Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Rainfall Data
2.3. MIET
2.4. Statistical Analysis
3. Results and Discussion
3.1. Rainfall Events with and without Single Tip Events (STE)
3.2. Characteristics of Rainfall Events
3.3. Minimum Inter-Event Time (MIET)
3.4. Rainfall Characterization for a 6-h Minimum Inter-Event Time (MIET)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
AD–P | AD-I | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h | Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h |
N | 285.30 | 95.60 | 66.90 | 51.50 | 34.40 | 26.60 | 17.90 | N | 192.50 | 81.20 | 68.70 | 52.30 | 45.60 | 39.40 | 37.00 |
LN | 63.70 | 15.30 | 12.70 | 10.40 | 6.90 | 2.60 | 1.50 | LN | 64.00 | 8.90 | 4.50 | 1.80 | 0.80 | 0.70 | 0.50 |
G | 111.90 | 15.50 | 6.50 | 3.10 | 0.80 | 1.20 | 1.20 | G | 97.10 | 22.00 | 15.10 | 7.30 | 4.50 | 3.40 | 6.40 |
EX | 600.80 | 149.40 | 76.60 | 40.90 | 7.80 | 1.70 | 1.20 | EX | 86.60 | 20.20 | 14.00 | 6.90 | 4.90 | 6.20 | 18.40 |
WE | 77.00 | 11.50 | 5.70 | 3.00 | 0.69 | 1.00 | 1.00 | WE | 88.60 | 20.30 | 13.80 | 6.50 | 3.60 | 2.20 | 3.80 |
p-value | p-value | ||||||||||||||
Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h | Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h |
N | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
LN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | LN | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 |
G | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | G | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
EX | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | EX | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
WE | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | WE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
AD–D | AD-IET | ||||||||||||||
Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h | Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h |
N | 236.50 | 69.30 | 44.60 | 29.60 | 23.90 | 36.10 | 23.10 | N | 535.80 | 256.00 | 207.40 | 183.10 | 148.40 | 121.90 | 81.20 |
LN | 122.80 | 27.20 | 19.70 | 17.70 | 11.80 | 3.60 | 3.10 | LN | 47.50 | 8.50 | 5.30 | 5.80 | 8.30 | 11.10 | 9.40 |
G | 138.90 | 20.30 | 9.80 | 6.10 | 2.10 | 1.30 | 1.90 | G | 208.70 | 78.30 | 64.60 | 60.50 | 55.00 | 49.80 | 35.90 |
EX | 187.60 | 58.60 | 33.70 | 18.20 | 5.60 | 8.20 | 22.20 | EX | 1965.70 | 504.00 | 324.30 | 248.10 | 165.80 | 118.10 | 60.10 |
WE | 118.50 | 18.50 | 10.20 | 7.20 | 2.50 | 0.60 | 1.60 | WE | 88.60 | 29.80 | 27.10 | 28.70 | 31.20 | 31.70 | 26.00 |
p-value | p-value | ||||||||||||||
Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h | Fn | 15 m | 1 h | 2 h | 3 h | 6 h | 12 h | 24 h |
N | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | N | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
LN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | LN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
G | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | G | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
EX | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | EX | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
WE | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | WE | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
References
- Koutroulis, A.G. Dryland changes under different levels of global warming. Sci. Total Environ. 2019, 655, 482–511. [Google Scholar] [CrossRef] [PubMed]
- Sudene. Superintendência do Desenvolvimento do Nordeste. Resolução 115, de 23 de Novembro de 2017. Available online: http://antigo.sudene.gov.br/delimitacao-do-semiarido (accessed on 14 April 2021).
