Pollutants Emitted from 3D Printers onto Operators
Abstract
:1. Introduction
- Very volatile organic compounds (VVOCs).
- Volatile organic compounds (VOCs).
- Semi-volatile organic compounds (SVOCs).
2. Research Methodology
- (a)
- For the operator standing in front of the printer:
- Element order: Linear → first-order elements—these are elements which only have a node at the vertex; they are sufficient for the purpose of this study, because a large model with many nodes is assumed.
- Type of elements used: Tet4 (4 Nodes tetrahedral).
- Global element size: 100 mm.
- Number of nodes = 222,314.
- Number of finite elements = 1,202,884.
- Thanks to the introduction of a parameter controlling the desired skewness = 0.5, a mesh of high overall quality with a small number of deformed elements was obtained.
- (b)
- For the operator leaning in front of the printer:
- Element order: Linear → first-order elements—these are elements which only have a node at the vertex; they are sufficient for the purpose of this study, because a large model with many nodes is assumed.
- Type of elements used: Tet4 (4 Nodes tetrahedral).
- Global element size: 100 mm.
- Number of nodes = 20,6957.
- Number of finite elements = 1,118,843.
- Thanks to the introduction of a parameter controlling the desired skewness = 0.5, a mesh of high overall quality with a small number of deformed elements was obtained.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
FDM | Fused Deposition Modelling |
FFF | Fused Filament Fabrication |
VOCs | Very Volatile Organic Compounds |
VVOCs | Volatile Organic Compounds |
SVOCs | Semi-Volatile Organic Compounds |
ABS | Acrylonitrile Butadiene Styrene |
ASA | Acetylsalicylic Acid |
PLA | Polylactic Acid |
PET | Polyethylene Terephthalate |
PET-G | High Density Polyethylene Terephthalate |
HIPS | High Impact Polystyrene |
PS | Polystyrene |
LD50 | Lethal Dose, 50% |
LC50 | Lethal Concentration, 50% |
WHO | World Health Organization |
CFD | Computational fluid dynamics |
HEPA | High-Efficiency Particulate Air |
References
- Bernat, Ł.; Kroma, A. Application of 3D Printing Casting Models for Disamatch Forming Method. Arch. Foundry Eng. 2019, 19, 95–98. [Google Scholar] [CrossRef]
- Żukowska, M.; Górski, F.; Wichniarek, R.; Kuczko, W. Methodology of Low Cost Rapid Manufacturing of Anatomical Models with Material Imitation of Soft Tissues. Adv. Sci. Technol. Res. J. 2019, 13, 120–128. [Google Scholar] [CrossRef]
- Łukaszewski, K.; Wichniarek, R.; Górski, F. Determination of the Elasticity Modulus of Additively Manufactured Wrist Hand Orthoses. Materials 2020, 13, 4379. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicka, N.; Górski, F.; Wichniarek, W.; Kuczko, W. Prototyping of individual ankle orthosis using additive manufacturing technologies. Adv. Sci. Technol. Res. J. 2017, 11, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Kalaskar, D.M. 3D Printing in Medicine; Woodhead Publishing: Soston, UK, 2017. [Google Scholar]
- Ahmad, N.; Gopinath, P.; Dutta, R. 3D Printing Technology in Nanomedicine; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Mitsouras, D.; Liacouras, P.C.; Wake, N.; Rybicki, F.J. RadioGraphic Update: Medical 3D Printing for the Radiologist. RadioGraphics 2020, 40, E21–E23. [Google Scholar] [CrossRef] [PubMed]
- Górski, F.; Wichniarek, R.; Kuczko, W.; Banaszewski, J.; Pabiszczak, M. Application of Low-Cost 3D Printing for Production of CT-Based Individual Surgery Supplies, World Congress on Medical Physics and Biomedical Engineering; Springer: Singapore, 2018; Volume 68, pp. 249–253. [Google Scholar] [CrossRef]
- Stephens, B.; Azimi, P.; Orch, Z.E.; Ramos, T. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 2013, 79, 334–339. [Google Scholar] [CrossRef]
- Gu, J.; Wensing, M.; Uhde, E.; Salthammer, T. Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environment 2019, 123, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wong, J.P.S.; Davis, A.Y.; Black, M.S.; Weber, R.J. Characterization of particle emissions from consumer fused deposition modeling 3D printers. Aerosol Sci. Technol. 2017, 51, 1275–1286. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.Y.; Zhang, Q.; Wong, J.P.S.; Weber, R.J.; Black, M.S. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build. Environ. 2019, 160, 106209. [Google Scholar] [CrossRef]
- Zhang, Q.; Pardo, M.; Rudich, Y.; Kaplan-Ashiri, I.; Wong, J.P.S.; Davis, A.Y.; Black, M.S.; Weber, R.J. Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials. Environ. Sci. Technol. 2019, 53, 12054–12061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravia, L.; Murmura, F.; Santos, G. Additive Manufacturing: Possible Problems with Indoor Air Quality. Procedia Manufacturing 2019, 41, 952–959. [Google Scholar] [CrossRef]
- Khaki, S.; Rio, M.; Marin, P. Monitoring Indoor Air Quality, Additive Manufacturing environment. Procedia CIRP 2020, 90, 455–460. [Google Scholar] [CrossRef]
- Air Quality 3. In Indoor Air Quality a Comprehensive Reference Book; Elsevier: Amsterdam, The Netherlands, 1995.
