Determinants of Food Consumption Water Footprint in the MENA Region: The Case of Tunisia
Abstract
:1. Introduction
1.1. Water Supply in Tunisia
1.2. Water Footprint of Food Consumption
2. Materials and Methods
2.1. Data
2.2. Water Footprint Estimation
2.3. Modeling of the Determinants of the Food Consumption Water Footprint of Tunisian Households
3. Results and Discussion
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Obs | ll(null) | ll(model) | df | AIC | BIC |
---|---|---|---|---|---|---|
4853 | −3574.867 | −2194.987 | 22 | 4433.975 | 4576.696 |
Appendix B
Appendix C
Variable | VIF | 1/VIF |
---|---|---|
AgeChefMe | 1.79 | 0.560112 |
Nombredelp~s | 1.07 | 0.932759 |
vuln | 1.23 | 0.813381 |
taille | 1.29 | 0.773943 |
DAP | 1.43 | 0.699650 |
2.newstrate | 1.68 | 0.594018 |
DNiveau | ||
1 | 1.75 | 0.570375 |
3 | 1.37 | 0.728827 |
4 | 1.79 | 0.559360 |
region | ||
2 | 2.00 | 0.499027 |
3 | 2.34 | 0.428069 |
4 | 2.02 | 0.494502 |
5 | 2.28 | 0.437904 |
6 | 1.89 | 0.529240 |
7 | 1.91 | 0.523663 |
DCSP | ||
1 | 1.85 | 0.540077 |
2 | 1.21 | 0.828135 |
3 | 1.23 | 0.815850 |
4 | 1.29 | 0.773944 |
6 | 1.70 | 0.588099 |
7 | 1.59 | 0.630741 |
Mean VIF | 1.65 |
References
- Lazreg, H. Tunisie: Eau 2050; Institut Tunisien des Etudes Stratégiques: Tunis, Tunisie, 2019; 89p. [Google Scholar]
- World Health Organization. Investing in Water and Sanitation: Increasing Access, Reducing Inequalities; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Droogers, P.; Immerzeel, W.W.; Terink, W.; Hoogeveen, J.; Bierkens, M.F.P.; van Beek, L.P.H.; Negewo, B.D. Water resources trends in Middle East and North Africa towards 2050. Hydrol. Earth Syst. Sci. 2012, 16, 3101–3114. [Google Scholar] [CrossRef] [Green Version]
- FAO. Declaration on World Food Security. World Food Summit; Food and Agriculture Organization: Roma, Italy, 1996. [Google Scholar]
- Allouche, J. The sustainability and resilience of global water and food systems: Political analysis of the interplay between security, resource scarcity, political systems and global trade. Food Policy 2011, 36, S3–S8. [Google Scholar] [CrossRef]
- FAO. How to Feed the World in 2050. Insights from an Expert Meeting at FAO; Food and Agriculture Organisation: Roma, Italy, 2009; pp. 1–35. [Google Scholar] [CrossRef]
- Frérot, A. Gestion de l’eau, vers de Nouveaux Modèles. 2011, p. 36. Available online: https://fr.scribd.com/doc/62970254/Gestion-de-l-eau-vers-de-nouveaux-modeles-Antoine-Frerot (accessed on 12 September 2020).
- Thivet, A.; Blinda, M. XIIIème Congrès Mondial de l’Eau Gestion de la Demande en eau en Méditerranée, Progrès et Politiques. 2008, p. 16. Available online: https://www.iwra.org/congress/2008/resource/authors/abs324_article.pdf (accessed on 20 September 2020).
- World Bank. Evaluation du Coût de la Dégradation de l’eau en Tunisie. Rapport n° 38856–TN. 2007, p. 68. Available online: https://web.worldbank.org/archive/website01414/WEB/IMAGES/TUNISIE_.PDF?resourceurlname=Tunisie_Eau_07.pdf (accessed on 20 September 2020).
