Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas
Abstract
:1. Introduction
2. Theoretical Background
“The physical dimensions of urban form may include its size, shape, land uses, configuration and distribution of open space—a composite of a multitude of characteristics, including a city’s transportation system and urban design features. However, its sustainability depends on more abstract issues—environmental (including transport), social and economic”.[44]
2.1. The Performance-Based Approach
2.2. The Typo-Morphological Approach
2.3. The Quantitative Description of the Urban Environment
2.4. The Concept of Density
3. The Conceptual Framework
4. Urban Morphology and Performance
- Investigating how to improve the urban canopy models coupled with mesoscale models to enhance the simulation of the wind speed and air temperature in complex urban environments, i.e., using high-spatial-resolution urban fraction [147]; developing a database for Beijing based on several parameters, i.e., the building height characteristics, the building plan area fraction, the frontal area density, the height-to-width ratio, and the sky view factor, [148]; implementing observational information of the sky view factor [149]; proposing a categorization of the building height based on the fractal dimension [150]; suggesting a formulation for the drag coefficient [127]; corroborating the causality between the accuracy of the parameterized urban morphometry and the reliability of the results of urban boundary layer simulations [151];
- Evaluating the performance of the adopted simulation tools for analyzing the performance of two design scenarios in terms of solar irradiance, wind airflows, building indoor temperatures, and energy demand [128];
- Applying parametric design optimization processes over conventional urban design processes to achieve more sustainable urban environments [135];
- Providing a critical review on the properties influencing energy and airflows in urban neighborhoods [126];
- Stressing the importance of identifying which urban morphology characteristics have the most significant impact on thermal comfort and how to mitigate the urban heat island effect [152].
Main Findings
- The evaluation of the performance, in terms of methods, topics, and indicators.
- The parameterization of the morphology, in terms of scale and parameters.
# | Refs | Authors | Year | Topic | Performance | Method | Tool | Morph. | Scale | Type |
---|---|---|---|---|---|---|---|---|---|---|
1 | [156] | Palme et al. | 2020 | energy | cooling demand | sim. | BES | no | lot | art. |
2 | [157] | Othman and Alshboul | 2020 | microcl. | out. thermal comfort | sim. | Envimet AND Rayman | yes | island | art. |
3 | [158] | Ronchi et al. | 2020 | microcl. | cooling capacity | sim. | InVEST | yes | city | art. |
4 | [159] | Battisti | 2020 | microcl. | out. thermal comfort | sim. | Envimet AND Rayman | no | island | art. |
5 | [160] | Uçlar and Buldurur | 2020 | energy | heating consumption | stat. analysis | - | yes | neighb. | art. |
6 | [131] | Natanian et al. | 2020 | comb.1 | energy performance + out. thermal comfort + solar access | sim. | Rhino + Grasshopper + plugins | yes | neighb. | art. |
7 | [161] | Leng et al. | 2020 | energy | heating consumption | sim. + stat. analysis | EnergyPlus | yes | neighb. | art. |
8 | [162] | Apreda et al. | 2020 | microcl. | air temp. | sim. | Envimet | yes | island | art. |
9 | [137] | He et al. | 2020 | microcl. | urb. ventilation + out. thermal comfort | meas. + sim. | Rayman | yes | neighb. | art. |
10 | [163] | Poon et al. | 2020 | energy | solar energy potential | sim. | Rhino + Grasshopper + plugins | yes | neighb. | art. |
11 | [164] | Liu and Morawska | 2020 | microcl. | surface temp. | sim. | WRF | yes | city | art. |
12 | [89] | Sadeghi et al. | 2020 | indoor | ind. comfort | meas. + sim. | EnergyPlus | no | - | art. |
13 | [138] | Zhao et al. | 2020 | microcl. | urb. ventilation | meas. | - | yes | neighb. | art. |