- Rymaniak, Ł.; Ziolkowski, A.; Gallas, D. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions. MATEC Web Conf. 2017, 118, 00025. [Google Scholar] [CrossRef]
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking–50 Years of Progress: A Report of the Surgeon General. 2014. Available online: https://pubmed.ncbi.nlm.nih.gov/24455788/ (accessed on 15 October 2021).
- International Agency for Research on Cancer. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans. Monographs. 2021, 1–130. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 15 December 2021).
- Stämpfli, M.R.; Anderson, G.P. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat. Rev. Immunol. 2009, 9, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://inhalationsexualfrustration.wordpress.com/introduction/ (accessed on 15 December 2021).
- Matuszek, K.; Hrycko, P.; Dworakowska, A. Results of energy-emitting tests for the upper combustion method. Can upper combustion help to reduce low emissions. Rynek Instalacyjny 2017, 7–8, 45–47. [Google Scholar]
- Niosh Pocket Guide to Chemical Hazards; Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Heal: Washington, DC, USA, 2005; DHHS (NIOSH) Publication No. 2005-149.
- Job Hazard Analysis; OSHA 3071; U.S. Department of Labor, Occupational Safety and Health Administration: Washington, DC, USA, 2002.
- Regulation of the Minister of Family, Labor and Social Policy of June 12, 2018 on the Highest Allowable Concentrations and Intensities of Factors Harmful to Health in the Work Environment, In Polish, Journal of Laws of 2018, No. 2018 Item 1286, 2018-07-03. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20180001286/O/D20181286.pdf (accessed on 10 November 2021).
- Available online: https://www.cdc.gov/niosh/pel88/npelname.htm (accessed on 15 October 2021).
- Hawley, C. Hazardous Materials Monitoring and Detection Devices, 3rd ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2018. [Google Scholar]
- Armando, B.; Laurie, A.N. Hazardous Materials Chemistry, 3rd ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2018. [Google Scholar]
- NCI, United States National Cancer Institute. Bioassay of styrene for possible carcinogenicity. NCI Tech. Rep. 1979, 185, 1–107. [Google Scholar]
- Nicholson, W.J.; Selikoff, I.J.; Seidman, H. Mortality experience of styrene-polystyrene polymerization workers. Scand. J. Work Environ. Health 1978, 4 (Suppl. 2), 247–252. [Google Scholar] [CrossRef] [PubMed]
- Okun, A.H.; Beaumont, J.J.; Meinhardt, T.J.; Crandall, M.S. Mortality patterns among styrene-exposed boatbuilders. Am. J. Ind. Med. 1985, 8, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Sathiakumar, N.; Brill, I.; Delzell, E. 1,3-Butadiene, styrene and lung cancer among synthetic rubber industry workers. J. Occup. Environ. Med. 2009, 51, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- X1 Steinle, P. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J. Occup. Environ. Hyg. 2016, 13, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Ansys Help. Available online: https://ansyshelp.ansys.com (accessed on 10 November 2021).
ABS Emission | CAS Number | NDS (Poland) | NDSch (Poland) | OSHA TWA | OSHA C | NOISH TWA (USA) | NOISH ST (USA) | Odour Threshold | Conversion |
---|---|---|---|---|---|---|---|---|---|
mg/m3 | mg/m3 | ppm | ppm | ppm | ppm | ppm | mg/m3/ppm | ||
Styrene | 100-42-5 | 50 | 100 | 100 | 100 | 50 | 100 | 0.016 | 4.26 |
Ethylbenzene | 100-41-4 | 200 | 400 | 100 | - | 100 | 125 | 0.27 | 4.34 |
Benzaldehyde | 100-52-7 | 10 | 20 | No limits | No limits | No limits | No limits | 0.042 | 5.18 |
Trichloroethene | 79-00-5 | 40 | - | 10 | - | 10 | - | 0.5 | 5.46 |
Acetaldehyde | 75-07-0 | - | 45 | 200 | - | 200 | - | 0.067 | 1.18 |
Formaldehyde | 50-00-0 | 0.37 | 0.74 | 0.16 | 0.1 | 0.75 | 2 | 0.5 | 1.23 |