- Medeiros, P.H.A.; de Araujo, J.C.; Bronstert, A. Interception measurements and assessment of Gash model performance for a tropical semi-arid region. Rev. Ciênc. Agron. 2009, 40, 165–174. [Google Scholar]
- Zhang, Y.F.; Wang, X.P.; Hu, R.; Pan, Y.X.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Zhao, Y.; Li, X.R.; Huang, L.; Tan, H.J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: A 10-year observation in the Tengger Desert. Sci. Rep. 2016, 6, 26030. [Google Scholar] [CrossRef] [Green Version]
- Brasil, J.B.; Andrade, E.M.; Palácio, H.A.Q.; Medeiros, P.H.A.; dos Santos, J.C.N. Characteristics of precipitation and the process of interception in a seasonally dry tropical forest. J. Hydrol. Reg. Stud. 2018, 19, 307–317. [Google Scholar] [CrossRef]
- Brasil, J.B.; Andrade, E.M.; Palácio, H.A.Q.; Santos, J.C.N.D.; Medeiros, P.H.A. Temporal variability of throughfall as a function of the canopy development stage: From seasonal to intra-event scale. Hydrol. Sci. J. 2020, 65, 1640–1651. [Google Scholar] [CrossRef]
- Návar, J. Modeling rainfall interception loss components of forests. J. Hydrol. 2020, 584, 124449. [Google Scholar] [CrossRef]
- Figueiredo, J.V.; de Araújo, J.C.; Medeiros, P.H.A.; Costa, A.C. Runoff initiation in a preserved semiarid Caatinga small watershed, Northeastern Brazil. Hydrol. Processes 2016, 30, 2390–2400. [Google Scholar] [CrossRef]
- Pathak, P.; Sudi, R.; Wani, S.P.; Sahrawat, K.L. Hydrological behavior of Alfisols and Vertisols in the semi-arid zone: Implications for soil and water management. Agric. Water Manag. 2013, 118, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.C.N.; Andrade, E.M.; Guerreiro, M.J.S.; Medeiros, P.H.A.; Palácio, H.A.Q.; Araújo Neto, J.R. Effect of dry spells and soil cracking on runoff generation in a semiarid micro watershed under land use change. J. Hydrol. 2016, 541, 1057–1066. [Google Scholar] [CrossRef]
- Santos, J.C.N.; Andrade, E.M.; Medeiros, P.H.A.; Guerreiro, M.J.S.; Palácio, H.A.Q. Effect of rainfall characteristics on runoff and water erosion for different land uses in a tropical semiarid region. Water Resour. Manag. 2017, 31, 173–185. [Google Scholar] [CrossRef]
- Medeiros, P.H.A.; de Araújo, J.C. Temporal variability of rainfall in a semiarid environment in Brazil and its effect on sediment transport processes. J. Soils Sediments 2014, 14, 1216–1223. [Google Scholar] [CrossRef]