- Hoekstra, A. Virtual water trade. In Proceedings of the International Expert Meeting on Virtual Water Trade, 2003; Water Research Report Series; Volume 12, IHE Delft, The Netherlands, 12–13 December 2002; p. 242. [Google Scholar]
- Lacirignola, C.; Dernini, S.; Capone, R.; Meybeck, A.; Burlingame, B.; Gitz, V.; El Bilali, H.; Debs, P.; Belsanti, V. Towards the development of guidelines for improving the sustainability of diets and food consumption patterns: The Mediterranean Diet as a pilot study. Option Méditerr. Sér. B Stud. Res. 2012, 70, 70–72. [Google Scholar]
- Chahed, J.; Besbes, M.; Hamdane, A. Virtual-water content of agricultural production and food trade balance of Tunisia. Int. J. Water Resour. Dev. 2015, 31, 407–421. [Google Scholar] [CrossRef]
- Chenoweth, J.; Hadjikakou, M.; Zoumides, C. Quantifying the human impact on water resources: A critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 2014, 18, 2325–2342. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: A consumption based approach. Appl. Geogr. 2012, 32, 691–701. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Zhang, G. Water Footprints and Sustainable Water Allocation. Sustainability 2016, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.G.; Pfister, S. A revised approach to water foot- printing to make transparent the impacts of consumption and production on global freshwater scarcity. Glob. Environ. Chang. 2010, 20, 113–120. [Google Scholar] [CrossRef]
- Souissi, A.; Mtimet, N.; Thabet, C.; Stambouli, T.; Chebil, A. Impact of food consumption on water footprint and food security in Tunisia. Food Secur. 2019, 11, 989–1008. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Sáez-Almendros, S.; Obrador, B.; Bach-Faig, A.; Serra-Majem, L. Environmental footprints of Mediterranean versus Western dietary patterns: Beyond the health benefits of the Mediterranean diet. Environ. Health 2013, 12, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. In Integrated Assessment of Water Resources and Global Change; Springer: Dordrecht, The Netherlands, 2006; pp. 35–48. [Google Scholar]
- Chouchane, H.; Hoekstra, A.Y.; Krol, M.S.; Mekonnen, M.M. The water footprint of Tunisia from an economic perspective. Ecol. Indic. 2015, 52, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Ifedolapo, O.; Olasehinde-Williams, G.O.; Alao, R.O. Agriculture and environmental degradation in Africa: The role of income. Sci. Total Environ. 2019, 692, 60–67. [Google Scholar] [CrossRef]
- Kosmas, K.C.; Danalatos, N.G.; Gerontidis, S. The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions. Catena 2000, 40, 3–17. [Google Scholar] [CrossRef]
- Uddin, M.M.M. What are the dynamic links between agriculture and manufacturing growth and environmental degradation? Evidence from different panel income countries. Environ. Sustain. Indic. 2020, 7, 100041. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Ben Romdhane, H.; Skhiri, H.; Khaldi, R.; Oueslati, A. Transition épidémiologique et transition alimentaire et nutritionnelle en Tunisie. Options Méditerr. 2002, 41, 7–27. [Google Scholar]
- Delicado-Soria, A.; Serrano-Urrea, R.; Cervera-Burriel, F.; Daouas, T.; García-Meseguer, M.J. Food consumption in Tunisian university students and its association with sociodemographic characteristics and lifestyle behaviours. Public Health Nutr. 2021, 24, 4949–4964. [Google Scholar] [CrossRef]
- Khaldi, R.; Naïli, A. Dynamique de la consommation de lait et de produits laitiers en Tunisie. Option Méditerr. Sér. B 2001, 32, 76–86. [Google Scholar]
- INS. Enquête sur La Consommation Alimentaire Des Ménages; Institut National de la Statistique: Tunis, Tunisia, 2015; 236p. [Google Scholar]
- INS. Méthodologie de l’Enquête Alimentaire; Institut National de la Statistique: Tunis, Tunisia, 2005; 29p. [Google Scholar]
- Dehibi, B.; GIL, J.M.; Khaldi, R. Relation entre développement économique niveau des prix et ingestion de calories: Le cas de la Tunisie. Newmedit 2002, 1, 3–11. [Google Scholar]
- Li, G.; Han, X.; Luo, Q.; Zhu, W.; Zhao, J. Study on the Relationship between Income Change and theWater Footprint of Food Consumption in Urban China. Sustainability 2021, 13, 7076. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, J.; Li, H.; Huang, R.; Han, H. Driving Forces of Food Consumption Water Footprint in North China. Water 2021, 13, 810. [Google Scholar] [CrossRef]