14 | [165] | Nikoloudakis et al. | 2020 | microcl. | air temp. | mod. + meas. | - | yes | city | art. |
15 | [166] | Yuan et al. | 2020 | microcl. | air temp. | sim. | ANSYS Fluent | yes | neighb. | art. |
16 | [167] | Carpio-Pinedo et al. | 2020 | microcl. | solar access | mod. | - | no | island | art. |
17 | [145] | Hassan et al. | 2020 | microcl. | pollution | sim. | ANSYS Fluent | yes | island | art. |
18 | [168] | Salvati et al. | 2020 | energy | energy demand | sim. | UWG + TRNSYS | yes | neighb. | art. |
19 | [169] | Zonato et al. | 2020 | microcl. | air temp. | mod. + sim. | WRF | yes | city | art. |
20 | [170] | Chokhachian et al. | 2020 | microcl. | air temp. + solar access ind./out. | sim. | Rhino + Grasshopper + plugins | yes | neighb. | art. |
21 | [171] | Yoseph | 2020 | microcl. | ind. comfort | sim. | Revit 2015-Ecotect + Grasshopper + plugins | no | island | book |
22 | [130] | Javanroodi and Nik | 2019 | comb.1 | energy performance | sim. | ANSYS Fluent + EnergyPlus | yes | neighb. | art. |
23 | [172] | Xu et al. | 2019b | microcl. | out. thermal comfort | sim. | OpenFOAM + Rhino + Grasshopper + plugins | yes | neighb. | art. |
24 | [173] | Ghassoun et al. | 2019 | microcl. | pollution | meas. + mod. | - | yes | city | art. |
25 | [174] | Xu et al. | 2019a | microcl. | out. thermal comfort | sim. | Rhino + Grasshopper + plugins | no | neighb. | art. |
26 | [147] | Shen et al. | 2019 | microcl. | wind speed + air temp. + humidity | sim. | WRF | yes | city | art. |
27 | [175] | He et al. | 2019 | microcl. | urb. ventilation | rev. + meth. | - | yes | neighb. | art. |
28 | [176] | Chatterjee et al. | 2019 | microcl. | air temp. | sim. | Envimet | yes | neighb. | art. |
29 | [177] | Salvati et al. | 2019 | microcl. | air temp. | sim. | UWG | yes | neighb. | art. |
30 | [142] | Mei et al. | 2019 | microcl. | pollution | sim. | OpenFOAM | yes | neighb. | art. |
31 | [148] | X. He et al. | 2019 | microcl. | air temp. + wind speed | sim. | WRF | yes | city | art. |
32 | [143] | Peng et al. | 2019 | microcl. | urb. ventilation | sim. | ANSYS Fluent | yes | neighb. | art. |
33 | [88] | Claude et al. | 2019 | indoor | mold growth | sim. | EnergyPlus | yes | building | art. |
34 | [129] | Javanroodi et al. | 2018 | comb.1 | energy performance | sim. | Fluent + Rhino + Grashopper + EnergyPlus | yes | neighb. | art. |
35 | [178] | Li et al. | 2018 | microcl. | CO2 emissions | mod. | - | no | city | art. |
36 | [179] | Amaral et al. | 2018 | energy | energy performance | rev. | - | no | - | rev. |
37 | [87] | Chan and Liu | 2018 | indoor | ind. comfort | survey | - | yes | neighb. | art. |
38 | [180] | Cody et al. | 2018 | energy | energy performance | sim. | IESVE | yes | building | art. |
39 | [149] | de Morais et al. | 2018 | microcl. | wind speed + surf. temp. | sim. | TEB | yes | city | art. |
40 | [181] | Moraitis et al. | 2018 | energy | solar energy potential | mod. | - | yes | nation | art. |
41 | [182] | Costanzo et al. | 2018 | energy | energy performance | sim. | Rhino + Grasshopper + plugins | no | neighb. | art. |
42 | [134] | García-Pérez et al. | 2018 | comb.4 | global warming potential | stat. analysis | - | yes | city | art. |
43 | [183] | Hammerberg et al. | 2018 | microcl. | air temp. | sim. | WRF | yes | city | art. |
44 | [140] | Yuan | 2018 | microcl. | urb. ventilation | sim. | ANSYS Fluent | no | neighb. | book |
45 | [146] | Yuan | 2018b | microcl. | urb. ventilation | sim. | MM5/CALMET | yes | city | book |
46 | [184] | Pili et al. | 2018 | energy | solar energy potential | mod. | GIS | no | city | art. |
47 | [185] | Pacifici et al. | 2017 | microcl. | air/surf. temp. + humidity + illuminance | meas. | - | yes | neighb. | art. |
48 | [186] | Thouron et al. | 2017 | microcl. | pollution | sim. | WRF + POLAIR3D | yes | city | art. |
49 | [187] | Shi et al. | 2017 | energy | form generation | rev. | - | yes | - | rev. |