- Ribeiro Filho, J.C.; Palácio, H.A.Q.; Andrade, E.M.; Santos, J.C.N.; Brasil, J.B. Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the semiarid region of Brazil. Rev. Caatinga 2017, 30, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.C.N.D.; Andrade, E.M.; Palácio, H.A.D.Q.; Araújo Neto, J.R.D.; Ribeiro Filho, J.C. Erosive process control in the brazilian semiarid region. Rev. Caatinga 2018, 31, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.A.G.; Lopes, J.W.B.; Pinheiro, E.A.R.; Araújo, J.C.D.; Gomes Filho, R.R. Spatial behaviour of soil moisture in the root zone of the Caatinga biome. Rev. Ciênc. Agron. 2013, 44, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.A.G.; Araújo, J.C.D.; Lopes, J.W.B.; Pinheiro, E.A.R. Permanence of water effectiveness in the root zone of the Caatinga biome. Rev. Caatinga 2016, 29, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Rascón-Ramos, A.E.; Martínez-Salvador, M.; Sosa-Pérez, G.; Villarreal-Guerrero, F.; Pinedo-Alvarez, A.; Santellano-Estrada, E.; Corrales-Lerma, R. Soil Moisture Dynamics in Response to Precipitation and Thinning in a Semi-Dry Forest in Northern Mexico. Water 2021, 13, 105. [Google Scholar] [CrossRef]
- Andrade, E.M.; Guerreiro, M.J.S.; Palácio, H.A.Q.; Campos, D.A. Ecohydrology in a Brazilian tropical dry forest: Thinned vegetation impact on hydrological functions and ecosystem services. J. Hydrol. Reg. Stud. 2020, 27, 100649. [Google Scholar] [CrossRef]
- Guerreiro, M.S.; Andrade, E.M.; Palácio, H.A.Q.; Brasil, J.B.; Ribeiro Filho, J.C. Enhancing Ecosystem Services to Minimize Impact of Climate Variability in a Dry Tropical Forest with Vertisols. Hydrology 2021, 8, 46. [Google Scholar] [CrossRef]
- Molina-Sanchis, I.; Lázaro, R.; Arnau-Rosalén, E.; Calvo-Cases, A. Rainfall timing and runoff: The influence of the criterion for rain event separation. J. Hydrol. Hydromech. 2016, 64, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Processes 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- Ignaccolo, M.; De Michele, C. A point based Eulerian definition of rain event based on statistical properties of inter drop time intervals: An application to Chilbolton data. Adv. Water Resour. 2010, 33, 933–941. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Coelho, V.H.R.; Xuan, Y.; de CDMelo, D.; Gadelha, A.N.; Santos, E.A.; Galvão, C.D.O.; Ramos Filho, G.M.; Barbosa, L.R.; Huffman, G.J.; et al. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties. J. Hydrol. 2020, 589, 125128. [Google Scholar] [CrossRef]
- Restrepo-Posada, P.J.; Eagleson, P.S. Identification of independent rainstorms. J. Hydrol. 1982, 55, 303–319. [Google Scholar] [CrossRef]
- Medina-Cobo, M.T.; García-Marín, A.P.; Estévez, J.; Ayuso-Muñoz, J.L. The identification of an appropriate Minimum Inter-event Time (MIT) based on multifractal characterization of rainfall data series. Hydrol. Processes 2016, 30, 3507–3517. [Google Scholar] [CrossRef]
