A Sustainable Approach towards Disposable Face Mask Production Amidst Pandemic Outbreaks
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Application of LCA
2.2. Disposable Face Mask
2.3. Research Gap and Question
- What significant environmental impacts emerge from the stages of a disposable face mask’s life cycle?
- What is the potential strategy for reducing environmental impacts?
3. Materials and Methods
3.1. Goal and Scope
3.2. Life Cycle Inventory
3.3. Impact Analysis
4. Results
4.1. Impact Analysis of Disposable Face Mask’s Life Cycle
4.2. Proposed Solution
4.3. Monte Carlo Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Impact Category | Reference Unit | Material Acquisition | Production Line | Total Amount |
---|---|---|---|---|
Global warming | kg CO2 eq | 0.858097323 | 0.967830816 | 1.825928139 |
Water consumption | m3 | 0.648018603 | 0.714421387 | 1.36243999 |
Terrestrial ecotoxicity | kg 1,4-DCB | 0.425873714 | 0.495479542 | 0.921353256 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 0.25792145 | 0.368572688 | 0.626494138 |
Fossil resource scarcity | kg oil eq | 0.209275469 | 0.282872002 | 0.492147471 |
Human carcinogenic toxicity | kg 1,4-DCB | 0.020051933 | 0.036355654 | 0.056407587 |
Ionizing radiation | kBq Co-60 eq | 0.024104126 | 0.017669678 | 0.041773804 |
Marine ecotoxicity | kg 1,4-DCB | 0.016613449 | 0.023409964 | 0.040023413 |
Freshwater ecotoxicity | kg 1,4-DCB | 0.012358248 | 0.017418835 | 0.029777083 |
Fine particulate matter formation | kg PM2.5 eq | 0.001241116 | 0.004809987 | 0.006051103 |
Terrestrial acidification | kg SO2 eq | 0.003458683 | 0.002197766 | 0.005656448 |
Land use | m2a crop eq | 0.002126041 | 0.00155685 | 0.003682891 |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 0.001597633 | 0.001658806 | 0.003256439 |
Ozone formation, Human health | kg NOx eq | 0.001532534 | 0.001594479 | 0.003127012 |
Freshwater eutrophication | kg P eq | 0.00015821 | 0.000410718 | 0.000568928 |
Mineral resource scarcity | kg Cu eq | 0.000225157 | 9.42581E-05 | 0.000319415 |
Marine eutrophication | kg N eq | 3.77219E-05 | 8.82056E-05 | 0.000125927 |
Stratospheric ozone depletion | kg CFC11 eq | 9.60093E-07 | 5.06299E-07 | 1.46639E-06 |
Process | Container Glass | Electricity Production | Polyamide 6.6 Fibres Production | Polyester Fibre Production | Polyethylene Production | Polyurethane Production | Non Woven Polypropylen Production | Production Line | ||
---|---|---|---|---|---|---|---|---|---|---|
Impact Category | Reference Unit | |||||||||
Water consumption | m3 | 0.00015611 | 0.01755453 | 0.00022135 | 0.13962305 | 0.197831649 | 0.020266535 | 0.272365382 | 0.71442139 | |
Global warming | kg CO2 eq | 0.11792658 | 0.18195901 | 0.25421756 | 0.04500941 | 0.085264537 | 0.067216187 | 0.106504038 | 0.96783082 | |
Terrestrial ecotoxicity | kg 1,4-DCB | 0.06398456 | 0.09959634 | 0.03376398 | 0.07934889 | 0.037238744 | 0.024005291 | 0.087935908 | 0.49547954 | |
Human non-carcinogenic toxicity | kg 1,4-DCB | 0.00821879 | 0.13952886 | 0.00107607 | 0.0227613 | 0.029554179 | 0.014870784 | 0.041911463 | 0.36857269 | |
Fossil resource scarcity | kg oil eq | - | 0.04023806 | - | 0.01999854 | 0.056384247 | 0.023565751 | 0.069088876 | 0.282872 | |
Human carcinogenic toxicity | kg 1,4-DCB | 3.5394 × 10−5 | 0.00637586 | 0.00012428 | 0.00267358 | 0.003558027 | 0.002354199 | 0.004930591 | 0.03635565 | |
Ionizing radiation | kBq Co-60 eq | 0.00453565 | 0.00023388 | 0.00832203 | 0.0023116 | 0.002241484 | 0.000199574 | 0.006259899 | 0.01766968 | |