50 | [188] | Saratsis et al. | 2017 | microcl. | solar access | sim. | UrbanDaylight-DAYSIM | yes | island | art. |
51 | [189] | Palme et al. | 2017 | energy | cooling demand | sim. | UWG + TRNSYS | yes | neighb. | art. |
52 | [150] | Li et al. | 2017 | microcl. | air temp. + wind speed | sim. | WRF | yes | city | art. |
53 | [141] | Wang et al. | 2017 | microcl. | urb. ventilation | sim. | PALM | yes | neighb. | art. |
54 | [190] | Perišić et al. | 2017 | microcl. | pollution | mod. | - | no | city | art. |
55 | [191] | Demuzere et al. | 2017 | energy | energy balance | sim. | ULSMs TERRA URB, CLM, SURFEX and SUEWS | yes | city | art. |
56 | [132] | Braulio-Gonzalo et al. | 2016 | comb.2 | energy performance + ind. comfort | sim. | Design Builder + EnergyPlus | yes | neighb. + city | art. |
57 | [192] | Perišić et al. | 2016 | microcl. | solar access | sim. | Radiance | yes | island | art. |
58 | [193] | Guo et al. | 2016 | microcl. | surface temp. | mod. | - | yes | city | art. |
59 | [194] | Rodríguez Algeciras et al. | 2016 | microcl. | out. thermal comfort | sim. | RayMan | yes | island | art. |
60 | [195] | Taki and Alabid | 2016 | energy | ind. comfort | survey + sim. | EnergyPlus | no | building | book |
61 | [196] | Jurelionis and Bouris | 2016 | energy | energy consumption | sim. | CFD * | yes | neighb. | art. |
62 | [128] | Gros et al. | 2016 | comb.1 | wind speed + surf. temp. + ind. temp. + cooling demand | sim. | EnviBatE + SOLENE-Microclimate + SATURNE | no | neighb. | art. |
63 | [127] | Gutiérrez et al. | 2015 | comb.1 | air temp. + wind speed | sim. | WRF | yes | city | art. |
64 | [126] | Srebric et al. | 2015 | comb.1 | wind speed + energy consumption | rev. | - | yes | - | rev. |
65 | [135] | Taleb and Musleh | 2015 | comb.5 | wind speed + solar irradiation | sim. | CFX + Grasshopper | yes | neighb. | art. |
66 | [197] | Oertel et al. | 2015 | microcl. | out. thermal comfort | meas. + sim. + survey | RayMan Pro | yes | neighb. | art. |
67 | [198] | Sarralde et al. | 2015 | energy | solar energy potential | mod. | GIS | yes | neighb. | art. |
68 | [199] | Pay et al. | 2014 | microcl. | pollution | sim. | CALIOPE Air Quality Forecast System | no | city | art. |
69 | [200] | Bueno et al. | 2014 | microcl. | air temp. | sim. | UWG | yes | neighb. | art. |
70 | [201] | Hofman et al. | 2014 | microcl. | pollution | meas. + sim. | AURORA + MIMOSA4 | yes | city | art. |
71 | [125] | Zhun Min Adrian et al. | 2013 | comb.1 | solar radiation + energy consumption | meas. + sim. | IESVE | yes | neighb. | art. |
72 | [151] | Chan et al. | 2013 | microcl. | wind speed + TKE | sim. | MM5 | yes | city | art. |
73 | [152] | Pattacini | 2012 | microcl. | wind speed | sim. | Envimet | yes | neighb. | art. |
74 | [144] | Leung et al. | 2012 | microcl. | pollution | meas. + sim. | Fluent | yes | island | art. |
75 | [202] | Gros et al. | 2011 | microcl. | solar radiation | rev. | - | yes | - | rev. |
76 | [136] | Ng et al. | 2011 | microcl. | urb. ventilation | sim. | MM5/CALMET | yes | city | art. |
77 | [133] | Vahabzadeh Manesh et al. | 2011 | comb.3 | energy consumption | sim. | * | yes | neighb. | book-rev. |
78 | [203] | Salat | 2009 | energy | heating consumption | sim. | APUR | yes | neighb. | art. |
79 | [204] | Al-Maiyah and Elkadi | 2007 | microcl. | solar access | sim. | TOWNSCOPE | no | island | art. |
5. Urban Ventilation
“The outdoor temperature, wind speed and solar radiation to which an individual building is exposed is not the regional “synoptic” climate, but the local micro-climate as modified by the “structure” of the city, mainly of the neighborhood where the building is located. … However, special details of the individual buildings can have significant impact on the exposure conditions and comfort of pedestrians in the streets. … the actual wind speed and turbulence in the streets, can vary significantly over very short distances, depending on some design details of the building along the street”.[29]
