Climate Change Alters Soil Water Dynamics under Different Land Use Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Measurements
2.3. Modeling of Temporal Variations of Soil Water Contents
2.4. Climate Change Impact Modeling
2.5. Statistical Analysis
3. Results
3.1. Climate Change Scenarios for the Catchment
3.2. HYDRUS 1D Model Calibration and Validation
3.3. Climate Change Impact on Extreme SWC Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easterling, D.; Meehl, G.; Parmesan, C.; Changnon, S.; Karl, T.; Mearns, L. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheifinger, H.; Menzel, A.; Koch, E.; Peter, C. Trends of spring time frost events and phenological dates in Central Europe. Theor. Appl. 2003, 74, 41–51. [Google Scholar] [CrossRef]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate change in Europe. 3. Impact on agriculture and forestry. A review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2022, Impacts, Adaptation and Vulnerability. WGII Sixth Assessment Report. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 19 March 2022).
- Ragab, R.; Prudhomme, C. SW—Soil and water: Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st Century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- Ankenbauer, K.J.; Loheide Ii, S.P. The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrol. Processes 2017, 31, 891–901. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189. [Google Scholar]
- Kirkham, M.B. Chapter 10—Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. In Principles of Soil and Plant Water Relations, Second Edition; Kirkham, M.B., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 153–170. [Google Scholar] [CrossRef]
- Abdelkadir, A.; Yimer, F. Soil water property variations in three adjacent land use types in the Rift Valley area of Ethiopia. J. Arid Environ. 2011, 75, 1067–1071. [Google Scholar] [CrossRef]
- Hota, S.; Mishra, V.; Mourya, K.K.; Giri, K.; Kumar, D.; Jha, P.K.; Saikia, U.S.; Prasad, P.V.V.; Ray, S.K. Land use, landform, and soil management as determinants of soil physicochemical properties and microbial abundance of Lower Brahmaputra Valley, India. Sustainability 2022, 14, 2241. [Google Scholar] [CrossRef]
- Jakab, G.; Németh, T.; Csepinszky, B.; Madarász, B.; Szalai, Z.; Kertész, Á. The influence of short term soil sealing and crusting on hydrology and erosion at Balaton Uplands, Hungary. Carpathian J. Earth Environ. Sci. 2013, 8, 147–155. [Google Scholar]
- Saeidi, S.; Grósz, J.; Sebők, A.; Barros, V.D.d.; Waltner, I. Analysis results of land-use and land cover changes of Szilas catchment from 1990. Tájökológiai Lapok 2019, 17, 265–275. [Google Scholar]
- Blanco-Canqui, H.; Wienhold, B.J.; Jin, V.L.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Jakab, G.; Madarász, B.; Szabó, J.; Tóth, A.; Zacháry, D.; Szalai, Z.; Kertész, Á.; Dyson, J. Infiltration and soil loss changes during the growing season under ploughing and conservation tillage. Sustainability 2017, 9, 1726. [Google Scholar] [CrossRef] [Green Version]
- Rieder, Á.; Madarász, B.; Szabó, J.A.; Zacháry, D.; Vancsik, A.; Ringer, M.; Szalai, Z.; Jakab, G. Soil organic matter alteration velocity due to land-use change: A case study under conservation agriculture. Sustainability 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- van Noordwijk, M.; Lawson, G.; Hairiah, K.; Wilson, J. Root distribution of trees and crops: Competition and/or complementarity. In Tree-Crop Interactions: Agroforestry in a Changing Climate, 2nd ed.; Ong, C.K., Black, C.R., Wilson, J., Eds.; NORA: Wallingford, UK, 2015. [Google Scholar]
- Bloodworth, M.E.; Burleson, C.A.; Cowley, W.R. Root distribution of some irrigated crops using undisrupted soil cores. Agron. J. 1958, 50, 317–320. [Google Scholar] [CrossRef]