Marine ecotoxicity | kg 1,4-DCB | 4.7672 × 10−5 | 0.00635432 | 0.00016028 | 0.00199498 | 0.00261245 | 0.001118672 | 0.004325076 | 0.02340996 | |
Freshwater ecotoxicity | kg 1,4-DCB | 4.07 × 10−6 | 0.00459405 | 1.4662 × 10−5 | 0.00152075 | 0.002010784 | 0.000851109 | 0.003362833 | 0.01741884 | |
Fine particulate matter formation | kg PM2.5 eq | 0.00016979 | 0.00047698 | 0.00021141 | 6.1561 × 10−5 | 0.000105763 | 8.5663 × 10−5 | 0.000129948 | 0.00480999 | |
Terrestrial acidification | kg SO2 eq | 0.00057938 | 0.00133528 | 0.00067598 | 0.00012616 | 0.000230275 | 0.00021866 | 0.000292961 | 0.00219777 | |
Land use | m2a crop eq | - | 0.00122668 | - | 0.00020849 | 0.000246824 | 5.46138 × 10−5 | 0.000389427 | 0.00155685 | |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 0.00025558 | 0.00060004 | 3.6669 × 10−5 | 0.00011638 | 0.000211208 | 0.000143493 | 0.000234274 | 0.00165881 | |
Ozone formation, Human health | kg NOx eq | 0.00025422 | 0.00059894 | 2.2757 × 10−5 | 0.0001054 | 0.000191627 | 0.000137473 | 0.000222109 | 0.00159448 | |
Freshwater eutrophication | kg P eq | 4.5894 × 10−7 | 9.2478 × 10−5 | 1.4847 × 10−7 | 1.1957 × 10−5 | 1.90539 × 10−5 | 6.27179 × 10−6 | 2.78411 × 10−5 | 0.00041072 | |
Mineral resource scarcity | kg Cu eq | 0.00013919 | 1.9624 × 10−6 | 1.6121 × 10−5 | 1.4574 × 10−5 | 1.59185 × 10−5 | 1.18466 × 10−5 | 2.55421 × 10−5 | 9.4258 × 10−5 | |
Marine eutrophication | kg N eq | 2.2303 × 10−6 | 5.8972 × 10−6 | 4.4029 × 10−6 | 3.3055 × 10−6 | 1.72506 × 10−6 | 1.76219 × 10−5 | 2.53915 × 10−6 | 8.8206 × 10−5 | |
Stratospheric ozone depletion | kg CFC11 eq | 1.6714 × 10−8 | 3.151 × 10−8 | 6.5201 × 10−7 | 2.1703 × 10−7 | 1.39396 × 10−8 | 5.24042 × 10−9 | 2.36513 × 10−8 | 5.063 × 10−7 |
Impact Category | Reference Unit | Material Acquisition | Production Line | Total Amount |
---|---|---|---|---|
Global warming | kg CO2 eq | 0.736028724 | 0.963449 | 1.699477724 |
Water consumption | m3 | 0.724257475 | 0.580533 | 1.587975724 |
Terrestrial ecotoxicity | kg 1,4-DCB | 0.002588712 | 0.451661 | 0.454249712 |
Fossil resource scarcity | kg oil eq | 0.184018072 | 0.251422 | 0.435440072 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 0.178842482 | 0.234038 | 0.412880482 |
Ionizing radiation | kBq Co-60 eq | 0.025486309 | 0.026665 | 0.052151309 |
Human carcinogenic toxicity | kg 1,4-DCB | 0.016558477 | 0.018824 | 0.035382477 |
Marine ecotoxicity | kg 1,4-DCB | 0.013420768 | 0.017175 | 0.030595768 |
Freshwater ecotoxicity | kg 1,4-DCB | 0.010079558 | 0.012939 | 0.023018558 |
Terrestrial acidification | kg SO2 eq | 0.002588712 | 0.002206 | 0.004794712 |
Fine particulate matter formation | m2a crop eq | 0.000937411 | 0.001708 | 0.002645411 |
Land use | kg NOx eq | 0.001484375 | 0.001535 | 0.003019375 |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 0.001221054 | 0.001317 | 0.002538054 |
Ozone formation, Human health | kg PM2.5 eq | 0.001152553 | 0.00125 | 0.002402553 |
Mineral resource scarcity | kg Cu eq | 0.000226952 | 0.000213 | 0.000439952 |
Freshwater eutrophication | kg P eq | 0.000105803 | 0.0000957 | 0.000201503 |
Marine eutrophication | kg N eq | 2.54327 × 10−5 | 0.0000668 | 9.22327 × 10−5 |
Stratospheric ozone depletion | kg CFC11 eq | 1.71541 × 10−6 | 6.23 × 10−7 | 2.33841 × 10−6 |
Process | Container Glass Production | Electricity Production | Polyamide 6.6 Fibres Production | Polyester Fibre Production | Polyethylene Production | Polyurethane Production | Non Woven Polypropylen e Production | Production Line | ||
---|---|---|---|---|---|---|---|---|---|---|
Impact category | Reference unit | |||||||||
Global warming | kg CO2 eq | 0.11792658 | 0.06975096 | 0.25421756 | 0.07715898 | 0.085264537 | 0.02520607 | 0.106504038 | 0.963449 | |