5.1. Definition
5.2. Morphological Parameters
5.3. Investigation Methods
5.4. Performance Indicators
5.5. Main Findings
6. Urban Ventilation Performance Assessment Methodology
- Checking the feature topologies on point, line, and polygon layers automatically by setting specific rules;
- Cleaning topology errors automatically;
- Adding missing details and features;
- Extracting information from raw data;
- Combining information for calculating MPs employing algorithms and scripts.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Eurpoean Commission. Making Our Cities Attractive How the EU Contributes to Improving the Urban Environment; Publications Office of the European Union: Luxembourg, 2010; ISBN 9789279162985. [Google Scholar]
- EEA. Air Quality in Europe—2020 Report; EEA: Copenhagen, Denmark, 2020; ISBN 978-92-9480-292-7. [Google Scholar]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019; ISBN 9789211483161. [Google Scholar]
- World Development Indicators|DataBank. Available online: https://databank.worldbank.org/reports.aspx?source=world-development-indicators (accessed on 2 April 2021).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: Manhattan, NY, USA, 2015. [Google Scholar]
- EEA. Air Quality in Europe—2017 Report; EEA: Copenhagen, Denmark, 2017; ISBN 9789292139216. [Google Scholar]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 Report of The Lancet Countdown on Health and Climate Change: Responding to Converging Crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- EASAC. The Imperative of Climate Action to Protect Human Health in Europe. Opportunities for Adaptation to Reduce the Impacts, and for Mitigation to Capitalise on the Benefits of Decarbonisation; EASAC: Halle, Germany, 2019; ISBN 9783804740112. [Google Scholar]
- Heat and Health—European Climate and Health Observatory. Available online: https://climate-adapt.eea.europa.eu/observatory/evidence/health-effects/heat-and-health/heat-and-health (accessed on 5 January 2021).
- United Nations. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2014; ISBN 9789211515176. [Google Scholar]
- Oke, T.R.; Maxwell, G.B. Urban Heat Island Dynamics in Montreal and Vancouver. Atmos. Environ. 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Ng, E. Policies and Technical Guidelines for Urban Planning of High-Density Cities—Air Ventilation Assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Li, Y.; Buccolieri, R.; Sandberg, M.; Di Sabatino, S. On the Contribution of Mean Flow and Turbulence to City Breathability: The Case of Long Streets with Tall Buildings. Sci. Total Environ. 2012, 416, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B. Computational Fluid Dynamics for Urban Physics: Importance, Scales, Possibilities, Limitations and Ten Tips and Tricks towards Accurate and Reliable Simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A Review on the CFD Analysis of Urban Microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- D’ippoliti, D.; Michelozzi, P.; Marino, C.; De’donato, F.; Menne, B.; Katsouyanni, K.; Kirchmayer, U.; Analitis, A.; Medina-Ramón, M.; Paldy, A.; et al. The Impact of Heat Waves on Mortality in 9 European Cities: Results from the EuroHEAT Project. Environ. Health 2010, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef]
- Seaton, A.; Godden, D.; MacNee, W.; Donaldson, K. Particulate Air Pollution and Acute Health Effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Cárdenas Rodríguez, M.; Dupont-Courtade, L.; Oueslati, W. Air Pollution and Urban Structure Linkages: Evidence from European Cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- WHO. WHO Expert Consultation: Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQGs). Meeting Report. Bonn, Germany, 29 September–1 October 2015. Available online: https://www.euro.who.int/__data/assets/pdf_file/0013/301720/Evidence-future-update-AQGs-mtg-report-Bonn-sept-oct-15.pdf (accessed on 10 December 2021).