- Muteba, K.D. Caractérisation des Modes de Consommation Alimentaire des Ménages à Kinshasa: Analyse des Interrelations Entre Modes de vie et Habitudes Alimentaires. Ph.D. Thesis, Université de Liège-Gembloux-Agro-Bio Tech, Gembloux, Belgique, 2014. [Google Scholar]
- Castellan, Y. La Famille. Que Sais-Je? Presses Universitaires de France: Paris, France, 1982; 126p. [Google Scholar]
- Sennes, V. Evaluation et Réduction des Impacts Ecologiques Liées à la Consommation des Ménages: Conception Méthodologique et Application. Ph.D. Thesis, Université Michel de Montaigne-Bordeaux III, Pessac, France, 2008. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M. Water Footprint Manual: State of the Art; Water Footprint Network: Enschede, The Netherlands, 2009. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Chenini, I.; Khemiri, S. Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int. J. Environ. Sci. Technol. 2009, 6, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, J.; Saaidpour, S. Quantitative structure-property relationship study of n-octanol–water partition coefficients of some of diverse drugs using multiple linear regression. Anal. Chim. Acta 2007, 604, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Raftery, A. Bayesian model selection in social research. Sociol. Methodol. 1995, 25, 111–163. [Google Scholar] [CrossRef]
- Green, P.; Carroll, J. Mathematical Tools for Applied Multivariate Analysis; Academic Press: New York, NY, USA, 1996. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Harris, F.; Moss, C.; Joy, E.; Quinn, R.; Scheelbeek, P.; Dangour, A.D.; Green, R. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Adv. Nutr. 2020, 11, 375–386. [Google Scholar] [CrossRef]
- Lares-Michel, M.; Housni, F.E.; Aguilera Cervantes, V.G.; Carrillo, P.; Michel Nava, R.M.; Llanes Cañedo, C. Eat Well to Fight Obesity… and Save Water: The Water Footprint of Different Diets and Caloric Intake and Its Relationship with Adipososity. Front. Nutr. 2021, 8, 694775. [Google Scholar] [CrossRef]
- Hoehn, D.; Margallo, M.; Laso, J.; Ruiz-Salmón, I.; Fernández-Ríos, A.; Campos, C.; Vázquez-Rowe, I.; Aldaco, R.; Quinteiro, P. Water Footprint Assessment of Food Loss and Waste Management Strategies in Spanish Regions. Sustainability 2021, 3, 7538. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis with Reading, 5th ed.; Prentice-Hall: Bergen, NJ, USA, 1998. [Google Scholar]
- Dhehibi, B.; Laajimi, A. How economic factors influence the nutrient content of diets: An application of animal products demand system in Tunisia. Agric. Econ. Rev. 2004, 5, 67–79. [Google Scholar]
- Sulmont-Rossé, C.; Feron, G.; Hennequin, M.; Galan, P.; Hercberg, S.; Andreeva, V. Effet de l’âge sur les consommations alimentaires et les raisons de non-consommation: Résultats d’une enquête menée auprès de 32,000 adultes âgés de 20 à 80 ans. Nutr. Clin. Métab. 2018, 32, 241. [Google Scholar] [CrossRef]
- Holcomb, C.A. Positive Influence of Age and Education on Food Consumption and Nutrient Intakes of Older Women Living Alone. J. Am. Diet. Assoc. 1995, 95, 1381–1386. [Google Scholar] [CrossRef]
- Dhraief, M.Z.; Khaldi, R. Analyse de la qualité perçue des viandes par le consommateur Tunisien. New Medit 2012, 11, 33–40. [Google Scholar]
- Drewnowski, A.; Popkin, B. The nutrition transition: New trends in the global diet. Nutr. Rev. 1997, 55, 31–43. [Google Scholar] [CrossRef]
- Hawkes, C.; Harris, J.; Gillespie, S. Changing Diets: Urbanization and the Nutrition Transition; Global Food Policy Report; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2017; Chapter 4; pp. 34–41. [Google Scholar]
- Popkin, B.M. Urbanization, lifestyle changes and the nutrition transition. World Dev. 1999, 27, 1905–1916. [Google Scholar] [CrossRef]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philosophical transactions of the royal society. Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
Variables | Variable Name | Percentage (%) |
---|---|---|
Demographic variables | ||
Size of Household | Size | |
1 to 2 persons | 13.9 | |
3 to 4 persons | 37.6 | |
5 to 6 persons | 36.4 | |
7 to 8 persons | 9.8 | |
+8 persons | 2.3 | |
Geographic variables | ||
Area of residence | Area | |
Municipal | 62.7 | |
Non-municipal | 37.3 | |
Geographic stratum | City size | |
Big cities | 23.6 | |
Small and medium cities | 76.4 | |
Region | Region | |
Tunis | 16.7 | |
North-east | 13.3 | |
North-west | 14.8 | |
Centre-east | 18 | |
