Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey of Consumers of RTESs and Ethical Standards Disclosure
2.2. Plant Material
2.3. Microbiological Analysis
2.4. Determination of Total Phenolic Compounds and Antioxidant Activity
2.5. Sensorial Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Responses to the Questionnaire
3.2. Evolution of Quality Parameters of RTESs in a Domestic Refrigerator
3.2.1. Microbiological Quality
3.2.2. Functional Quality of RTESs Ingredients during Storage
3.2.3. Sensorial Quality of the Different RTES Ingredients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rico, D.; Martin-Diana, A.B.; Barat, M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, Y.; Gupta, V.K.; Jaitak, V. Anticancer activity of essential oils: A review. J. Sci. Food Agric. 2013, 93, 3643–3653. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bel, P.; Romojaro, A.; Egea, I.; Pretel, M.T. Wild edible plants as potential antioxidant or nutritional supplements for beverages minimally processed. LWT-Food Sci. Technol. 2015, 62, 830–837. [Google Scholar] [CrossRef]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef]
- Cook, R. The Dynamic U.S. Fresh Produce Industry: An Industry in Transition. Fresh Fruit and Vegetable Marketing and Trade Information. 2008. Available online: http://are.ucdavis.edu/en/people/faculty/roberta-cook/articles-and-presentations/ (accessed on 1 October 2021).
- Gross, K.C.; Wang, C.Y.; Saltveit, M. The commercial storage of fruits, vegetables, and florist and nursery stocks. In Agricultural Research Service–Agriculture Handbook; Gross, K.C., Wang, C.Y., Saltveit, M., Eds.; United States Department of Agriculture: Washington, DC, USA, 2016; 780p. Available online: https://www.ars.usda.gov/arsuserfiles/oc/np/commercialstorage/commercialstorage.pdf (accessed on 20 September 2021).
- Pilone, V.; Stasi, A.; Baselice, A. Quality preferences and pricing of fresh-cut salads in Italy: New evidence from market data. Br. Food J. 2017, 119, 1473–1486. [Google Scholar] [CrossRef]
- Raffo, A.; Senatore, M.; Moneta, E.; Paoletti, F.; Peparaio, M.; Civitelli, E.S. Impact of different temperature abuse scenarios on sensory quality and off-odour formation in ready-to-eat salad leaves. Int. J. Food Sci. Technol. 2020, 56, 2345–2356. [Google Scholar] [CrossRef]
- Arienzo, A.; Murgia, L.; Fraudentali, I.; Gallo, V.; Angelini, R.; Antonini, G. Microbiological quality of ready-to-eat leafy green salads during shelf-life and home-refrigeration. Foods 2020, 9, 1421. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Miller, F.A.; Brandão, T.R.; Teixeira, P.; Silva, C.L. Fresh fruits and vegetables-an overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Sant’Anna, P.; Bernadette, D.G.; De Melo-Franco, B.; Maffeic, D. Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: An overview. J. Sci. Food Agric. 2020, 100, 4664–4670. [Google Scholar] [CrossRef]
- Ares, G.; Giménez, A.; Gámbaro, A. Sensory shelf life estimation of minimally processed lettuce considering two stages of consumers’ decision-making process. Appetite 2008, 50, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.D.; Stanley, R.A.; Eyles, A.; Ross, T. Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2019, 59, 411–422. [Google Scholar] [CrossRef]
- Marinelli, L.; Maggi, O.; Aurigemma, C.; Tufi, D.; De, M.G. Fresh vegetables and ready-to eat salads: Phenotypic characterization of moulds and molecular characterization of yeasts. Ann. Ig. Med. Prev. Comunita 2012, 24, 301–309. [Google Scholar]
- Jeddi, M.Z.; Yunesian, M.; Gorji, M.E.H.; Noori, N.; Pourmand, M.R.; Khaniki, G.R.J. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets. J. Health Popul. Nutr. 2014, 32, 391. [Google Scholar] [PubMed]
- Tsironi, T.; Dermesonlouoglou, E.; Giannoglou, M.; Gogou, E.; Katsaros, G.; Taoukis, P. Shelf-life prediction models for ready-to-eat fresh cut salads: Testing in real cold chain. Int. J. Food Microbiol. 2017, 240, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C.; Webb, C.C.; Diaz-Perez, J.C.; Phatak, S.C.; Silvoy, J.J.; Davey, L.; Payton, A.S.; Liao, J.; Ma, L.; Doyle, M.P. Surface and internalized Escherichia coli O157: H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water. J. Food Prot. 2010, 73, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.M.; Leveau, J.H.J. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 2012, 168, 621–629. [Google Scholar] [CrossRef] [Green Version]
- FSANZ (Food Standards Australia New Zealand). Microbiological Quality Guide for Ready-to-Eat Foods. A Guide to Interpreting Microbiological Results. 2021. Available online: https://www.foodstandards.gov.au/code/microbiollimits/Documents/Guidelines%20for%20Micro%20exam.pdf (accessed on 24 June 2021).