1-butanol | 71-36-3 | 50 | 150 | 100 | - | 50 | - | 0.83 | 3.03 |
p.m-Xylene | 1330-20-7 (isomer mix) | 100 | 200 | 100 | - | 100 | 150 | 1 | 4.35 |
Ethanol | 64-17-5 | 1900 | - | 1000 | - | 1000 | - | 84 | 1.89 |
Acetone | 67-64-1 | 600 | 1800 | 1000 | - | 250 | - | 42 | 2.38 |
Propylene glycol | 107-21-1 | 15 | 50 | No limits | No limits | No limits | No limits | 39 | 2.49 |
Hexenal | 66-25-1 | 40 | 80 | 500 (PEL) | - | No limits | No limits | 5.2 | - |
Emitted Substance | CAS Number | Route of Exposure | Symptoms and Effects | Toxicity |
---|---|---|---|---|
Styrene | 100-42-5 | Eye, skin contact, ingestion, inhalation |
| LD50 oral rat: 2650 mg/kg LC50 inhalation, rat: 12 mg/m3/4 h |
Ethylbenzene | 100-41-4 | Inhalation, eye contact |
| LD50 oral, rat: 3500 mg/kg LD50 dermal, rabbit 15.4 mg/kg LC50 inhalation, rat: 17.2 mg/L/4 h |
Benzaldehyde | 100-52-7 | Eye, skin contact, inhalation, ingestion |
| LD50 oral, rat: 1300 mg/kg LD50 dermal, rabbit: 1250 mg/kg |
Trichloroethene | 79-00-5 | Eye, skin contact, inhalation, ingestion |
| LC50 inhalation, rat: 140,700 mg/m3 LD50 oral, rat: 4920 mg/kg |
Acetaldehyde | 75-07-0 | Eye, skin contact, inhalation, ingestion |
| LD50 dermal, rat: 3540 mg/kg LC50 inhalation, rabbit 13,300 ppm/kg |
mFormaldehyde | 50-00-0 | Eye, skin contact, inhalation, ingestion |
| LD50 oral, rat: 500 mg/kg LC50 inhalation, rat: 0.578 mg/L |
1-butanol | 71-36-3 | Eye, skin contact, inhalation, ingestion |
| LD50 oral, rat: 700 mg/kg LC50 inhalation, rat: 8000 ppm |
p,m-Xylene | 1330-20-7 (isomer mix) | Eye, skin contact, inhalation, ingestion |
| LD50 oral, rat: 3608 mg/kg LC50 inhalation, rat: 4330 ppm |
Ethanol | 64-17-5 | Ingestion, inhalation |
| LD50 oral, rat: 7.060 mg/kg LC50 inhalation, rat: 95.6 mg/L/4 h |
Acetone | 67-64-1 | Eye, skin contact, inhalation, ingestion |
| LD50 oral, rat: 9570 mg/kg |
Propylene glycol | 107-21-1 | Eye, skin contact |
| LD50 oral, rat: 30,000 mg/kg LD50 dermal, rat: 10,000 mg/kg |
Hexenal | 66-25-1 | Eye, skin contact, inhalation, ingestion |
| LD50 oral, rat: 4890 mg/kg |
Property | Units | Value (s) |
---|---|---|
Density | kg/m3 | 1.225 |
Viscosity | kg/ms | 1.7894 × 10−5 |
Molecular weight | kg/kmol | 28.966 |
Property | Units | Value (s) |
---|---|---|
Density | kg/m3 | 1.225 |
Viscosity | kg/ms | 1.7894 × 10−5 |
Molecular weight | kg/kmol | 28.966 |
Property | Units | Value (s) |
---|---|---|
Density | kg/m3 | 0.6679 |
Viscosity | kg/ms | 1.087 × 10−5 |
Molecular weight | kg/kmol | 16.04303 |
Property | Units | Value (s) |
---|---|---|
Density | kg/m3 | 1.7878 |
Viscosity | kg/ms | 1.37 × 10−5 |
Molecular weight | kg/kmol | 44.00995 |
Outflow Time [s] | Pollutant Density [kg/m3] | ||
---|---|---|---|
1.225 Density the Same as Ambient Density | 0.6679 Lighter than Air | 1.7878 Heavier than Air | |
0.5 | |||
1.0 | |||
1.5 | |||
2 | |||
2.5 |
Outflow Time [s] | Pollutant Density [kg/m3] | ||
---|---|---|---|
1.225 Density the Same as Ambient Density | 0.6679 Lighter than Air | 1.7878 Heavier than Air | |
0.5 | |||
1.0 | |||
1.5 | |||
2 | |||
2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwasz, A.; Osiński, F.; Łukaszewski, K. Pollutants Emitted from 3D Printers onto Operators. Sustainability 2022, 14, 1400. https://doi.org/10.3390/su14031400
Karwasz A, Osiński F, Łukaszewski K. Pollutants Emitted from 3D Printers onto Operators. Sustainability. 2022; 14(3):1400. https://doi.org/10.3390/su14031400
Chicago/Turabian StyleKarwasz, Anna, Filip Osiński, and Krzysztof Łukaszewski. 2022. "Pollutants Emitted from 3D Printers onto Operators" Sustainability 14, no. 3: 1400. https://doi.org/10.3390/su14031400
APA StyleKarwasz, A., Osiński, F., & Łukaszewski, K. (2022). Pollutants Emitted from 3D Printers onto Operators. Sustainability, 14(3), 1400. https://doi.org/10.3390/su14031400