The Effect of Ash Admixture on Compost Quality and Availability of Nutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compost Characteristic and Experimental Set-Up
2.2. Analytical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.K.; Masto, R.E.; Hazra, B.; Esterle, J.; Singh, P.K. Ash from Coal and Biomass Combustion, 1st ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Asquer, C.; Cappai, G.; Carucci, A.; De Gioannis, G.; Muntoni, A.; Piredda, M.; Spiga, D. Biomass ash characterisation for reuse as additive in composting process. Biomass Bioenergy 2019, 123, 186–194. [Google Scholar] [CrossRef]
- Asquer, C.; Cappai, G.; De Gioannis, G.; Muntoni, A.; Piredda, M.; Spiga, D. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste. Waste Manag. 2017, 69, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Kurola, J.M.; Arnold, M.; Kontro, M.H.; Talves, M.; Romantschuk, M. Wood ash for application in municipal biowaste composting. Bioresour. Technol. 2011, 102, 5214–5220. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.C.; Rodrigues, S.M. Use of biomass ash-based materials as soil fertilisers: Critical review of the existing regulatory framework. J. Clean. Prod. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Hanč, A.; Tlustoš, P.; Száková, J.; Balík, J. The influence of organic fertilizers application on phosphorus and potassium bioavailability. Plant Soil Environ. 2008, 54, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Delgado Juárez, M.; Prähauser, B.; Walter, A.; Insam, H.; Franke-Whittle, I.H. Co-composting of biowaste and wood ash, influence on a microbially driven-process. Waste Manag. 2015, 46, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, O.-O.E.; Fernando, M.-R.L.; Patricia, T.-L. Evaluation of the Addition of Wood Ash to Control the pH of Substrates in Municipal Biowaste Composting. Ing. Investig. Y Tecnol. 2014, 15, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Delgado Juárez, M.; Gómez-Brandón, M.; Insam, H. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products. Sci. Total Environ. 2015, 511, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Koivula, N.; Räikkönen, T.; Urpilainen, S.; Ranta, J.; Hänninen, K. Ash in composting of source-separated catering waste. Bioresour. Technol. 2004, 93, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Kuba, T.; Tschöll, A.; Partl, C.; Meyer, K.; Insam, H. Wood ash admixture to organic wastes improves compost and its performance. Agric. Ecosyst. Environ. 2008, 127, 43–49. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Mair, J.; Etoa, F.X.; Insam, H. Composts with wood ash addition: A risk or a chance for ameliorating acid tropical soils? Geoderma 2009, 153, 402–407. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Knapp, B.A.; Elhottová, D.; Koubová, A.; Etoa, F.X.; Insam, H. Designer compost with biomass ashes for ameliorating acid tropical soils: Effects on the soil microbiota. Appl. Soil Ecol. 2010, 45, 319–324. [Google Scholar] [CrossRef]
- EN 13037; Soil Improvers and Growing Media—Determination of pH. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 13038; Soil Improvers and Growing Media—Determination of Electrical Conductivity. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 13040; Soil Improvers and Growing Media—Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density. European Committee for Standardization: Brussels, Belgium, 2007.
- EN 16181; Soil, Treated Biowaste and Sludge—Determination of Polycyclic Aromatic Hydrocarbons (PAH) by Gas Chromatography (GC) and High-Performance Liquid Chromatography (HPLC). European Committee for Standardization: Brussels, Belgium, 2007.
- EN 13651; Soil Improvers and Growing Media—Extraction of Calcium Chloride/DTPA (CAT) Soluble Nutrients. European Committee for Standardization: Brussels, Belgium, 2001.