- Hajdu, E. Viticulture of Hungary. Acta Agrar. Debr. 2018, 150, 175–182. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Rédei, K.; Mason, W.L.; Vor, T.; Pöetzelsberger, E.; Bastien, J.-C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef] [Green Version]
- Farkas, C.; Gelybó, G.; Bakacsi, Z.; Horel, Á.; Hagyó, A.; Dobor, L.; Kása, I.; Tóth, E. Impact of expected climate change on soil water regime under different vegetation conditions. Biologia 2014, 69, 1510–1519. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, X.; Wang, H.; Li, L.; Yao, N.; Liu, D.L.; Biswas, A.; Sun, S. Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models. Comput. Electron. Agric. 2021, 185, 106142. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Qian, S.; Fu, Y.; Pan, F. Climate change tendency and grassland vegetation response during the growth season in Three-River Source Region. Sci. China Earth Sci. 2010, 53, 1506–1512. [Google Scholar] [CrossRef]
- Autovino, D.; Rallo, G.; Provenzano, G. Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agric. Water Manag. 2018, 203, 225–235. [Google Scholar] [CrossRef]
- Horel, Á.; Tóth, E.; Gelybó, G.; Dencső, M.; Farkas, C. Biochar amendment affects soil water and CO2 regime during Capsicum annuum plant growth. Agronomy 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Sheikh Goodarzi, M.; Jabbarian Amiri, B.; Azarnivand, H.; Waltner, I. Watershed hydrological modelling in data scarce regions; integrating ecohydrology and regionalization for the southern Caspian Sea basin, Iran. Heliyon 2021, 7, e06833. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Ascough, J.C.; Andales, A.A.; Hansen, N.C.; Garcia, L.A.; Arabi, M. Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation. Agric. Water Manag. 2012, 115, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Eeswaran, R.; Nejadhashemi, A.P.; Kpodo, J.; Curtis, Z.K.; Adhikari, U.; Liao, H.; Li, S.-G.; Hernandez-Suarez, J.S.; Alves, F.C.; Raschke, A.; et al. Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agric. Ecosyst. Environ. 2021, 320, 107612. [Google Scholar] [CrossRef]
- Dövényi, Z. Magyarország Kistájainak Katasztere; MTA Földrajztudományi Kutatóintézet: Budapest, Hungary, 2010; 876p. (In Hungarian) [Google Scholar]
- IUSS Working Group Wrb. World reference base for soil resources 2014, updated 2015. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Cresswell, H.P.; Green, T.W.; McKenzie, N.J. The adequacy of pressure plate apparatus for determining soil water retention. Soil Sci. Soc. Am. J. 2008, 72, 41–49. [Google Scholar] [CrossRef]
- Simunek, J.; Sejna, M.; van Genuchten, M.T. The HYDRUS Software Package for Simulating the Two-and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; PC-Progress: Prague, Czech Republic, 2007. [Google Scholar]
- Pachepsky, Y.; Timlin, D.; Rawls, W. Generalized Richards’ equation to simulate water transport in unsaturated soils. J. Hydrol. 2003, 272, 3–13. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.; Leij, F.; Yates, S. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; USA Salinity Laboratory, USDA, ARS: Riverside, CA, USA, 1991.
- Feddes, R.A.; Hoff, H.; Bruen, M.; Dawson, T.; DeRosnay, P.; Dirmeyer, P.; Jackson, R.B.; Kabat, P.; Kleidon, A.; Lilly, A.; et al. Modeling root water uptake in hydrological and climate models. Bull. Am. Meteorol. Soc. 2001, 82, 2797–2809. [Google Scholar] [CrossRef] [Green Version]
