger, H.; Arriaga-Weiss, S. Classification in conservation biology: A comparison of five machine-learning methods. Ecol. Inform. 2010, 5, 441–450. [Google Scholar] [CrossRef]
- Rather, T.A.; Kumar, S.; Khan, J.A. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm. Sci. Rep. 2020, 10, 11473. [Google Scholar] [CrossRef]
- Winham, S.; Wang, X.; de Andrade, M.; Freimuth, R.; Colby, C.; Huebner, M.; Biernacka, J. Interaction detection with random forests in high-dimensional data. Genet. Epidemiol. 2012, 36, 142. [Google Scholar]
- Kim, Y.; Wojciechowski, R.; Sung, H.; Mathias, R.A.; Wang, L.; Klein, A.P.; Lenroot, R.K.; Malley, J.; Bailey-Wilson, J.E. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proc. 2009, 3 (Suppl. S7), S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortran original by Leo Breiman and Adele Cutler. R port by Andy Liaw and Matthew Wiener. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. R package version 4.6-14. 2018.
- Rovero, F.; Augugliaro, C.; Havmoller, R.W.; Groff, C.; Zimmermann, F.; Oberosler, V.; Tenan, S. Co-occurrence of snow leopard Panthera uncia, Siberian ibex Capra sibirica and livestock: Potential relationships and effects. Oryx 2020, 54, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Khanal, G.; Mishra, C.; Ramesh Suryawanshi, K. Relative influence of wild prey and livestock abundance on carnivore-caused livestock predation. Ecol. Evol. 2020, 10, 11787–11797. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.D.; Sharief, A.; Kumar, V.; Kumar, M.; Dutta, R.; Devi, R.; Singh, A.; Thakur, M.; Sharma, L.K.; Chandra, K. Field testing of different methods for monitoring mammals in Trans-Himalayas: A case study from Lahaul and Spiti. Glob. Ecol. Conserv. 2020, 21, e00824. [Google Scholar] [CrossRef]
- Aryal, A. Poaching: Is snow leopard tally underestimated? Nature 2017, 550, 457. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Statistical modeling: The two cultures. Stat. Sci. 2001, 16, 199–215. [Google Scholar] [CrossRef]
- Li, X. Random forest is a specific algorithm, not omnipotent for all datasets. Chin. J. Appl. Entomol. 2019, 56, 170–179. [Google Scholar] [CrossRef]
- Mi, C.; Huettmann, F.; Guo, Y.; Han, X.; Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 2017, 5, e2849. [Google Scholar] [CrossRef] [Green Version]
- Suryawanshi, K.R.; Khanyari, M.; Sharma, K.; Lkhagvajav, P.; Mishra, C. Sampling bias in snow leopard population estimation studies. Popul. Ecol. 2019, 61, 268–276. [Google Scholar] [CrossRef]
- McCarthy, T. The snow leopard project: And other adventures in warzone conservation. Nature 2019, 565, 292–293. [Google Scholar] [CrossRef]
- Cooney, R.; Karimov, K. The snow leopard project. Science 2019, 363, 699. [Google Scholar] [CrossRef]
- Rashid, W.; Shi, J.; Rahim, I.U.; Sultan, H.; Dong, S.; Ahmad, L. Research trends and management options in human-snow leopard conflict. Biol. Conserv. 2020, 242, 108413. [Google Scholar] [CrossRef]
- Din, J.U.; Nawaz, M.A.; Mehmood, T.; Ali, H.; Ali, A.; Adli, D.S.H.; Norma-Rashid, Y. A transboundary study of spatiotemporal patterns of livestock predation and prey preferences by snow leopard and wolf in the Pamir. Glob. Ecol. Conserv. 2019, 20, e00719. [Google Scholar] [CrossRef]
- Bagchi, S.; Mishra, C. Living with large carnivores: Predation on livestock by the snow leopard (Uncia uncia). J. Zool. 2006, 268, 217–224. [Google Scholar] [CrossRef]
- Oli, M.K.; Taylor, I.R.; Rogers, M.E. Snow leopard panthera-uncia predation of livestock—An assessment of local perceptions in the annapurna conservation area, Nepal. Biol. Conserv. 1994, 68, 63–68. [Google Scholar] [CrossRef]
- Li, S.; McShea, W.J.; Wang, D.; Gu, X.; Zhang, X.; Zhang, L.; Shen, X. Retreat of large carnivores across the giant panda distribution range. Nat. Ecol. Evol. 2020, 4, 1327. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Ma, M.; Yang, W.; Blank, D.; Wu, Y.; McCarthy, T.; Munkhtsog, B. Winter habitat use of snow leopards in Tomur National Nature Reserve of Xinjiang, Northwest China. J. Arid. Land 2012, 4, 191–195. [Google Scholar] [CrossRef]
Number of Occurrences | Type * | Region | Source |
---|---|---|---|
43 | Direct observation or camera trapping | All habitats ** | GBIF [29] |
164 | Survey or camera trapping | China | [30] |
47 | Feces collection or camera trapping | Sanjiangyuan *** | [31] |
15 | Survey | Sanjiangyuan *** | Unpublished data |
53 | Camera trapping | Qilianshan *** | Unpublished data |
27 | Survey | Qilianshan *** | Unpublished data |
19 | Camera trapping | Wolong *** | [32] |
30 | Camera trapping | India | [20] |
8 | Direct observation | India | [20] |
406 | Total | / | / |
No. Presence Points | No. Pseudoabsence Points | Accuracy (%) ±SD | Sensitivity ±SD | Specificity ±SD | |
---|---|---|---|---|---|
Full model | 406 | 484 | 91.2 ± 0.88 | 90.5 ± 1.67 | 91.8 ± 1.35 |
Full model | 406 | 2500 | 95.1 ± 0.40 | 83.2 ± 2.02 | 97.0 ± 0.42 |
Climate model | 406 | 484 | 90.7 ± 0.86 | 90.1 ± 1.62 | 91.1 ± 1.47 |
Climate model | 406 | 2500 | 94.8 ± 0.39 | 82.6 ± 2.04 | 96.8 ± 0.43 |
Simple climate model | 406 | 484 | 90.6 ± 0.92 | 89.9 ± 1.73 | 91.1 ± 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, L.; Hu, D.; Ma, D.; Li, R.; Sun, Y.; Gao, E. Potential Range Shift of Snow Leopard in Future Climate Change Scenarios. Sustainability 2022, 14, 1115. https://doi.org/10.3390/su14031115
Li X, Ma L, Hu D, Ma D, Li R, Sun Y, Gao E. Potential Range Shift of Snow Leopard in Future Climate Change Scenarios. Sustainability. 2022; 14(3):1115. https://doi.org/10.3390/su14031115
Chicago/Turabian StyleLi, Xinhai, Liming Ma, Dazhi Hu, Duifang Ma, Renqiang Li, Yuehua Sun, and Erhu Gao. 2022. "Potential Range Shift of Snow Leopard in Future Climate Change Scenarios" Sustainability 14, no. 3: 1115. https://doi.org/10.3390/su14031115
APA StyleLi, X., Ma, L., Hu, D., Ma, D., Li, R., Sun, Y., & Gao, E. (2022). Potential Range Shift of Snow Leopard in Future Climate Change Scenarios. Sustainability, 14(3), 1115. https://doi.org/10.3390/su14031115