- Chin, R.J.; Lai, S.H.; Chang, K.B.; Jaafar, W.Z.W.; Othman, F. Relationship between minimum inter-event time and the number of rainfall events in Peninsular Malaysia. Weather 2016, 71, 213–218. [Google Scholar] [CrossRef]
- Barbosa, L.R.; Almeida, C.D.N.; Coelho, V.H.R.; Freitas, E.D.S.; Galvão, C.D.O.; Araújo, J.C.D. Sub-hourly rainfall patterns by hyetograph type under distinct climate conditions in Northeast of Brazil: A comparative inference of their key properties. Rev. Bras. Recur. Hídricos 2018, 23. Available online: https://doi.org/10.1590/2318-0331.231820180076 (accessed on 12 June 2021). [CrossRef] [Green Version]
- Dunkerley, D. Intermittency of rainfall at sub-daily timescales: New quantitative indices based on the number, duration, and sequencing of interruptions to rainfall. Atmos. Res. 2021, 253, 105475. [Google Scholar] [CrossRef]
- Guo, Y.; Adams, B.J. Hydrologic analysis of urban catchments with event-based probabilistic models: 1. Runoff volume. Water Resour. Res. 1998, 34, 3421–3431. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, J.H. Development of new inter-event time definition technique in urban areas. KSCE J. Civ. Eng. 2018, 22, 3764–3771. [Google Scholar] [CrossRef]
- Nojumuddin, N.S.; Yusof, F.; Yusop, Z. Determination of minimum inter-event time for storm characterisation in Johor, Malaysia. J. Flood Risk Manag. 2018, 11, S687–S699. [Google Scholar] [CrossRef]
- Onderka, M.; Pecho, J.; Nejedlík, P. On how rainfall characteristics affect the sizing of rain barrels in Slovakia. J. Hydrol. Reg. Stud. 2020, 32, 100747. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Guerreiro, M.J.S.; Andrade, E.M.; Abreu, I.; Lajinha, T. Long-term variation of precipitation indices in Ceará State, Northeast Brazil. Int. J. Climatol. 2013, 33, 2929–2939. [Google Scholar] [CrossRef]
- Andrade, E.M.; Sena, M.G.T.; da Silva, A.G.R.; Pereira, F.J.S.; Lopes, F.B. Uncertainties of the rainfall regime in a tropical semi-arid region: The case of the State of Ceará. Rev. Agro@Mbiente -Line 2016, 10, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Franchito, S.H.; Fernandez, J.P.R.; Pareja, D. Surrogate climate change scenario and projections with a regional climate model: Impact on the aridity in South America. Am. J. Clim. Chang. 2014, 3, 474. [Google Scholar] [CrossRef] [Green Version]
- Campos, D.A.; Andrade, E.M.; Castanho, A.D.; Feitosa, R.C.; Palácio, H.A.Q. Biomass Dynamics in a Fragment of Brazilian Tropical Forest (Caatinga) over Consecutive Dry Years. Appl. Sci. 2020, 10, 7813. [Google Scholar] [CrossRef]
- Andrade, E.M.; Aquino, D.N.; Chaves, L.C.G.; Lopes, F.B. Water as Capital and Its Uses in the Caatinga. In Caatinga; Silva, J.M.C., Leal, I.R., Tabarelli, M., Eds.; Springer: Cham, Switzerlands, 2017. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos; EMBRAPA: Brasília, Brazil, 2013; 353p. [Google Scholar]