- Wesseling, J.G.; Elbers, J.A.; Kabat, P.; van den Broek, B.J. SWATRE: Instructions for Input; Winand Staring Centre: Wageningen, The Netherlands, 1991. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Dobor, L.; Barcza, Z.; Hlásny, T.; Havasi, Á.; Horváth, F.; Ittzés, P.; Bartholy, J. Bridging the gap between climate models and impact studies: The FORESEE Database. Geosci. Data J. 2015, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Dobor, L.; Horváth, F.; Hollós, R.; Márta, G.; Barcza, Z. FORESEE: Egy publikus meteorológiai adatbázis a Kárpát-medence tágabb térségére (extended abstract). Az elmélet és a gyakorlat találkozása a térinformatikában. In Proceedings of the X. Térinformatikai Konferencia és Szakkiállítás, Debrecen, Hungary, 23–24 May 2019; pp. 131–138. [Google Scholar]
- Ines, A.V.M.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Hasenauer, H.; White, M.A. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. 2000, 104, 255–271. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, N.D.; Gitau, W.M.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Hupet, F.; Lambot, S.; Feddes, R.A.; van Dam, J.C.; Vanclooster, M. Estimation of root water uptake parameters by inverse modeling with soil water content data. Water Resour. Res. 2003, 39, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gardner, W.R.; Ehlig, C.F. The influence of soil water on transpiration by plants. J. Geophys. Res. 1963, 68, 5719–5724. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Miceli-Garcia, J.J.; Lyon, D.J. Canopy cover and leaf area index relationships for wheat, triticale, and corn. Agron. J. 2012, 104, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Varga, P.; Májer, J. The use of organic wastes for soil-covering of vineyards. ISHS Acta Hortic. 2004, 652, 191–197. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in vineyard establishment to face global warming in viticulture: A mini review. J. Sci. Food Agric. 2021, 101, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, U.; Batushansky, A.; Degu, A.; Rachmilevitch, S.; Fait, A. Metabolic and physiological responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L.) to near optimal temperatures of 25 and 35 °C. Int. J. Mol. Sci. 2015, 16, 24276–24294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelybó, G.; Barcza, Z.; Dencső, M.; Potyó, I.; Kása, I.; Horel, Á.; Pokovai, K.; Birkás, M.; Kern, A.; Hollós, R.; et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate. Soil Tillage Res. 2022, 216, 105239. [Google Scholar] [CrossRef]
- Fay, P.A.; Kaufman, D.M.; Nippert, J.B.; Carlisle, J.D.; Harper, C.W. Changes in grassland ecosystem function due to extreme rainfall events: Implications for responses to climate change. Glob. Change Biol. 2008, 14, 1600–1608. [Google Scholar] [CrossRef]
- Fridley, J.D.; Grime, J.P.; Askew, A.P.; Moser, B.; Stevens, C.J. Soil heterogeneity buffers community response to climate change in species-rich grassland. Glob. Change Biol. 2011, 17, 2002–2011. [Google Scholar] [CrossRef]
- Grime, J.P.; Fridley, J.D.; Askew, A.P.; Thompson, K.; Hodgson, J.G.; Bennett, C.R. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl. Acad. Sci. USA 2008, 105, 10028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhang, Z.H.E.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Baldrian, P.; Šnajdr, J.; Merhautová, V.; Dobiášová, P.; Cajthaml, T.; Valášková, V. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 2013, 56, 60–68. [Google Scholar] [CrossRef]
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and forest diseases. Plant Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Liu, C.-A.; Li, F.-R.; Zhou, L.-M.; Zhang, R.-H.; Yu, J.; Lin, S.-L.; Wang, L.-J.; Siddique, K.H.M.; Li, F.-M. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- He, Y.; Xu, C.; Gu, F.; Wang, Y.; Chen, J. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization. Soil Tillage Res. 2018, 184, 281–290. [Google Scholar] [CrossRef]
Land Use Types | Vineyard | Grassland | Forest | Cropland | |
---|---|---|---|---|---|
Soil Texture | Clay | Clay Loam | Silty Clay Loam | Silty Clay | |
Bulk Density | g/cm3 | 1.23 ± 0.0 b | 1.33 ± 0.1 ab | 1.40 ± 0.1 a | 1.28 ± 0.17 ab |