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 Report of the Lancet Countdown on Health and Climate Change: Shaping the Health of Nations for Centuries to Come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef]
- Mitchell, D.; Kornhuber, K.; Huntingford, C.; Uhe, P. The Day the 2003 European Heatwave Record Was Broken. Lancet Planet. Health 2019, 3, e290–e292. [Google Scholar] [CrossRef] [Green Version]
- Ramponi, R.; Blocken, B.; de Coo, L.B.; Janssen, W.D. CFD Simulation of Outdoor Ventilation of Generic Urban Configurations with Different Urban Densities and Equal and Unequal Street Widths. Build. Environ. 2015, 92, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Yim, S.H.L.; Fung, J.C.H.; Ng, E.Y.Y. An Assessment Indicator for Air Ventilation and Pollutant Dispersion Potential in an Urban Canopy with Complex Natural Terrain and Significant Wind Variations. Atmos. Environ. 2014, 94, 297–306. [Google Scholar] [CrossRef]
- Givoni, B. Urban Design in Different Climates; World Meteorological Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Stathopoulos, T. Pedestrian Level Winds and Outdoor Human Comfort. J. Wind Eng. Ind. Aerodyn. 2006, 94, 769–780. [Google Scholar] [CrossRef]
- Mochida, A.; Lun, I.Y.F. Prediction of Wind Environment and Thermal Comfort at Pedestrian Level in Urban Area. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1498–1527. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T. CFD Simulation of Pedestrian-Level Wind Conditions around Buildings: Past Achievements and Prospects. J. Wind Eng. Ind. Aerodyn. J. 2013, 121, 138–145. [Google Scholar] [CrossRef]
- van Druenen, T.; van Hooff, T.; Montazeri, H.; Blocken, B. CFD Evaluation of Building Geometry Modifications to Reduce Pedestrian-Level Wind Speed. Build. Environ. 2019, 163, 106293. [Google Scholar] [CrossRef]
- Blocken, B.; Carmeliet, J. Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples. J. Therm. Envel. Build. Sci. 2004, 28, 107–159. [Google Scholar] [CrossRef]
- Ratti, C.; Di Sabatino, S.; Britter, R. Urban Texture Analysis with Image Processing Techniques: Winds and Dispersion. Theor. Appl. Clim. 2006, 84, 77–90. [Google Scholar] [CrossRef]
- Pelorosso, R. Modeling and Urban Planning: A Systematic Review of Performance-Based Approaches. Sustain. Cities Soc. 2020, 52, 101867. [Google Scholar] [CrossRef]
- NEN. Netherlands Normalisation Institute Wind Comfort and Wind Danger in the Built Environment; NEN: Delft, The Netherlands, 2006. [Google Scholar]
- Ratcliff, M.A.; Peterka, J.A. Comparison of Pedestrian Wind Acceptability Criteria. J. Wind Eng. Ind. Aerodyn. 1990, 36, 791–800. [Google Scholar] [CrossRef]
- Murakami, S.; Uehara, K.; Komine, H. Amplification of Wind Speed at Ground Level Due to Construction of High-Rise Building in Urban Area. J. Wind Eng. Ind. Aerodyn. 1979, 4, 343–370. [Google Scholar] [CrossRef]
- Sanz-Andres, A.; Cuerva, A. Pedestrian Wind Comfort: Feasibility Study of Criteria Homogenisation. J. Wind Eng. Ind. Aerodyn. 2006, 94, 799–813. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B.; Janssen, W.D.; van Hooff, T. CFD Simulation for Pedestrian Wind Comfort and Wind Safety in Urban Areas: General Decision Framework and Case Study for the Eindhoven University Campus. Environ. Model. Softw. 2012, 30, 15–34. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; van Beeck, J.P.A.J. Pedestrian-Level Wind Conditions around Buildings: Review of Wind-Tunnel and CFD Techniques and Their Accuracy for Wind Comfort Assessment. Build. Environ. 2016, 100, 50–81. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Kwok, K.; Tse, K.T.; Lee, T.C.; Ai, Z.; Liu, J.; Niu, J. New Criteria for Assessing Low Wind Environment at Pedestrian Level in Hong Kong. Build. Environ. 2017, 123, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Jenks, M.; Jones, C. Issues and Concepts. In Dimensions of the Sustainable City; Jenks, M., Jones, C., Eds.; Springer Science+Business Media: Berlin, Germany, 2010; pp. 1–20. ISBN 978-1-4020-8646-5. [Google Scholar]
- Ripoll Bosch, R.; Giampietro, M. Report on EU Socio-Ecological systems. MAGIC (H2020–GA 689669) Project Deliverable 4.2, Revision. 2019. Available online: https://magic-nexus.eu/documents/d42-report-eu-socio-ecological-systems (accessed on 16 January 2020).
- Neumann, L.A.; Markow, M.J. Performance-Based Planning and Asset Management. Public Work. Manag. Policy 2004, 8, 156–161. [Google Scholar] [CrossRef]
- Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating Green Infrastructure into Spatial Planning Regulations to Improve the Performance of Urban Ecosystems. Insights from an Italian Case Study. Sustain. Cities Soc. 2020, 53, 101907. [Google Scholar] [CrossRef]
- Kendig, L. Performance Zoning; Planners Press (American Planning Association): Chicago, IL, USA, 1980; ISBN 978-0918286185. [Google Scholar]
- Porter, D.R.; Phillips, P.L.; Lassar, T.J. Flexible Zoning: How It Works; Urban Land Institute: Washington, DC, USA, 1988. [Google Scholar]
- Frew, T.; Baker, D.; Donehue, P. Performance Based Planning in Queensland: A Case of Unintended Plan-Making Outcomes. Land Use Policy 2016, 50, 239–251. [Google Scholar] [CrossRef]
- Baker, D.C.; Sipe, N.G.; Gleeson, B.J. Performance-Based Planning. Perspectives from the United States, Australia, and New Zealand. J. Plan. Educ. Res. 2006, 25, 396–409. [Google Scholar] [CrossRef]
- Botequilha-Leitão, A.; Díaz-Varela, E.R. Performance Based Planning of Complex Urban Social-Ecological Systems: The Quest for Sustainability through the Promotion of Resilience. Sustain. Cities Soc. 2020, 56, 102089. [Google Scholar] [CrossRef]
- Menner, W.A. Introduction to Modeling and Simulation Techniques. 1995. Available online: https://www.jhuapl.edu/TechDigest/Archives (accessed on 16 January 2020).