- FSAI (Food Safety Authority of Ireland). Guidance Note No. 3: Guidelines for the Interpretation of Results of Microbiological Testing of Ready-to-Eat Foods Placed on the Market (Revision 2); Food Safety Authority of Ireland (FSAI): Dublin, Ireland, 2016. [Google Scholar]
- El-Ramady, H.R.; Domokos-Szabolcsy, E.; Abdalla, N.A.; Taha, H.S.; Fari, M. Postharvest management of fruits and vegetables storage. Sustain. Agric. Rev. 2015, 15, 65–152. [Google Scholar] [CrossRef]
- Si, H.; Liu, D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 2014, 25, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Si, H.; Jia, Z.; Liu, D. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants 2021, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Rolt, A.; Cox, L.S. Structural basis of the anti-ageing effects of polyphenolics: Mitigation of oxidative stress. BMC Chem. 2020, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Preti, R.; Vinci, G. Nutritional and sensory evaluation of ready-to-eat salads during shelf life. Agro Food Ind. Hi Tech 2016, 27, 26–31. [Google Scholar]
- Sanchez-Bel, P.; Egea, I.; Serrano, M.; Romojaro, A.; Pretel, M.T. Obtaining and storage of ready-to-use segments from traditional orange obtained by enzymatic peeling. Food Sci. Technol. Int. 2012, 18, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Díaz-Mula, H.M.; Zapata, P.J.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Valverde, J.M.; Valero, D. Maturity stage at harvest determines the fruit quality and antioxidant potential after storage of sweet cherry cultivars. J. Agric. Food Chem. 2009, 57, 3240–3246. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Hernández-Ruíz, J.; García-Cánovas, F.; Acosta, M.; Arnao, M.B. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 1998, 9, 196–202. [Google Scholar] [CrossRef]
- Dinnella, C.; Torri, L.; Caporale, G.; Monteleone, E. An exploratory study of sensory attributes and consumer traits underlying liking for and perceptions of freshness for ready to eat mixed salad leaves in Italy. Food Res. Int. 2014, 59, 108–116. [Google Scholar] [CrossRef]
- Machín, L.; Giménez, A.; Vidal, L.; Ares, G. Influence of context on motives underlying food choice. J. Sens. Stud. 2014, 29, 313–324. [Google Scholar] [CrossRef]
- Langley, S.; Phan-Le, N.T.; Brennan, L.; Parker, L.; Jackson, M.; Francis, C.; Lockrey, S.; Verghese, K.; Alessi, N. The Good, the Bad, and the Ugly: Food Packaging and Consumers. Sustainability 2021, 13, 12409. [Google Scholar] [CrossRef]
- Carrasco, R.; Labeaga, J.M.; Lopez-Salido, J.D. Consumption and habits. Evidence from panel data. Econ. J. 2005, 115, 144–165. [Google Scholar] [CrossRef] [Green Version]
- Gardner, B.; de Bruijn, G.J.; Lally, P. A systematic review and meta-analysis of applications of the self-report habit index to nutrition and physical activity behaviours. Ann. Behav. Med. 2011, 42, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.; Soulliere, K.; Sawyer-Beaulieu, S.; Sabzwari, A.; Tam, E. Challenges to the circular economy: Recovering wastes from simple versus complex products. Sustainability 2022, 14, 2576. [Google Scholar] [CrossRef]
- Franz, R.; Welle, F. Recycling of post-consumer packaging materials into new food packaging applications—critical review of the european approach and future perspectives. Sustainability 2022, 14, 824. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Efficacy of the theory of planned behaviour: A meta-analytic review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, V.; van Herpen, E.; Tudoran, A.A.; Lähteenmäki, L. Avoiding food waste by romanian consumers: The importance of planning and shopping routines. Food Qual. Prefer. 2013, 28, 375–381. [Google Scholar] [CrossRef]