- Genevini, P.L.; Adani, F.; Borio, D.; Tambone, F. Heavy Metal Content in Selected European Commercial Composts. Compost. Sci. Util. 2013, 5, 31–39. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Amery, F.; Fryda, L.; Boogaerts, C.; Bilbao, J.; Vandecasteele, B. Renewable P sources: P use efficiency of digestate, processed animal manure, compost, biochar and struvite. Sci. Total Environ. 2021, 750, 141699. [Google Scholar] [CrossRef] [PubMed]
- Vandecasteele, B.; Sinicco, T.; D’Hose, T.; Vanden Nest, T.; Mondini, C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J. Environ. Manag. 2016, 168, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Hanc, A.; Chadimova, Z. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour. Technol. 2014, 168, 240–244. [Google Scholar] [CrossRef] [PubMed]
WBD | DBD | DM | pH | EC | |
---|---|---|---|---|---|
g/L | g/L | % | mS/cm | ||
O | 394 ± 49 c | 180 ± 40 d | 45.9 ± 9.0 b | 8.2 c | 2.37 c |
A3 | 527 ± 49 b | 238 ± 27 c | 45.3 ± 11.5 b | 8.6 b | 3.37 a |
A6 | 526 ± 49 b | 257 ± 40 b | 48.8 ± 3.2 b | 9.0 a | 3.23 ab |
A9 | 595 ± 49 a | 292 ± 30 a | 49.0 ± 3.2 b | 9.1 a | 3.60 a |
BW | 570 ± 76 | 197 ± 16 | 34.6 ± 2.1 | 6.6 ± 0.5 | 2.85 |
STR | 187 ± 32 | 96.0 ± 6.0 | 51.3 ± 6.8 | 7.4 ± 0.2 | 0.37 |
SEP | 544 ± 61 | 108 ± 2.6 | 19.8 ± 0.1 | 8.6 ± 0.1 | 1.51 |
ASH | 634 ± 46 | 436 ± 0 | 68.7 ± 0.4 | 10.9 ± 0.4 | 8.47 |
C | N | C/N | P | K | Mg | Ca | S | Na | |
---|---|---|---|---|---|---|---|---|---|
% | % | g/kg | |||||||
O | 31.3 ± 2.5 b | 3.06 ± 0.13 a | 10.3 ± 0.7 a | 12.4 ± 1.4 c | 32.4 ± 3.4 c | 9.40 ± 0.4 c | 24.7 ± 3.5 d | 6.32 ± 0.32 c | 3.32 ± 0.88 b |
A3 | 30.9 ± 2.2 c | 2.59 ± 0.20 b | 11.9 ± 1.0 a | 12.1 ± 2.2 c | 36.7 ± 6.1 c | 10.3 ± 1.3 c | 42.4 ± 2.6 c | 8.43 ± 1.06 a | 3.68 ± 0.72 ab |
A6 | 27.9 ± 1.8 d | 2.31 ± 0.17 c | 12.1 ± 1.0 a | 13.4 ± 0.6 b | 43.8 ± 2.5 b | 12.2 ± 0.3 b | 48.5 ± 2.9 b | 7.75 ± 0.95 b | 3.82 ± 0.16 a |
A9 | 23.9 ± 0.5 e | 2.15 ± 0.05 d | 11.1 ± 0.9 a | 14.3 ± 0.3 a | 48.0 ± 1.0 a | 14.6 ± 0.7 a | 64.4 ± 5.7 a | 8.36 ± 0.29 a | 3.98 ± 0.30 a |
BW | 41.3 ± 0.3 | 2.16 ± 0.13 | 19.6 ± 1.2 | 4.10 ± 0.6 | 29.3 ± 2.9 | 2.86 ± 0.2 | 10.8 ± 2.5 | 3.44 ± 0.3 | 0.65 ± 0.1 |
STR | 44.8 ± 0.3 | 0.46 ± 0.14 | 109 ± 36.3 | 1.40 ± 0.1 | 9.80 ± 0.8 | 0.65 ± 0.3 | 2.29 ± 0.7 | 1.06 ± 0.2 | 0.18 ± 0.1 |
SEP | 43.5 ± 0.3 | 1.45 ± 0.08 | 30.2 ± 1.7 | 8.00 ± 0.3 | 15.0 ± 0.6 | 4.88 ± 0.1 | 9.82 ± 0.3 | 4.72 ± 0.4 | 1.03 ± 0.2 |
ASH | 22.9 ± 2.2 | 0.16 ± 0.04 | 73.1 ± 13.6 | 10.5 ± 0.2 | 63.6 ± 0.7 | 16.2 ± 3.1 | 105 ± 24.4 | 7.63 ± 1.9 | 2.56 ± 0.8 |
Al | Fe | Mn | Zn | Cu | Mo | Cd | Pb | Hg | As | Cr | Ni | Be | Co | V | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g/kg | mg/kg | ||||||||||||||