Water consumption | m3 | 0.00015611 | 0.00672924 | 0.00022135 | 0.13962305 | 0.197831649 | 0.007599951 | 0.272365382 | 0.580533 | |
Terrestrial ecotoxicity | kg 1,4-DCB | 0.06398456 | 0.0381786 | 0.03376398 | 0.13602668 | 0.037238744 | 0.009001984 | 0.087935908 | 0.451661 | |
Fossil resource scarcity | kg oil eq | - | 0.01542459 | - | 0.0342832 | 0.056384247 | 0.008837157 | 0.069088876 | 0.251422 | |
Human non-carcinogenic toxicity | kg 1,4-DCB | 0.00821879 | 0.05348606 | 0.00107607 | 0.03901937 | 0.029554179 | 0.005576544 | 0.041911463 | 0.234038 | |
Ionizing radiation | kBq Co-60 eq | 0.00453565 | 8.9656 × 10−5 | 0.00832203 | 0.00396275 | 0.002241484 | 7.48403 × 10−5 | 0.006259899 | 0.026665 | |
Human carcinogenic toxicity | kg 1,4-DCB | 3.5394 × 10−5 | 0.00244408 | 0.00012428 | 0.00458328 | 0.003558027 | 0.000882825 | 0.004930591 | 0.018824 | |
Marine ecotoxicity | kg 1,4-DCB | 4.7672 × 10−5 | 0.00243582 | 0.00016028 | 0.00341997 | 0.00261245 | 0.000419502 | 0.004325076 | 0.017175 | |
Freshwater ecotoxicity | kg 1,4-DCB | 4.07 × 10−6 | 0.00176105 | 1.4662 × 10−5 | 0.00260699 | 0.002010784 | 0.000319166 | 0.003362833 | 0.012939 | |
Terrestrial acidification | kg SO2 eq | 0.00057938 | 0.00051186 | 0.00067598 | 0.00021627 | 0.000230275 | 8.19974 × 10−5 | 0.000292961 | 0.002206 | |
Fine particulate matter formation | m2a crop eq | 0.00016979 | 0.00018284 | 0.00021141 | 0.00010553 | 0.000105763 | 3.21236 × 10−5 | 0.000129948 | 0.001708 | |
Land use | kg NOx eq | - | 0.00047023 | - | 0.00035742 | 0.000246824 | 2.04802 × 10−5 | 0.000389427 | 0.001535 | |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 0.00025422 | 0.00022959 | 2.2757 × 10−5 | 0.00018069 | 0.000191627 | 5.15524 × 10−5 | 0.000222109 | 0.001317 | |
Ozone formation, Human health | kg PM2.5 eq | 0.00025558 | 0.00023001 | 3.6669 × 10−5 | 0.0001995 | 0.000211208 | 5.381 × 10−5 | 0.000234274 | 0.00125 | |
Mineral resource scarcity | kg Cu eq | 0.00013919 | 7.5225 × 10−7 | 1.6121 × 10−5 | 2.4984 × 10−5 | 1.59185 × 10−5 | 4.44247 × 10−6 | 2.55421 × 10−5 | 0.000213 | |
Freshwater eutrophication | kg P eq | 4.5894 × 10−7 | 3.545 × 10−5 | 1.4847 × 10−7 | 2.0498 × 10−5 | 1.90539 × 10−5 | 2.35192 × 10−6 | 2.78411 × 10−5 | 0.0000957 | |
Marine eutrophication | kg N eq | 2.2303 × 10−6 | 2.2606 × 10−6 | 4.4029 × 10−6 | 5.6666 × 10−6 | 1.72506 × 10−6 | 6.60822 × 10−6 | 2.53915 × 10−6 | 0.0000668 | |
Stratospheric ozone depletion | kg CFC11 eq | 1.6714 × 10−8 | 1.2079 × 10−8 | 6.5201 × 10−7 | 3.7205 × 10−7 | 1.39396 × 10−8 | 1.96516 × 10−9 | 2.36513 × 10−8 | 6.23 × 10−7 |
Appendix B
Impact Catego | Global Warming | Water Consumption | Terrestrial Ecotoxicity | Human Noncarcinogenic Toxicity | Fossil Resource Scarcity | Ionizing Radiation | Human Carcinogenic Toxicity | Marine Ecotoxicity | Freshwater Ecotoxicity |
---|---|---|---|---|---|---|---|---|---|
Reference un | kg CO2 eq | m3 | kg 1,4-DCB | kg 1,4-DCB | kg oil eq | kBq Co-60 eq | kg 1,4-DCB | kg 1,4-DCB | kg 1,4-DCB |
Mean | 0.6531 | 0.6561 | 0.3745 | 0.1954 | 0.1874 | 0.0202 | 0.0175 | 0.0140 | 0.0105 |
Standard deviation | 0.0217 | 0.0232 | 0.0114 | 0.0066 | 0.0058 | 0.0008 | 0.0005 | 0.0004 | 0.0003 |
Minimum | 0.5906 | 0.5875 | 0.3415 | 0.1762 | 0.1704 | 0.0180 | 0.0159 | 0.0127 | 0.0096 |
Maximum | 0.7308 | 0.7343 | 0.4153 | 0.2192 | 0.2100 | 0.0227 | 0.0194 | 0.0154 | 0.0116 |
Median | 0.6541 | 0.6558 | 0.3744 | 0.1953 | 0.1872 | 0.0202 | 0.0175 | 0.0140 | 0.0105 |
5% Percentile | 0.6165 | 0.6181 | 0.3556 | 0.1847 | 0.1782 | 0.0190 | 0.0166 | 0.0133 | 0.0100 |