- Stancu, V.; Haugaard, P.; Lähteenmmäki, L. Determinants of consumer food waste behaviour: Two routes to food waste. Appetite 2016, 96, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Gentil, E.C.; Gallo, D.; Christensen, T.H. Environmental evaluation of municipal waste prevention. Waste Manag. 2011, 31, 2371–2379. [Google Scholar] [CrossRef]
- Göbel, C.; Langen, N.; Blumentha, A.; Teitscheid, P.; Ritter, G. Cutting food waste through cooperation along the food supply chain. Sustainability 2015, 7, 1431–1438. [Google Scholar] [CrossRef] [Green Version]
- Brennan, L.; Langley, S.; Verghese, K.; Lockrey, S.; Ryder, M.; Francis, C.; Phan-Le, N.T.; Hill, A. The role of packaging in fighting food waste: A systematised review of consumer perceptions of packaging. J. Clean. Prod. 2021, 281, 125276. [Google Scholar] [CrossRef]
- Widayat, W.; Praharjo, A.; Putri, V.P.; Andharini, S.N.; Masudin, I. Responsible consumer behavior: Driving factors of pro-environmental behavior toward post-consumption plastic packaging. Sustainability 2022, 14, 425. [Google Scholar] [CrossRef]
- Manzocco, L.; Alongi, M.; Lagazio, C.; Sillani, S.; Nicoli, M.C. Effect of temperature in domestic refrigerators on fresh-cut Iceberg salad quality and waste. Food Res. Int. 2017, 102, 129–135. [Google Scholar] [CrossRef]
- Miceli, A.; Gaglio, R.; Francesca, N.; Ciminata, A.; Moschetti, G.; Settanni, L. Evolution of shelf life parameters of ready-to-eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Sci. Hortic. 2019, 247, 175–183. [Google Scholar] [CrossRef]
- Bencardino, D.; Vitali, L.A.; Petrelli, D. Microbiological evaluation of ready-to-eat iceberg lettuce during shelf-life and effectiveness of household washing methods. Ital. J. Food Saf. 2018, 7, 6913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonzo, A.; Gaglio, R.; Miceli, A.; Francesca, N.; Di Gerlando, D.; Moschetti, G.; Settanni, L. Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiol. 2018, 73, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Calonico, C.; Delfino, V.; Pesavento, G.; Mundo, M.; Lo Nostro, A. Microbiological quality of ready-to-eat salads from processing plant to the consumers. J. Food. Nutr. Res. 2019, 7, 427–434. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; Rincón-Cervera, M.A.; González-Fernández, M.J.; Guil-Guerrero, J.L. Phytochemical composition and antitumor activities of new salad greens: Rucola (Diplotaxis tenuifolia) and corn salad (Valerianella locusta). Plant Food Hum. Nutr. 2016, 71, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Długosz-Grochowska, O.; Wojciechowska, R.; Kruczek, M.; Habela, A. Supplemental lighting with LEDs improves the biochemical composition of two Valerianella locusta L. cultivars. Hortic. Environ. Biotechnol. 2017, 58, 441–449. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Dugosz-Grochowska, O.; Koton, A.; Zupnik, M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Nicoletto, C.; Pimpini, F. Influence of the forcing process on some qualitative aspects in radicchio “Rosso di Treviso Tardivo” (Cichorium intybus L., group rubifolium). Antioxidant capacity, phenols and ascorbic acid. Ital. J. Agron. 2010, 5, 43–52. [Google Scholar] [CrossRef]
- Nassivera, F.; Sillani, S. Consumer perceptions and motivations in choice of minimally processed vegetables: A case study in Italy. Br. Food J. 2015, 117, 970–986. [Google Scholar] [CrossRef]
Characteristic | Percentage (%) |
---|---|
Gender | |
Female | 55.7 |
Male | 44.3 |
Age | |
18–24 | 6.8 |
25–35 | 15.9 |
36–50 | 44 |
51–65 | 31 |