- Maria, A. Introduction to Modeling and Simulation. In Proceedings of the Winter Simulation Conference, Atlanta, GA, USA, 7–10 December 1997. [Google Scholar] [CrossRef]
- Conzen, M.R.G. Alnwick, Northumberland: A Study in Town-Plan Analysis; Wiley on behalf of The Royal Geographical Society (with the Institute of British Geographers): London, UK, 1960. [Google Scholar]
- Martin, L.; March, L. Urban Space and Structures; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Moudon, A.V. Getting to Know the Building Landscape: Typomorphology. Type Ordering Space 1994, 16, 289–311. [Google Scholar]
- Moudon, A.V. Urban Morphology as an Emerging Interdisciplinary Field. Urban Morphol. 1997, 1, 3–10. [Google Scholar]
- Steemers, K.; Ramos, M.; Sinou, M. Urban Morphology. In Design Open Spaces in the Urban Environment: A Bioclimatic Approach; Centre for Renewable Energy Sources: Athens, Greece, 2004; pp. 17–22. ISBN 9789896540821. [Google Scholar]
- Berghauser Pont, M.; Haupt, P. Space, Density and Urban Form; Technische Universiteit Delft: Delft, The Netherlands, 2009; Volume 29. [Google Scholar]
- Churchman, A. Disentangling the Concept of Density. J. Plan. Lit. 1999, 13, 389–411. [Google Scholar] [CrossRef]
- Alexander, E.R. Density Measures: A Review and Analysis. J. Archit. Plann. Res. 1993, 10, 181–203. [Google Scholar] [CrossRef]
- Lozano, E. Density in Communities, or the Most Important Factor in Building Urbanity. In The Urban Design Reader; Routledge: London, UK, 2012; pp. 399–414. ISBN 9781136205668. [Google Scholar]
- Palusci, O.; Monti, P.; Cecere, C.; Montazeri, H.; Blocken, B. Impact of Morphological Parameters on Urban Ventilation in Compact Cities: The Case of the Tuscolano-Don Bosco District in Rome. Sci. Total Environ. 2021, 807, 150490. [Google Scholar] [CrossRef]
- Golany, G.S. Urban Design Morphology and Thermal Performance. Atmos. Environ. 1996, 30, 455–465. [Google Scholar] [CrossRef]
- Jenks, M.; Burton, E.; Williams, K. The Compact City A Sustainable Urban Form; Oxford Brookes University: Oxford, UK, 1996; ISBN 0203362373. [Google Scholar]
- Reale, L. La Città Compatta; Gangemi, Ed: Roma, Italy, 2012; ISBN 978-88-492-2322-4. [Google Scholar]
- Li, C. GIS for Urban Energy Analysis. In Comprehensive Geographic Information Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 187–195. [Google Scholar]
- Yuan, C.; Ren, C.; Ng, E. GIS-Based Surface Roughness Evaluation in the Urban Planning System to Improve the Wind Environment—A Study in Wuhan, China. Urban Clim. 2014, 10, 585–593. [Google Scholar] [CrossRef]
- Morano, P.; Tajani, F.; Locurcio, M. GIS Application and Econometric Analysis for the Verification of the Financial Feasibility of Roof-Top Wind Turbines in the City of Bari (Italy). Renew. Sustain. Energy Rev. 2017, 70, 999–1010. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Ng, E. A Study of the “Wall Effect” Caused by Proliferation of High-Rise Buildings Using GIS Techniques. Landsc. Urban Plan. 2011, 102, 245–253. [Google Scholar] [CrossRef]
- Scopus–Document Search. Available online: https://www.scopus.com (accessed on 2 July 2021).