- Andrade, E.M.D.; Rodrigues, R.D.N.; Palácio, H.A.D.Q.; Brasil, J.B.; Guerreiro, M.J.S. Hydrological behaviour of vertisols in the Brazilian semi-arid region: The importance of rainfall of less than 30 mm. Rev. Ciência Agronômica 2020, 51. Available online: https://doi.org/10.5935/1806-6690.20200029 (accessed on 12 June 2021). [CrossRef]
- Lima, C.A.D.; Palácio, H.A.D.Q.; Andrade, E.M.D.; dos Santos, J.C.; Brasil, P.P. Characteristics of rainfall and erosion under natural conditions of land use in semiarid regions. Rev. Bras. Eng. Agrícola Ambient. 2013, 17, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences: An Introduction; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Esteves, L.S. Consequences to flood management of using different probability distributions to estimate extreme rainfall. J. Environ. Manag. 2013, 115, 98–105. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y. An analytical stochastic approach for evaluating the performance of combined sewer overflow tanks. Water Resour. Res. 2018, 54, 3357–3375. [Google Scholar] [CrossRef]
- Lima, A.O.; Lyra, G.B.; Abreu, M.C.; Oliveira-Júnior, J.F.; Zeri, M.; Cunha-Zeri, G. Extreme rainfall events over Rio de Janeiro State, Brazil: Characterization using probability distribution functions and clustering analysis. Atmos. Res. 2021, 247, 105221. [Google Scholar] [CrossRef]
- Balistrocchi, M.; Grossi, G.; Bacchi, B. An analytical probabilistic model of the quality efficiency of a sewer tank. Water Resour. Res. 2009, 45, W12420. [Google Scholar] [CrossRef]
- Beskow, S.; Caldeira, T.L.; de Mello, C.R.; Faria, L.C.; Guedes, H.A.S. Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. J. Hydrol. Reg. Stud. 2015, 4, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Palácio, H.A.Q.; Andrade, E.M.D.; Lopes, F.B.; Alexandre, D.M.B.; Arraes, F.D.D. Similaridade da qualidade das águas superficiais da bacia do Curu, Ceará. Ciência Rural 2009, 39, 2494–2500. [Google Scholar] [CrossRef]
- Dunkerley, D. How is the intensity of rainfall events best characterised? A brief critical review and proposed new rainfall intensity index for application in the study of landsurface processes. Water 2020, 12, 929. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, E.A.R.; Metselaar, K.; de Jong Van Lier, Q.; de Araújo, J.C. Importance of soil-water to the Caatinga biome, Brazil. Ecohydrology 2016, 9, 1313–1327. [Google Scholar] [CrossRef]