Older than 65 | 2.3 |
Educational level | |
Primary school | 2.7 |
Secondary school | 7.8 |
Technical education | 12.5 |
University | 77 |
Marital status | |
Couples with children | 53.6 |
Childless couples | 21.2 |
Single-parent family | 6 |
Single without children | 19.2 |
Employment | |
Student | 7.1 |
Employed (permanently) | 73.6 |
Employed (temporary) | 12 |
Unemployed | 5.1 |
Pensioner | 2.2 |
Consumer of minimally processed salads | |
Consumer | 75.7 |
Non consumer | 24.3 |
Answer | None (%) | Little (%) | Medium (%) | Quite (%) | Very Much (%) |
---|---|---|---|---|---|
Price (they are very expensive) | 14.5 | 27.5 | 31.9 | 11.6 | 14.5 |
Fresh produce is healthier | 13.1 | 21.7 | 14.5 | 27.5 | 23.2 |
I don't like their appearance | 21.7 | 33.3 | 21.7 | 14.5 | 8.8 |
The use of plastics in packaging | 7.2 | 13.1 | 18.8 | 23.2 | 37.7 |
Characteristic | Percentage (%) |
---|---|
Frequency of consumption | |
Less than 1 time/month | 8.5 |
1–2 times/month | 28.5 |
1–2 times/week | 40 |
3–4 times/week | 17 |
Daily | 6 |
Type of salad you eat | |
Single ingredient | 5.5 |
Various ingredients | 56.5 |
Both types | 38 |
Answer to the Consumer of Minimally Processed Salads | None (%) | Little (%) | Medium (%) | Quite (%) | Very Much (%) |
---|---|---|---|---|---|
Time of purchase of the fresh-cut salads | |||||
Variety of ingredients | 2.7 | 11.6 | 20.1 | 40.2 | 25.4 |
Price | 6.7 | 20 | 32.6 | 29.9 | 13.8 |
Accompaniment of dressing and cutlery | 37.5 | 31.7 | 14.3 | 8.5 | 8.0 |
Amount of plastic it contains | 9.8 | 18.3 | 29.9 | 16.1 | 25.9 |
Bioactive compounds | 5.8 | 13.8 | 22.3 | 25.9 | 31.3 |
Date of expiration | 1.3 | 6.3 | 8.9 | 26.3 | 53.6 |
Presence of exudates | 2.7 | 8.0 | 8.5 | 19.2 | 61.6 |
Presence of brown leaves | 2.3 | 6.7 | 6.3 | 18.3 | 66.5 |
Presence of dehydrated leaves | 1.8 | 5.8 | 3.1 | 18.8 | 70.5 |
Time to consume the fresh-cut salad after several days stored in the refrigerator | |||||
Date of expiration | 3.1 | 10.7 | 19.2 | 26.3 | 40.6 |
Presence of strange odours | 0.9 | 5.4 | 4.0 | 18.3 | 71.4 |
Presence of exudates | 1.8 | 5.4 | 7.1 | 19.6 | 65.2 |
Presence of brown leaves | 0.9 | 5.8 | 10.3 | 25 | 58.0 |
Presence of dehydrated leaves | 1.3 | 6.3 | 7.6 | 25 | 59.8 |
Answer to the Question | Percentage (%) |
---|---|
Would you buy the salad if any of the valued aspects failed? | |
Yes. It depends on the price | 1 |
Yes. It depends on the aspect | 9 |
Yes. It depends on the expiration date | 1.7 |
Yes. It depends on the price, the appearance and the expiration date | 23.9 |
Never | 64.4 |
Would you eat the salad if any of the valued aspects failed? | |
Yes. I don't want to waste food | 4.3 |
Yes. It depends on the expiration date | 4.3 |
Yes. It depends on the appearance of the product | 41.1 |
Never | 50.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente-Mento, J.M.; Valverde, J.M.; Serrano, M.; Pretel, M.T. Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators. Sustainability 2022, 14, 3473. https://doi.org/10.3390/su14063473
Lorente-Mento JM, Valverde JM, Serrano M, Pretel MT. Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators. Sustainability. 2022; 14(6):3473. https://doi.org/10.3390/su14063473
Chicago/Turabian StyleLorente-Mento, José M., Juan M. Valverde, María Serrano, and María T. Pretel. 2022. "Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators" Sustainability 14, no. 6: 3473. https://doi.org/10.3390/su14063473
APA StyleLorente-Mento, J. M., Valverde, J. M., Serrano, M., & Pretel, M. T. (2022). Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators. Sustainability, 14(6), 3473. https://doi.org/10.3390/su14063473