Centre-west | 16.5 | |
South-east | 11.2 | |
South-west | 9.5 | |
Socio-economic variables | ||
Poverty | Poverty | |
No | 86 | |
Yes | 14 | |
Level of education of the household head | Education | |
Illiterate | 29.3 | |
Primary | 41.9 | |
Secondary | 23.6 | |
University | 5.2 | |
Socio-professional category of household head | SPC | |
Freelance | 7.3 | |
Employee | 7.4 | |
Independent industry/trade | 9.9 | |
Farmer | 9.9 | |
Laborer | 31.1 | |
Retired | 15.3 | |
Inactive and others | 19.1 | |
Gender of the household head | Gender | |
Male | 84.5 | |
Female | 15.5 | |
Marital status of the household head | Status | |
Unspecified | 0.1 | |
Single | 1.7 | |
Married | 85.6 | |
Widowed | 11.4 | |
Divorced | 1.2 | |
Expenditure range (TND/month) | Expenditure | |
≤500 | 1.9 | |
From 500 to 750 | 4.4 | |
From 750 to 1000 | 7.1 | |
From 1000 to 1500 | 18.5 | |
From 1500 to 2000 | 17.6 | |
From 2000 to 3000 | 23.6 | |
From 3000 to 4500 | 15.8 | |
≥4500 | 11.1 |
Variable Name | Description | Type | Modality |
---|---|---|---|
Dependent variable | |||
Ln WFP | Natural log of household food water footprint | Continuous | |
Independent variables | |||
Demographic variables | |||
Size of household | Number of persons in the household | Continuous | |
Age | Age of head of household (years) | Continuous | |
Geographic variables | |||
City size | Geographic stratum | Discrete | 1 Big city * 2 Medium and small city |
Region | Region | Discrete | 1 Tunis * 2 Northeast 3 Northwest 4 Centre-east 5 Centre-west 6 Southeast 7 Southwest |
Socio-economic variables | |||
Poverty | Poor household | Discrete | 0 No * 1 Yes |
Education | Education level of the head of household | Discrete | 1 Illiterate 2 Primary * 3 Secondary 4 University |
SPC | Socio-professional category of the head of the household | Discrete | 1 Freelance 2 Employee 3 Independent industry/trade 4 Farmer 5 Laborer * 6 Retired 7 Inactive and others |
Variables related to food consumption | |||
Expenditure | Food expenditure per capita and per year (TD/capita/year) | Continuous | |
Waste | Number of dishes thrown away per household/year | Continuous |
Variables | Coef. | Robust Std. Err. | Beta |
---|---|---|---|
Demographic variables | |||
Size of household | −0.044 *** | 0.112 | −0.157 |
Age | 0.002 *** | 0.014 | 0.056 |
Geographic variables | |||
City size (base = large) | |||
Medium and small cities | −0.031 * | 0.506 | −0.026 |
Region (base = Tunis) | |||
Northeast | 0.116 *** | 0.646 | 0.078 |
Northwest | −0.064 *** | 0.594 | −0.045 |
Centre-east | 0.165 *** | 0.594 | 0.125 |
Centre-west | 0.155 *** | 0.599 | 0.114 |
Southeast | 0.026 | 0.616 | 0.016 |
Southwest | 0.089 *** | 0.764 | 0.051 |
Socio-economic variables | |||
Poverty (base = no) | −0.221 *** | 0.429 | −0.151 |
Education (base = primary) | |||
Illiterate | −0.040 *** | 0.430 | −0.037 |
Secondary | −0.001 | 0.419 | −0.001 |
University | 0.007 | 0.965 | 0.003 |
SPC (base = laborer) | |||
Freelance | 0.053 * | 0.785 | 0.027 |
Employee | 0.035 * | 0.579 | 0.018 |
Independent (industry/trade) | 0.042 ** | 0.533 | 0.025 |
Farmer | 0.108 *** | 0.545 | 0.064 |
Retired | 0.037 | 0.596 | 0.026 |
Inactive and others | −0.011 | 0.460 | −0.008 |
Variables related to food consumption | |||
Expenditure | 0.0004 *** | 0.001 | 0.456 |
Waste | 0.015 *** | 0.071 | 0.069 |
constant | 2.714 *** | 1.202 | |
F (21, 4831) = 176.2 *** | |||
R-squared = 0.4337 | |||
Adjusted R-squared = 0.4313 | |||
Root MSE = 0.3812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souissi, A.; Mtimet, N.; McCann, L.; Chebil, A.; Thabet, C. Determinants of Food Consumption Water Footprint in the MENA Region: The Case of Tunisia. Sustainability 2022, 14, 1539. https://doi.org/10.3390/su14031539
Souissi A, Mtimet N, McCann L, Chebil A, Thabet C. Determinants of Food Consumption Water Footprint in the MENA Region: The Case of Tunisia. Sustainability. 2022; 14(3):1539. https://doi.org/10.3390/su14031539
Chicago/Turabian StyleSouissi, Asma, Nadhem Mtimet, Laura McCann, Ali Chebil, and Chokri Thabet. 2022. "Determinants of Food Consumption Water Footprint in the MENA Region: The Case of Tunisia" Sustainability 14, no. 3: 1539. https://doi.org/10.3390/su14031539
APA StyleSouissi, A., Mtimet, N., McCann, L., Chebil, A., & Thabet, C. (2022). Determinants of Food Consumption Water Footprint in the MENA Region: The Case of Tunisia. Sustainability, 14(3), 1539. https://doi.org/10.3390/su14031539