- Pinheiro, E.A.; Costa, C.A.G.; de Araújo, J.C. Effective root depth of the Caatinga biome. J. Arid. Environ. 2013, 89, 1–4. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (No. 537); Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Link, T.E.; Unsworth, M.; Marks, D. The dynamics of rainfall interception by a seasonal temperate rainforest. Agric. For. Meteorol. 2004, 124, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 2006, 319, 72–82. [Google Scholar] [CrossRef]
- Ferreira, A.G.; Mello, N.G.S. Principais sistemas atmosféricos atuantes sobre a região Nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Rev. Bras. Climatol. 2005, 1. [Google Scholar] [CrossRef] [Green Version]
Parameter |
---|
depth (mm) |
duration (min) |
mean intensity (mm h−1) |
maximum intensity at intervals of 5, 30 and 60 min (I5 to I60 mm h−1) |
inter-event time (h) |
Distribution | Probability Distribution Functions |
---|---|
Normal | |
Log-Normal | |
Gamma | |
Exponential | |
Weibull |
with STE | without STE | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIET | Mean | SD | CV | Kur | Ske | Min | Max | Mean | SD | CV | Kur | Ske | Min | Max | |
P | 15 | 5.1 | 10.7 | 210.5 | 27.8 | 4.3 | 0.2 | 142.0 | 8.5 | 13.0 | 152.7 | 17.7 | 3.3 | 0.4 | 142.0 |
1 | 9.8 | 15.2 | 154.7 | 11.0 | 2.8 | 0.2 | 142.0 | 12.7 | 16.3 | 127.9 | 8.9 | 2.5 | 0.4 | 142.0 | |
2 | 11.9 | 16.8 | 141.2 | 11.6 | 2.7 | 0.2 | 162.0 | 14.5 | 17.6 | 121.4 | 10.3 | 2.5 | 0.4 | 162.0 | |
3 | 13.5 | 17.6 | 130.7 | 10.0 | 2.5 | 0.2 | 162.0 | 15.5 | 18.1 | 116.6 | 9.4 | 2.4 | 0.4 | 162.0 | |
6 | 16.3 | 18.8 | 115.1 | 8.3 | 2.3 | 0.2 | 162.0 | 17.4 | 18.9 | 108.7 | 8.1 | 2.2 | 0.4 | 162.0 | |
12 | 19.5 | 20.8 | 106.5 | 6.3 | 2.0 | 0.2 | 162.0 | 20.0 | 20.8 | 104.0 | 6.3 | 2.0 | 0.4 | 162.0 | |
24 | 28.2 | 30.9 | 109.5 | 8.5 | 2.4 | 0.6 | 212.0 | 28.4 | 30.9 | 108.9 | 8.5 | 2.4 | 0.6 | 212.0 | |
D | 15 | 0.5 | 0.8 | 164.6 | 36.4 | 4.6 | 0.1 | 10.9 | 0.7 | 0.9 | 123.9 | 25.7 | 3.9 | 0.1 | 10.9 |
1 | 1.3 | 1.7 | 129.6 | 8.4 | 2.5 | 0.1 | 13.0 | 1.6 | 1.7 | 105.8 | 7.2 | 2.2 | 0.1 | 13.0 | |
2 | 1.8 | 2.2 | 117.4 | 5.0 | 2.0 | 0.1 | 13.9 | 2.2 | 2.2 | 99.1 | 4.4 | 1.8 | 0.1 | 13.9 | |
3 | 2.4 | 2.6 | 108.9 | 6.4 | 2.0 | 0.1 | 20.9 | 2.7 | 2.6 | 95.4 | 6.3 | 1.9 | 0.1 | 20.9 | |
6 | 3.8 | 4.0 | 105.5 | 5.3 | 2.0 | 0.1 | 25.6 | 4.1 | 4.0 | 99.1 | 5.2 | 2.0 | 0.1 | 25.6 | |
12 | 6.2 | 7.9 | 128.5 | 13.5 | 3.0 | 0.1 | 71.1 | 6.3 | 8.0 | 125.9 | 13.4 | 2.9 | 0.1 | 71.1 | |
24 | 16.4 | 20.9 | 126.9 | 4.5 | 2.0 | 0.1 | 123.7 | 16.6 | 20.9 | 126.2 | 4.5 | 2.0 | 0.1 | 123.7 | |
I | 15 | 8.4 | 9.9 | 118.3 | 12.1 | 2.9 | 1.3 | 103.5 | 11.9 | 11.5 | 96.9 | 7.6 | 2.2 | 1.3 | 103.5 |
1 | 8.4 | 10.1 | 121.0 | 17.3 | 3.4 | 0.4 | 103.5 | 9.9 | 11.0 | 110.9 | 13.9 | 3.0 | 0.4 | 103.5 | |
2 | 8.1 | 10.1 | 124.9 | 19.1 | 3.5 | 0.4 | 103.5 | 9.2 | 10.8 | 117.5 | 16.2 | 3.3 | 0.4 | 103.5 | |