95% Percenti | 0.6884 | 0.6952 | 0.3933 | 0.2067 | 0.1971 | 0.0215 | 0.0184 | 0.0147 | 0.0110 |
Impact Category | Global Warming | Water Consumption | Terrestrial Ecotoxicity | Human Noncarcinogenic Toxicity | Fossil Resource Scarcity | Ionizing Radiation | Human Carcinogenic Toxicity | Freshwater Ecotoxicity | Marine Ecotoxicity |
---|---|---|---|---|---|---|---|---|---|
Reference unit | kg CO2 eq | m3 | kg 1,4-DCB | kg 1,4-DCB | kg oil eq | kBq Co-60 eq | kg 1,4-DCB | kg 1,4-DCB | kg 1,4-DCB |
Mean | 0.6536 | 0.6567 | 0.3750 | 0.1955 | 0.1874 | 0.0202 | 0.0175 | 0.0105 | 0.0140 |
Standard deviation | 0.0213 | 0.0221 | 0.0114 | 0.0066 | 0.0055 | 0.0007 | 0.0005 | 0.0003 | 0.0004 |
Minimum | 0.5876 | 0.5956 | 0.3421 | 0.1788 | 0.1727 | 0.0180 | 0.0162 | 0.0097 | 0.0129 |
Maximum | 0.7378 | 0.7247 | 0.4112 | 0.2192 | 0.2021 | 0.0227 | 0.0190 | 0.0115 | 0.0153 |
Median | 0.6535 | 0.6560 | 0.3749 | 0.1954 | 0.1873 | 0.0203 | 0.0175 | 0.0105 | 0.0140 |
5% Percentile | 0.6202 | 0.6203 | 0.3569 | 0.1847 | 0.1783 | 0.0191 | 0.0167 | 0.0100 | 0.0133 |
95% Percentile | 0.6894 | 0.6925 | 0.3947 | 0.2063 | 0.1964 | 0.0215 | 0.0184 | 0.0110 | 0.0147 |
References
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The Proximal Origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.; et al. Face Masks against COVID-19: An Evidence Review. Proc. Natl. Acad. Sci. USA 2020, 118, e2014564118. [Google Scholar] [CrossRef] [PubMed]
- WHO. A Mask Use in the Context of COVID-19; WHO: Geneva, Switzerland, 2020; pp. 1–10. [Google Scholar]
- Leung, C.C.; Lam, T.H.; Cheng, K.K. Mass Masking in the COVID-19 Epidemic: People Need Guidance. Lancet 2020, 395, 945. [Google Scholar] [CrossRef]
- Konda, A.; Prakash, A.; Moss, G.A.; Schmoldt, M.; Grant, G.D.; Guha, S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano 2020, 14, 6339–6347. [Google Scholar] [CrossRef]
- Lepelletier, D.; Grandbastien, B.; Romano-Bertrand, S.; Aho, S.; Chidiac, C.; Géhanno, J.F.; Chauvin, F. What Face Mask for What Use in the Context of the COVID-19 Pandemic? The French Guidelines. J. Hosp. Infect. 2020, 105, 414–418. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. Covid-19 Face Masks: A Potential Source of Microplastic Fibers in the Environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Patrício Silva, A.L.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.V.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and Optimising Plastic Waste Management under COVID-19 Pandemic: Policy Solutions Based on Redesign and Reduction of Single-Use Plastics and Personal Protective Equipment. Sci. Total Environ. 2020, 742, 140565. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Kim, H. Disinfection Technology and Strategies for COVID-19 Hospital and Bio-Medical Waste Management. Sci. Total Environ. 2020, 749, 141652. [Google Scholar] [CrossRef]
- WHO. COVID-19 Weekly Epidemiological Update; WHO: Geneva, Switzerland, 2020; pp. 1, 4. [Google Scholar]
- Phan, T.L.; Ching, C.T.S. A Reusable Mask for Coronavirus Disease 2019 (COVID-19). Arch. Med. Res. 2020, 51, 455–457. [Google Scholar] [CrossRef]
- Schmutz, M.; Hischier, R.; Batt, T.; Wick, P.; Nowack, B.; Wäger, P.; Som, C. Cotton and Surgical Masks—What Ecological Factors Are Relevant for Their Sustainability? Sustainability 2020, 12, 245. [Google Scholar] [CrossRef]