Sand | % | 12.1 ± 1.3 c | 22.7 ± 0.8 a | 15.9 ± 0.3 b | 10.4 ± 0.8 c |
Silt | % | 36.2 ± 2.7 c | 39.9 ± 2.8 c | 54.9 ± 0.5 a | 44.8 ± 1.0 b |
Clay | % | 51.8 ± 2.7 a | 37.5 ± 2.3 c | 29.2 ± 0.3 d | 44.8 ± 0.3 b |
θsat | % | 57.1 ± 0.6 a | 51.8 ± 2.8 b | 46.4 ± 2.9 c | 54.6 ± 3.3 ab |
θres | % | 4.6 ± 0.7 a | 4.4 ± 0.3 a | 2.6 ± 0.1 c | 3.2 ± 0.3 b |
SOC | % | 1.93 ± 0.08 b | 3.81 ± 0.61 a | 5.34 ± 0.73 a | 1.70 ± 0.12 c |
pH | - | 7.93 ± 0.10 b | 6.46 ± 0.10 c | 5.98 ± 0.14 c | 7.86 ± 0.12 a |
Grassland | Vineyard | ||||||
Years | Scenarios | <WP | Optimal | >FC | <WP | Optimal | >FC |
2011–2020 | REFERENCE | 289.8 ± 30.5 | 75.3 ± 30.3 | 0 ± 0 | 21.3 ± 27.4 | 343.8 ± 27.5 | 0 ± 0 |
2041–2050 | ALADIN-ARPEGE | 272.0 ± 44.9 | 93.1 ± 44.9 | 0 ± 0 | 19.4 ± 32.4 | 345.7 ± 32.5 | 0 ± 0 |
CLM-HadCM3Q0 | 289.5 ± 27.5 | 75.6 ± 27.5 | 0 ± 0 | 77.3 ± 48.7 | 287.8 ± 48.5 | 0 ± 0 | |
HadRM3Q0-HadCMQ0 | 292.8 ± 31.3 | 72.3 ± 31.3 | 0 ± 0 | 28.9 ± 38.9 | 336.2 ± 38.9 | 0 ± 0 | |
HIRHAM5-ARPEGE | 273.9 ± 44.4 | 91.2 ± 44.3 | 0 ± 0 | 56.6 ± 47.5 | 308.5 ± 47.4 | 0 ± 0 | |
RCA-ECHAM5 | 241.4 ± 54.3 | 123.7 ± 54.1 | 0 ± 0 | 16.2 ± 23.2 | 348.9 ± 23.1 | 0 ± 0 | |
2081–2090 | ALADIN-ARPEGE | 297.2 ± 39.2 | 67.9 ±3 9.1 | 0 ± 0 | 77.1 ± 74.7 | 288.0 ± 74.6 | 0 ± 0 |
CLM-HadCM3Q0 | 286.9 ± 28.0 | 78.2 ±2 7.8 | 0 ± 0 | 99.0 ± 41.9 | 266.1 ± 42.0 | 0 ± 0 | |
HadRM3Q0-HadCMQ0 | 298.7 ± 38.4 | 66.4 ± 38.2 | 0 ± 0 | 76.1 ± 59.0 | 289.0 ± 58.9 | 0 ± 0 | |
HIRHAM5-ARPEGE | 279.9 ± 43.2 | 85.2 ± 43.1 | 0 ± 0 | 89.9 ± 64.5 | 275.2 ± 64.3 | 0 ± 0 | |
RCA-ECHAM5 | 256.5 ± 48.6 | 108.6 ± 48.6 | 0 ± 0 | 20.4 ± 31.9 | 344.7 ± 32.0 | 0 ± 0 | |
Forest | Cropland | ||||||
Years | Scenarios | <WP | Optimal | >FC | <WP | Optimal | >FC |
2011–2020 | REFERENCE | 99.7 ± 61.6 | 265.4 ± 61.5 | 0 ± 0 | 0 ± 0 | 312.7 ± 48.2 | 52.4 ± 48.1 |
2041–2050 | ALADIN-ARPEGE | 51.7 ± 55.1 | 313.4 ± 55.2 | 0 ± 0 | 0 ± 0 | 288.4 ± 63.5 | 76.7 ± 63.5 |
CLM-HadCM3Q0 | 140.3 ± 51.5 | 224.8 ± 51.3 | 0 ± 0 | 0 ± 0 | 342.2 ± 33.1 | 22.9 ± 33.2 | |
HadRM3Q0-HadCMQ0 | 97.7 ± 41.7 | 267.4 ± 41.6 | 0 ± 0 | 0 ± 0 | 337.3 ± 27.9 | 27.8 ± 28.0 | |
HIRHAM5-ARPEGE | 106.0 ± 71.7 | 259.1 ± 71.6 | 0 ± 0 | 0 ± 0 | 298.5 ± 59.2 | 66.6 ± 59.1 | |
RCA-ECHAM5 | 67.0 ± 60.6 | 298.1 ± 60.5 | 0 ± 0 | 0 ± 0 | 290.0 ± 57.3 | 75.1 ± 57.1 | |
2081–2090 | ALADIN-ARPEGE | 129.1 ± 106.5 | 236.0 ± 106.4 | 0 ± 0 | 0 ± 0 | 280.8 ± 75.8 | 84.3 ± 75.7 |
CLM-HadCM3Q0 | 11.6 ± 23.9 | 353.5 ± 24.0 | 0 ± 0 | 0 ± 0 | 333.3 ± 30.3 | 31.8 ± 30.3 | |
HadRM3Q0-HadCMQ0 | 109.4 ± 50.0 | 255.7 ± 49.9 | 0 ± 0 | 0 ± 0 | 324.5 ± 39.4 | 40.6 ± 39.3 | |
HIRHAM5-ARPEGE | 120.9 ± 59.6 | 244.2 ± 59.4 | 0 ± 0 | 0 ± 0 | 305.2 ± 51.2 | 59.9 ± 51.1 | |
RCA-ECHAM5 | 74.3 ± 47.3 | 290.8 ± 47.2 | 0 ± 0 | 0 ± 0 | 255.6 ± 47.6 | 109.5 ± 47.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horel, Á.; Zsigmond, T.; Farkas, C.; Gelybó, G.; Tóth, E.; Kern, A.; Bakacsi, Z. Climate Change Alters Soil Water Dynamics under Different Land Use Types. Sustainability 2022, 14, 3908. https://doi.org/10.3390/su14073908
Horel Á, Zsigmond T, Farkas C, Gelybó G, Tóth E, Kern A, Bakacsi Z. Climate Change Alters Soil Water Dynamics under Different Land Use Types. Sustainability. 2022; 14(7):3908. https://doi.org/10.3390/su14073908
Chicago/Turabian StyleHorel, Ágota, Tibor Zsigmond, Csilla Farkas, Györgyi Gelybó, Eszter Tóth, Anikó Kern, and Zsófia Bakacsi. 2022. "Climate Change Alters Soil Water Dynamics under Different Land Use Types" Sustainability 14, no. 7: 3908. https://doi.org/10.3390/su14073908
APA StyleHorel, Á., Zsigmond, T., Farkas, C., Gelybó, G., Tóth, E., Kern, A., & Bakacsi, Z. (2022). Climate Change Alters Soil Water Dynamics under Different Land Use Types. Sustainability, 14(7), 3908. https://doi.org/10.3390/su14073908