- Rosser, J.F.; Boyd, D.S.; Long, G.; Zakhary, S.; Mao, Y.; Robinson, D. Predicting Residential Building Age from Map Data. Comput. Environ. Urban Syst. 2019, 73, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.; Sinsel, T.; Bruse, M. Introduction of Fractal-Based Tree Digitalization and Accurate in-Canopy Radiation Transfer Modelling to the Microclimate Model ENVI-Met. Forests 2020, 11, 869. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, S. Variations of the Treescape in Relation to Urban Development in a Chinese City: The Case of Nanjing. Prof. Geogr. 2003, 55, 70–82. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Avelar, S.; Tavares-Corrêa, C.; Zah, R. Deriving Fine-Scale Socioeconomic Information of Urban Areas Using Very High-Resolution Satellite Imagery. Int. J. Remote Sens. 2011, 32, 6437–6456. [Google Scholar] [CrossRef]
- Delgado-García, J.B.; de Quevedo-Puente, E.; Blanco-Mazagatos, V. The Impact of City Reputation on City Performance. Reg. Stud. 2018, 52, 1098–1110. [Google Scholar] [CrossRef]
- Saraiva, M.; Sá Marques, T.; Pinho, P. Vacant Shops in a Crisis Period–A Morphological Analysis in Portuguese Medium-Sized Cities. Plan. Pract. Res. 2019, 34, 255–287. [Google Scholar] [CrossRef]
- Thai, H.M.H.; Stevens, Q.; Rogers, J. The Influence of Organic Urban Morphologies on Opportunities for Home-Based Businesses within Inner-City Districts in Hanoi, Vietnam. J. Urban Des. 2019, 24, 926–946. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H. Exploring the Relationship between Landscape Characteristics and Urban Vibrancy: A Case Study Using Morphology and Review Data. Cities 2019, 95, 13. [Google Scholar] [CrossRef]
- de Holanda, F. Inserting Urbanity in a Modern Environment; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319761268. [Google Scholar]
- Lang, W.; Chen, T.; Chan, E.H.W.; Yung, E.H.K.; Lee, T.C.F. Understanding Livable Dense Urban Form for Shaping the Landscape of Community Facilities in Hong Kong Using Fine-Scale Measurements. Cities 2019, 84, 34–45. [Google Scholar] [CrossRef]
- Marrone, P.; Orsini, F.; Asdrubali, F.; Guattari, C. Environmental Performance of Universities: Proposal for Implementing Campus Urban Morphology as an Evaluation Parameter in Green Metric. Sustain. Cities Soc. 2018, 42, 226–239. [Google Scholar] [CrossRef]
- Kotharkar, R.; Pallapu, A.V.; Bahadure, P. Urban Cluster-Based Sustainability Assessment of an Indian City: Case of Nagpur. J. Urban Plan. Dev. 2019, 145, 17. [Google Scholar] [CrossRef]
- Tadi, M.; Zadeh, M.H.; Biraghi, C.A. The Integrated Modification Methodology. In Environmental Performance and Social Inclusion in Informal Settlements; Masera, G., Tadi, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–37. ISBN 9783030443528. [Google Scholar]
- Fischer, K.; Hiermaier, S.; Riedel, W.; Häring, I. Morphology Dependent Assessment of Resilience for Urban Areas. Sustainablity 2018, 10, 1800. [Google Scholar] [CrossRef] [Green Version]
- Chan, I.Y.S.; Liu, A.M.M. Effects of Neighborhood Building Density, Height, Greenspace, and Cleanliness on Indoor Environment and Health of Building Occupants. Build. Environ. 2018, 145, 213–222. [Google Scholar] [CrossRef]
- Claude, S.; Ginestet, S.; Bonhomme, M.; Escadeillas, G.; Taylor, J.; Marincioni, V.; Korolija, I.; Altamirano, H. Evaluating Retrofit Options in a Historical City Center: Relevance of Bio-Based Insulation and the Need to Consider Complex Urban Form in Decision-Making. Energy Build. 2019, 182, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Wood, G.; Samali, B.; de Dear, R. Effects of Urban Context on the Indoor Thermal Comfort Performance of Windcatchers in a Residential Setting. Energy Build. 2020, 219, 110010. [Google Scholar] [CrossRef]
- Adolphe, L. A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities. Environ. Plan. B Plan. Des. 2001, 28, 183–200. [Google Scholar] [CrossRef]
- Ye, Y.; Van Nes, A. Quantitative Tools in Urban Morphology: Combining Space Syntax, Spacematrix and Mixed-Use Index in a GIS Framework. Urban Morphol. 2014, 18, 97–118. [Google Scholar]
- Berghauser Pont, M. An Analytical Approach to Urban Form; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 9783319761268. [Google Scholar]