- Rodríguez, N.B.; Formentini, G.; Favi, C.; Marconi, M. Environmental Implication of Personal Protection Equipment in the Pandemic Era: LCA Comparison of Face Masks Typologies. Procedia CIRP 2021, 98, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.L.; Delgado-Gallardo, J.; Watson, T.M.; Sarp, S. An Investigation into the Leaching of Micro and Nano Particles and Chemical Pollutants from Disposable Face Masks-Linked to the COVID-19 Pandemic. Water Res. 2021, 196, 117033. [Google Scholar] [CrossRef] [PubMed]
- Morgana, S.; Casentini, B.; Amalfitano, S. Uncovering the Release of Micro/Nanoplastics from Disposable Face Masks at Times of COVID-19. J. Hazard. Mater. 2021, 419, 126507. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Liu, Q.; Zhao, Q.; Xiong, X.; Wu, C. Used Disposable Face Masks Are Significant Sources of Microplastics to Environment. Environ. Pollut. 2021, 285, 117485. [Google Scholar] [CrossRef]
- Rubio-Romero, J.C.; del Carmen Pardo-Ferreira, M.; Torrecilla-García, J.A.; Calero-Castro, S. Disposable Masks: Disinfection and Sterilization for Reuse, and Non-Certified Manufacturing, in the Face of Shortages during the COVID-19 Pandemic. Saf. Sci. 2020, 129, 104830. [Google Scholar] [CrossRef]
- Wang, Z.; An, C.; Chen, X.; Lee, K.; Zhang, B.; Feng, Q. Disposable Masks Release Microplastics to the Aqueous Environment with Exacerbation by Natural Weathering. J. Hazard. Mater. 2021, 417, 126036. [Google Scholar] [CrossRef]
- Lee, A.W.L.; Neo, E.R.K.; Khoo, Z.Y.; Yeo, Z.; Tan, Y.S.; Chng, S.; Yan, W.; Lok, B.K.; Low, J.S.C. Life Cycle Assessment of Single-Use Surgical and Embedded Filtration Layer (EFL) Reusable Face Mask. Resour. Conserv. Recycl. 2021, 170, 105580. [Google Scholar] [CrossRef]
- International Standard 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Aziz, N.I.H.A.; Hanafiah, M.M.; Gheewala, S.H. A Review on Life Cycle Assessment of Biogas Production: Challenges and Future Perspectives in Malaysia. Biomass Bioenergy 2019, 122, 361–374. [Google Scholar] [CrossRef]
- Chong, W.C.; Chung, Y.T.; Teow, Y.H.; Zain, M.M.; Mahmoudi, E.; Mohammad, A.W. Environmental Impact of Nanomaterials in Composite Membranes: Life Cycle Assessment of Algal Membrane Photoreactor Using Polyvinylidene Fluoride–Composite Membrane. J. Clean. Prod. 2018, 202, 591–600. [Google Scholar] [CrossRef]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Asri Mat Teridi, M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of Life Cycle Assessment of Renewable Energy from Solar Photovoltaic Technologies: A Review. Renew. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life Cycle Assessment Part 2: Current Impact Assessment Practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.; Hanafiah, M.M. An Overview of LCA Application in WEEE Management: Current Practices, Progress and Challenges. J. Clean. Prod. 2019, 232, 79–93. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life Cycle Assessment Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Finnveden, G.; Björklund, A.; Moberg, Å.; Ekvall, T. Environmental and Economic Assessment Methods for Waste Management Decision-Support: Possibilities and Limitations. Waste Manag. Res. 2007, 25, 263–269. [Google Scholar] [CrossRef]
- Luo, L.; Yang, L.; Hanafiah, M.M. Construction of Renewable Energy Supply Chain Model Based on LCA. Open Phys. 2018, 16, 1118–1126. [Google Scholar] [CrossRef]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Wing Chau, K. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. Sci. Total Environ. 2019, 664, 1005–1019. [Google Scholar] [CrossRef]
- Shabanzadeh-Khoshrody, M.; Azadi, H.; Khajooeipour, A.; Nabavi-Pelesaraei, A. Analytical Investigation of the Effects of Dam Construction on the Productivity and Efficiency of Farmers. J. Clean. Prod. 2016, 135, 549–557. [Google Scholar] [CrossRef]