O | 14.5 ± 4.9 b | 9.80 ± 3.0 c | 0.47 ± 0.06 d | 185 ± 8.5 c | 39.9 ± 3.7 c | 3.48 ± 0.96 a | 0.37 ± 0.06 d | 7.30 ± 6.7 a | 0.04 ± 0.01 b | 2.48 ± 0.75 b | 19.1 ± 5.3 c | 10.8 ± 3.7 c | 0.66 ± 0.22 a | 4.51 ± 1.56 c | 35.0 ± 10.8 b |
A3 | 15.0 ± 1.3 b | 11.7 ± 0.5 bc | 0.97 ± 0.11 c | 293 ± 13.5 b | 64.4 ± 4.7 b | 4.35 ± 0.13 a | 1.10 ± 0.17 c | 9.30 ± 0.8 a | 0.05 ± 0.01 b | 2.77 ± 0.25 ab | 28.4 ± 1.1 ab | 16.5 ± 0.9 b | 0.73 ± 0.07 a | 5.97 ± 0.32 b | 40.6 ± 1.5 b |
A6 | 17.4 ± 1.4 ab | 12.0 ± 0.4 b | 1.19 ± 0.14 b | 303 ± 17.8 b | 63.3 ± 1.9 b | 4.30 ± 0.79 a | 1.54 ± 0.26 b | 13.7 ± 4.6 a | 0.06 ± 0.01 a | 3.18 ± 0.22 a | 26.3 ± 2.8 b | 16.7 ± 1.7 b | 0.84 ± 0.08 a | 6.63 ± 0.39 b | 40.5 ± 1.8 b |
A9 | 19.4 ± 0.9 a | 15.8 ± 1.2 a | 1.47 ± 0.11 a | 356 ± 13.3 a | 73.2 ± 1.4 a | 5.09 ± 0.98 a | 1.96 ± 0.06 a | 14.5 ± 2.4 a | 0.05 ± 0.001 ab | 3.21 ± 0.23 a | 33.6 ± 4.2 a | 22.7 ± 3.9 a | 0.85 ± 0.13 a | 9.66 ± 1.48 a | 53.2 ± 2.2 a |
COMlim * | - | - | - | 600 | 150 | 20 | 2 | 100 | 0.5 | 20 | 50 | 50 | - | - | - |
BW | 0.92 ± 0.82 | 0.66 ± 0.68 | 0.04 ± 0.01 | 16.3 ± 3.2 | 3.60 ± 1.2 | 1.35 ± 0.38 | 0.04 ± 0.01 | 0.42 ± 0.25 | 0.01 ± 0.002 a | 0.16 ± 0.13 | 6.20 ± 3.4 | 4.50 ± 1.9 | 0.03 ± 0.02 | 0.39 ± 0.24 | 2.69 ± 1.45 |
STR | 2.80 ± 0.42 | 2.05 ± 0.48 | 0.17 ± 0.02 | 52.4 ± 7.0 | 11.4 ± 2.0 | 3.29 ± 0.54 | 0.13 0.04 | 2.00 ± 0.54 | 0.02 ± 0.004 | 0.75 ± 0.39 | 17.6 ± 4.0 | 12.5 ± 2.0 | 0.12 ± 0.03 | 1.27 ± 0.28 | 7.18 ± 2.0 |
SEP | 1.08 ± 0.11 | 1.64 ± 0.44 | 0.18 ± 0.01 | 119 ± 4.5 | 21.3 ± 4.5 | 3.98 ± 1.86 | 0.17 ± 0.02 | 0.75 ± 0.08 | 0.01 ± 0.01 | 0.41 ± 0.06 | 8.30 ± 4.0 | 10.2 ± 4.0 | 0.03 ± 0.01 | 1.37 ± 1.01 | 3.00 ± 0.47 |
ASH | 23.0 ± 6.8 | 19.3 ± 3.4 | 3.51 ± 0.83 | 430 ± 98 | 76.2 ± 13.2 | 1.99 ± 0.41 | 4.46 ± 0.83 | 17.5 ± 5.0 | 0.14 ± 0.03 | 3.22 ± 0.71 | 28.8 ± 5.5 | 18.7 ± 3.9 | 1.02 ± 0.56 | 10.0 ± 2.2 | 49.4 ± 17.1 |
BAlim * | - | - | - | - | - | - | 5 | 50 | 0.5 | 20 | 50 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dědina, M.; Jarošíková, A.; Plíva, P.; Dubský, M. The Effect of Ash Admixture on Compost Quality and Availability of Nutrients. Sustainability 2022, 14, 1640. https://doi.org/10.3390/su14031640
Dědina M, Jarošíková A, Plíva P, Dubský M. The Effect of Ash Admixture on Compost Quality and Availability of Nutrients. Sustainability. 2022; 14(3):1640. https://doi.org/10.3390/su14031640
Chicago/Turabian StyleDědina, Martin, Alice Jarošíková, Petr Plíva, and Martin Dubský. 2022. "The Effect of Ash Admixture on Compost Quality and Availability of Nutrients" Sustainability 14, no. 3: 1640. https://doi.org/10.3390/su14031640
APA StyleDědina, M., Jarošíková, A., Plíva, P., & Dubský, M. (2022). The Effect of Ash Admixture on Compost Quality and Availability of Nutrients. Sustainability, 14(3), 1640. https://doi.org/10.3390/su14031640