3 | 7.8 | 9.2 | 117.7 | 11.1 | 2.8 | 0.2 | 76.3 | 8.5 | 9.6 | 113.1 | 9.7 | 2.6 | 0.2 | 76.3 | |
6 | 7.4 | 9.1 | 124.0 | 13.1 | 3.1 | 0.1 | 76.3 | 7.6 | 9.3 | 122.8 | 12.3 | 3.0 | 0.1 | 76.3 | |
12 | 7.4 | 9.6 | 129.6 | 12.3 | 3.0 | 0.1 | 76.3 | 7.5 | 9.7 | 129.6 | 12.2 | 3.0 | 0.1 | 76.3 | |
24 | 6.3 | 9.9 | 156.2 | 14.5 | 3.4 | 0.1 | 76.3 | 6.3 | 9.9 | 157.8 | 14.8 | 3.4 | 0.1 | 76.3 | |
I5 | 15 | 16.0 | 23.5 | 146.7 | 5.5 | 2.3 | 2.4 | 142.5 | 25.0 | 27.4 | 109.5 | 2.2 | 1.6 | 2.4 | 142.5 |
1 | 25.6 | 28.8 | 112.2 | 1.7 | 1.5 | 2.4 | 142.5 | 32.5 | 29.6 | 91.2 | 0.9 | 1.2 | 2.4 | 142.5 | |
2 | 29.4 | 29.9 | 101.8 | 1.0 | 1.3 | 2.4 | 142.5 | 35.2 | 30.1 | 85.5 | 0.6 | 1.1 | 2.4 | 142.5 | |
3 | 32.1 | 30.4 | 94.7 | 0.8 | 1.1 | 2.4 | 142.5 | 36.6 | 30.3 | 82.8 | 0.6 | 1.0 | 2.4 | 142.5 | |
6 | 37.3 | 30.8 | 82.5 | 0.4 | 1.0 | 2.4 | 142.5 | 39.6 | 30.5 | 77.0 | 0.4 | 0.9 | 2.4 | 142.5 | |
12 | 41.7 | 30.7 | 73.6 | 0.3 | 0.9 | 2.4 | 142.5 | 42.6 | 30.5 | 71.6 | 0.3 | 0.9 | 2.4 | 142.5 | |
24 | 48.6 | 31.5 | 64.9 | −0.2 | 0.7 | 2.4 | 142.5 | 48.8 | 31.5 | 64.7 | −0.2 | 0.7 | 2.4 | 142.5 | |
I30 | 15 | 21.5 | 18.4 | 85.4 | 2.0 | 1.4 | 2.4 | 100.7 | 21.5 | 18.4 | 85.4 | 2.0 | 1.4 | 2.4 | 100.7 |
1 | 22.1 | 18.4 | 83.3 | 1.9 | 1.4 | 2.4 | 100.7 | 22.1 | 18.4 | 83.3 | 1.9 | 1.4 | 2.4 | 100.7 | |
2 | 22.6 | 18.5 | 81.8 | 1.8 | 1.4 | 2.4 | 100.7 | 22.6 | 18.5 | 81.8 | 1.8 | 1.4 | 2.4 | 100.7 | |
3 | 22.8 | 18.6 | 81.6 | 1.7 | 1.3 | 2.4 | 100.7 | 22.8 | 18.6 | 81.6 | 1.7 | 1.3 | 2.4 | 100.7 | |
6 | 23.5 | 18.7 | 79.6 | 1.6 | 1.3 | 2.4 | 100.7 | 23.5 | 18.7 | 79.6 | 1.6 | 1.3 | 2.4 | 100.7 | |
12 | 24.4 | 19.0 | 78.0 | 1.4 | 1.3 | 2.4 | 100.7 | 24.4 | 19.0 | 78.0 | 1.4 | 1.3 | 2.4 | 100.7 | |
24 | 27.6 | 19.9 | 72.1 | 0.9 | 1.1 | 2.4 | 100.7 | 27.6 | 19.9 | 72.1 | 0.9 | 1.1 | 2.4 | 100.7 | |
I60 | 15 | 18.9 | 14.5 | 76.8 | 2.6 | 1.5 | 1.5 | 81.6 | 18.9 | 14.5 | 76.8 | 2.6 | 1.5 | 1.5 | 81.6 |
1 | 19.2 | 13.8 | 71.5 | 2.7 | 1.4 | 2.4 | 81.6 | 19.2 | 13.8 | 71.5 | 2.7 | 1.4 | 2.4 | 81.6 | |
2 | 18.9 | 13.7 | 72.6 | 2.6 | 1.4 | 2.4 | 81.6 | 18.9 | 13.7 | 72.6 | 2.6 | 1.4 | 2.4 | 81.6 | |
3 | 19.0 | 13.8 | 72.6 | 2.6 | 1.4 | 2.4 | 81.6 | 19.0 | 13.8 | 72.6 | 2.6 | 1.4 | 2.4 | 81.6 | |
6 | 19.0 | 13.6 | 71.6 | 2.7 | 1.4 | 2.4 | 81.6 | 19.0 | 13.6 | 71.6 | 2.7 | 1.4 | 2.4 | 81.6 | |
12 | 19.4 | 13.6 | 70.1 | 2.7 | 1.4 | 2.4 | 81.6 | 19.4 | 13.6 | 70.1 | 2.7 | 1.4 | 2.4 | 81.6 | |
24 | 21.5 | 13.8 | 64.1 | 2.5 | 1.3 | 2.4 | 81.6 | 21.5 | 13.8 | 64.1 | 2.5 | 1.3 | 2.4 | 81.6 |
with STE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MIET | P | D | I | I5 | I30 | I60 | N° of | ||||
Events | |||||||||||