- Hong, J.; Li, X.; Zhaojie, C. Life Cycle Assessment of Four Municipal Solid Waste Management Scenarios in China. Waste Manag. 2010, 30, 2362–2369. [Google Scholar] [CrossRef]
- Liamsanguan, C.; Gheewala, S.H. LCA: A Decision Support Tool for Environmental Assessment of MSW Management Systems. J. Environ. Manag. 2008, 87, 132–138. [Google Scholar] [CrossRef]
- Leiden, A.; Cerdas, F.; Noriega, D.; Beyerlein, J.; Herrmann, C. Life Cycle Assessment of a Disposable and a Reusable Surgery Instrument Set for Spinal Fusion Surgeries. Resour. Conserv. Recycl. 2020, 156, 104704. [Google Scholar] [CrossRef]
- Kumar, H.; Azad, A.; Gupta, A.; Sharma, J.; Bherwani, H.; Labhsetwar, N.K.; Kumar, R. COVID-19 Creating Another Problem? Sustainable Solution for PPE Disposal through LCA Approach. Environ. Dev. Sustain. 2020, 23, 9418–9432. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A. Surgical Face Masks as a Potential Source for Microplastic Pollution in the COVID-19 Scenario. Mar. Pollut. Bull. 2020, 159, 111517. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, S.; Dou, X.; Kwon, E.E. Valorization of Disposable COVID-19 Mask through the Thermo-Chemical Process. Chem. Eng. J. 2021, 405, 126658. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.H.; Cheng, W.; Goh, S.S.; Kong, J.; Li, B.; Lim, J.Y.C.; Mao, L.; Wang, S.; Xue, K.; Yang, L.; et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020, 2020, 1–40. [Google Scholar] [CrossRef]
- Allison, A.L.; Ambrose-Dempster, E.; Aparsi, D.T.; Bawn, M.; Casas Arredondo, M.; Chau, C.; Chandler, K.; Dobrijevic, D.; Hailes, H.; Lettieri, P.; et al. The Environmental Dangers of Employing Single-Use Face Masks as Part of a COVID-19 Exit Strategy. UCL Open Environ. 2019, 53, 1689–1699. [Google Scholar] [CrossRef]
- Ding, Z.; Babar, A.A.; Wang, C.; Zhang, P.; Wang, X.; Yu, J.; Ding, B. Spunbonded Needle-Punched Nonwoven Geotextiles for Filtration and Drainage Applications: Manufacturing and Structural Design. Compos. Commun. 2021, 25, 100481. [Google Scholar] [CrossRef]
- Liang Wu, H.; Huang, J.; Zhang, C.J.P.; He, Z.; Ming, W.K. Facemask Shortage and the Novel Coronavirus Disease (COVID-19) Outbreak: Reflections on Public Health Measures. EClinicalMedicine 2020, 21, 100329. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Ardusso, M.; Forero-López, A.D.; Buzzi, N.S.; Spetter, C.V.; Fernández-Severini, M.D. COVID-19 Pandemic Repercussions on Plastic and Antiviral Polymeric Textile Causing Pollution on Beaches and Coasts of South America. Sci. Total Environ. 2021, 763, 144365. [Google Scholar] [CrossRef]
- Lin, J.; Xu, X.P.; Yue, B.Y.; Li, Y.; Zhou, Q.Z.; Xu, X.M.; Liu, J.Z.; Wang, Q.Q.; Wang, J.H. A Novel Thermoanalytical Method for Quantifying Microplastics in Marine Sediments. Sci. Total Environ. 2021, 760, 144316. [Google Scholar] [CrossRef] [PubMed]
- De-la-Torre, G.E.; Rakib, M.R.J.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C. Occurrence of Personal Protective Equipment (PPE) Associated with the COVID-19 Pandemic along the Coast of Lima, Peru. Sci. Total Environ. 2021, 774, 145774. [Google Scholar] [CrossRef] [PubMed]
- Okuku, E.; Kiteresi, L.; Owato, G.; Otieno, K.; Mwalugha, C.; Mbuche, M.; Gwada, B.; Nelson, A.; Chepkemboi, P.; Achieng, Q.; et al. The Impacts of COVID-19 Pandemic on Marine Litter Pollution along the Kenyan Coast: A Synthesis after 100 Days Following the First Reported Case in Kenya. Mar. Pollut. Bull. 2021, 162, 111840. [Google Scholar] [CrossRef] [PubMed]