15 min | 0.76 | b | 0.2 | b | 4.8 | b | 5.09 | b | 16.5 | 15.8 | 1698 |
1 h | 3.4 | b | 0.7 | b | 4.8 | b | 12.2 | b | 16.8 | 16.1 | 880 |
2 h | 5.2 | b | 1.1 | b | 4.61 | 19.2 | b | 17.8 | 15.8 | 726 | |
3 h | 6.8 | 1.5 | b | 4.58 | 24 | b | 17.8 | 15.8 | 643 | ||
6 h | 9.75 | 2.75 | 4.08 | 30.53 | 18.4 | 15.8 | 530 | ||||
12 h | 12.3 | 3.58 | 4.05 | 36 | 19.5 | 16.3 | 443 | ||||
24 h | 18.2 | 7.08 | 2.46 | 45.6 | 23.1 | 18.6 | 307 | ||||
without STE | |||||||||||
MIET | P | D | I | I5 | I30 | I60 | N° of | ||||
events | |||||||||||
15 min | 3.2 | a | 0.4 | a | 8 | a | 12.2 | a | 16.5 | 15.8 | 995 |
1 h | 6.4 | a | 1.1 | a | 6.4 | a | 24 | a | 16.8 | 16.1 | 675 |
2 h | 7.62 | a | 1.5 | a | 5.95 | 26.4 | a | 17.8 | 15.8 | 595 | |
3 h | 8.8 | 1.9 | a | 5.38 | 30.5 | a | 17.8 | 15.8 | 557 | ||
6 h | 10.9 | 2.96 | 4.62 | 33.6 | 18.4 | 15.8 | 496 | ||||
12 h | 12.4 | 3.75 | 4.12 | 36.58 | 19.5 | 16.3 | 432 | ||||
24 h | 18.2 | 7.17 | 2.45 | 45.72 | 23.1 | 18.6 | 305 |
Rainfall Classification | Limits | Variables | Mean | Standard Deviation | CV | Number of Events |
---|---|---|---|---|---|---|
Class I | 0.20 ≤ P ≤ 38.58 * | P (mm) | 8.9 | 8 | 0.9 | 410 |
0.08 ≤ D ≤ 11.58 | Duration (h) | 2.8 | 2.6 | 0.9 | ||
0.08 ≤ I ≤ 32.22 | I (mm h−1) | 5.6 | 6.1 | 1.1 | ||
Class II | 3.00 ≤ P ≤ 29.80 | P (mm) | 14.2 | 8.4 | 0.6 | 14 |
0.08 ≤ D ≤ 0.67 | Duration (h) | 0.3 | 0.2 | 0.6 | ||
36.00 ≤ I ≤ 76.32 | I (mm h−1) | 45.9 | 12.1 | 0.3 | ||
Class III | 3.60 ≤ P ≤ 161.97 | P (mm) | 45.1 | 21.6 | 0.5 | 106 |
1.00 ≤ D ≤ 25.58 | Duration (h) | 8.1 | 5.5 | 0.7 | ||
0.24 ≤ I ≤ 29.93 | I (mm h−1) | 9.1 | 6.7 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brasil, J.B.; Guerreiro, M.S.; Andrade, E.M.d.; de Queiroz Palácio, H.A.; Medeiros, P.H.A.; Ribeiro Filho, J.C. Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment. Sustainability 2022, 14, 1721. https://doi.org/10.3390/su14031721
Brasil JB, Guerreiro MS, Andrade EMd, de Queiroz Palácio HA, Medeiros PHA, Ribeiro Filho JC. Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment. Sustainability. 2022; 14(3):1721. https://doi.org/10.3390/su14031721
Chicago/Turabian StyleBrasil, José Bandeira, Maria Simas Guerreiro, Eunice Maia de Andrade, Helba Araújo de Queiroz Palácio, Pedro Henrique Augusto Medeiros, and Jacques Carvalho Ribeiro Filho. 2022. "Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment" Sustainability 14, no. 3: 1721. https://doi.org/10.3390/su14031721
APA StyleBrasil, J. B., Guerreiro, M. S., Andrade, E. M. d., de Queiroz Palácio, H. A., Medeiros, P. H. A., & Ribeiro Filho, J. C. (2022). Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment. Sustainability, 14(3), 1721. https://doi.org/10.3390/su14031721