- Gallo Neto, H.; Gomes Bantel, C.; Browning, J.; Della Fina, N.; Albuquerque Ballabio, T.; Teles de Santana, F.; de Karam e Britto, M.; Beatriz Barbosa, C. Mortality of a Juvenile Magellanic Penguin (Spheniscus magellanicus, Spheniscidae) Associated with the Ingestion of a PFF-2 Protective Mask during the COVID-19 Pandemic. Mar. Pollut. Bull. 2021, 166, 112232. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Bartholomeus, H.; Huerta Lwanga, E.; Gertsen, H.; Geissen, V. Predicting Soil Microplastic Concentration Using Vis-NIR Spectroscopy. Sci. Total Environ. 2019, 650, 922–932. [Google Scholar] [CrossRef]
- Yin, J.; Huang, G.; Li, M.; An, C. Will the Chemical Contaminants in Agricultural Soil Affect the Ecotoxicity of Microplastics? ACS Agric. Sci. Technol. 2021, 1, 3–4. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Ciroth, A.; Noi, C.D.; Lohse, T.; Srocka, M. OpenLCA 1.9; OpenLCA: Berlin, Germany, 2019. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The Ecoinvent Database: Overview and Methodological Framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Mutel, C.L. The New Pedigree Matrix Numbers: Do They Matter? Chair of Ecological Systems Design: Zürich, Switzerland, 2013; p. 2013. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. Overview and Methodology. Ecoinvent Centre 2007, 41, 1–77. [Google Scholar]
- ELCD III Data Set(s). Polyamide 6.6 Fibres (PA 6.6), Production Mix, at Plant, from Adipic Acin and Hexamethylene Diamine (HMDA), PA 6.6 Granulate Wthout Additives, EU-21; ELCD Database 2.0; ecoinvent: Zurich, Switzerland, 2012. [Google Scholar]
- Symeonidis, A. Polyester Fibre Production, Finished, Cutoff, S, RoW; Ecoinvent Database Version 3.7; ecoinvent: Zurich, Switzerland, 2018. [Google Scholar]
- Datta, A. Textile Production, Non-Woven Polypropylene, Spun Bond, Cutoff, S, RoW; Ecoinvent Database Version 3.7; ecoinvent: Zurich, Switzerland, 2017. [Google Scholar]
- Fröhlich, T. Polyethylene Production, Low Density, Granulate, Cutoff, S, Row; Ecoinvent Database Version 3.7; ecoinvent: Zurich, Switzerland, 2018. [Google Scholar]
- Hischier, R. Polyurethane Production, Flexible Foam, Cutoff, S, Row; Ecoinvent Database Version 3.7; ecoinvent: Zurich, Switzerland, 2007. [Google Scholar]
- Treyer, K.; Röder, A. Electricity Production, Hard Coal, High Voltage, Cutoff, S, RoW; Ecoinvent Database Version 3.7; ecoinvent: Zurich, Switzerland, 2015. [Google Scholar]
- Acero, A.P.; Rodriguez, C.; Ciroth, A. LCIA Methods: Impact Assessment Methods in Life Cycle Assessment and Their Impact Categories. Version 1.5.6. In Green Delta; GmbH: Berlin, Germany, 2017; pp. 1–23. [Google Scholar]
- Bare, J.C.; Gloria, T.P. Critical Analysis of the Mathematical Relationships and Comprehensiveness of Life Cycle Impact Assessment Approaches. Environ. Sci. Technol. 2006, 40, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Bare, J.C. Life Cycle Impact Assessment Research Developments and Needs. Clean Technol. Environ. Policy 2010, 12, 341–351. [Google Scholar] [CrossRef]
- Mesa-Frias, M.; Chalabi, Z.; Vanni, T.; Foss, A.M. Uncertainty in Environmental Health Impact Assessment: Quantitative Methods and Perspectives. Int. J. Environ. Health Res. 2013, 23, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Exposure to Heavy Metals and PCDD/Fs by the Population Living in the Vicinity of a Hazardous Waste Landfill in Catalonia, Spain: Health Risk Assessment. Environ. Int. 2009, 35, 1034–1039. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.D.; Struijs, J.; Zelm, R.V. ReCiPe 2008. Potentials 2009, 1–44. Available online: https://web.universiteitleiden.nl/cml/ssp/publications/recipe_characterisation.pdf (accessed on 9 March 2022).
- Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of Microplastic Polyethylene (PE) and Polypropylene (PP) in Environmental Samples Using Thermal Analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [Google Scholar] [CrossRef]
- Lewin, M.; Sello, S.B. Handbook of Fiber Science and Technology: Volume I. Chemical Processing of Fibers and Fabrics. Fundamentals and Preparation. Part B; Marcel Dekker Inc.: New York, NY, USA, 1984; ISBN 0-8247-7117-6. [Google Scholar]
- Klemeš, J.J.; Fan, Y.V.; Jiang, P. The Energy and Environmental Footprints of COVID-19 Fighting Measures–PPE, Disinfection, Supply Chains. Energy 2020, 211, 118701. [Google Scholar] [CrossRef]
Emission Source | Emission Factor References |
---|---|
Production of polyamide 6.6 | Fibre: ELCD [56] |
Production of polyester | Fibre: ecoinvent [57] |
Production of polypropylene non-woven | Spun bond: ecoinvent [58] |
Production of polyethylene | Polyethylene, LDPE: ecoinvent [59] |
Production of polyurethane | Polyurethane, flexible foam: ecoinvent [60] |
Production of grid electricity | Hardcoal, rest of world: ecoinvent [61] |
Reference Flow | Amount | Unit |
---|---|---|
Electricity | 6 | Wh |
Polyester | 0.35 | g |
Polyamide 6.6 fibre | 0.75 | g |
Polyethylene | 1.1 | g |
Polyurethane | 0.4 | g |
Polypropylene non-woven | 1.25 | g |
Impact Category | Abbreviation | Unit | Value |
---|---|---|---|
Global warming | GW | kg CO2 eq | 1.82593 |
Water consumption | WC | m3 | 1.36244 |
Terrestrial ecotoxicity | TET | kg 1.4-DCB | 0.92135 |
Human non-carcinogenic toxicity | HNCT | kg 1.4-DCB | 0.62649 |
Fossil resource scarcity | FRS | kg oil eq | 0.49215 |
Marine ecotoxicity | MET | kg 1.4-DCB | 0.05641 |
Ionising radiation | IR | kBq Co-60 eq | 0.04178 |
Human carcinogenic toxicity | HCT | kBq Co-60 eq | 1.82593 |
Impact Category | Abbreviation | Unit | Existing Design | Proposed Design |
---|---|---|---|---|
Global warming | GW | kg CO2 eq | 1.82593 | 1.69948 |
Water consumption | WC | m3 | 1.36244 | 1.58798 |
Terrestrial ecotoxicity | TET | kg 1.4-DCB | 0.92135 | 0.85779 |
Human non-carcinogenic toxicity | HNCT | kg 1.4-DCB | 0.62649 | 0.41288 |
Fossil resource scarcity | FRS | kg oil eq | 0.49215 | 0.43544 |
Marine ecotoxicity | MET | kg 1.4-DCB | 0.05641 | 0.04431 |
Ionising radiation | IR | kBq Co-60 eq | 0.04178 | 0.04431 |
Human carcinogenic toxicity | HCT | kBq Co-60 eq | 0.04177 | 0.04322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfarisi, S.; Sholihah, M.; Mitake, Y.; Tsutsui, Y.; Wang, H.; Shimomura, Y. A Sustainable Approach towards Disposable Face Mask Production Amidst Pandemic Outbreaks. Sustainability 2022, 14, 3849. https://doi.org/10.3390/su14073849
Alfarisi S, Sholihah M, Mitake Y, Tsutsui Y, Wang H, Shimomura Y. A Sustainable Approach towards Disposable Face Mask Production Amidst Pandemic Outbreaks. Sustainability. 2022; 14(7):3849. https://doi.org/10.3390/su14073849
Chicago/Turabian StyleAlfarisi, Salman, Mar’atus Sholihah, Yuya Mitake, Yusuke Tsutsui, Hanfei Wang, and Yoshiki Shimomura. 2022. "A Sustainable Approach towards Disposable Face Mask Production Amidst Pandemic Outbreaks" Sustainability 14, no. 7: 3849. https://doi.org/10.3390/su14073849
APA StyleAlfarisi, S., Sholihah, M., Mitake, Y., Tsutsui, Y., Wang, H., & Shimomura, Y. (2022). A Sustainable Approach towards Disposable Face Mask Production Amidst Pandemic Outbreaks. Sustainability, 14(7), 3849. https://doi.org/10.3390/su14073849