- Steiniger, S.; Lange, T.; Burghardt, D.; Weibel, R. An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques. Trans. GIS 2008, 12, 31–59. [Google Scholar] [CrossRef]
- Bechtel, B.; Daneke, C. Classification of Local Climate Zones Based on Multiple Earth Observation Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1191–1202. [Google Scholar] [CrossRef]
- Serna, A.; Marcotegui, B. Detection, Segmentation and Classification of 3D Urban Objects Using Mathematical Morphology and Supervised Learning. ISPRS J. Photogramm. Remote Sens. 2014, 93, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Huang, X.; Wen, D.; Li, J. Urban Building Density Estimation From High-Resolution Imagery Using Multiple Features and Support Vector Regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3265–3280. [Google Scholar] [CrossRef]
- Tian, D.; Wang, Y.; Wang, Z.; Wang, F.; Gao, H. Long Integral Time Continuous Panorama Scanning Imaging Based on Bilateral Control with Image Motion Compensation. Remote Sens. 2019, 11, 1924. [Google Scholar] [CrossRef] [Green Version]
- Biljecki, F.; Ledoux, H.; Stoter, J. Generating 3D City Models without Elevation Data. Comput. Environ. Urban Syst. 2017, 64, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L. The “niche” City: A Multifactor Spatial Approach to Identify Local-Scale Dimensions of Urban Complexity. Ecol. Indic. 2018, 94, 62–73. [Google Scholar] [CrossRef]
- Noyman, A.; Doorley, R.; Xiong, Z.; Alonso, L.; Grignard, A.; Larson, K. Reversed Urbanism: Inferring Urban Performance through Behavioral Patterns in Temporal Telecom Data. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1480–1498. [Google Scholar] [CrossRef]
- Berghauser Pont, M.; Stavroulaki, G.; Marcus, L. Development of Urban Types Based on Network Centrality, Built Density and Their Impact on Pedestrian Movement. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1549–1564. [Google Scholar] [CrossRef]
- Peimani, N.; Kamalipour, H. Access and Forms of Urbanity in Public Space: Transit Urban Design beyond the Global North. Sustainablity 2020, 12, 3495. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.H.; Rowe, P.G. The Concept of Urban Intensity and China’s Townization Policy: Cases from Zhejiang Province. Cities 2016, 55, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Qiang, Y.; Xu, J.; Zhang, G. The Shapes of US Cities: Revisiting the Classic Population Density Functions Using Crowdsourced Geospatial Data. Urban Stud. 2020, 57, 2147–2162. [Google Scholar] [CrossRef]
- Yue, W.; Wang, T.; Liu, Y.; Zhang, Q.; Ye, X. Mismatch of Morphological and Functional Polycentricity in Chinese Cities: An Evidence from Land Development and Functional Linkage. Land Use Policy 2019, 88, 10. [Google Scholar] [CrossRef]
- Sun, B.; Li, W.; Zhang, Z.; Zhang, T. Is Polycentricity a Promising Tool to Reduce Regional Economic Disparities? Evidence from China’s Prefectural Regions. Landsc. Urban Plan. 2019, 192, 11. [Google Scholar] [CrossRef]
- Thinh, N.X.; Arlt, G.; Heber, B.; Hennersdorf, J.; Lehmann, I. Evaluation of Urban Land-Use Structures with a View to Sustainable Development. Environ. Impact Assess. Rev. 2002, 22, 475–492. [Google Scholar] [CrossRef]
- Meyer, W.B. The Other Burgess Model. Urban Geogr. 2000, 21, 261–270. [Google Scholar] [CrossRef]
- Hadjri, K. Appropriate Urban Design Approaches for Algeria Achievable with the No-Fines Method. Urban Des. Int. 1997, 2, 109–122. [Google Scholar] [CrossRef]
- Siksna, A. The Effects of Block Size and Form in North American and Australian City Centres. Urban Morphol. 1997, 1, 19–33. [Google Scholar]
- Webster, C.J.; Wu, F. Regulation, Land-Use Mix, and Urban Performance. Part 1: Theory. Environ. Plan. A 1999, 31, 1433–1442. [Google Scholar] [CrossRef]
- Filion, P.; Hammond, K. Neighbourhood Land Use and Performance: The Evolution of Neighbourhood Morphology over the 20th Century. Environ. Plan. B Plan. Des. 2003, 30, 271–296. [Google Scholar] [CrossRef]
- Wheeler, S.M. The Evolution of Urban Form in Portland and Toronto: Implications for Sustainability Planning. Local Environ. 2003, 8, 317–336. [Google Scholar] [CrossRef]
- Kombe, W.J. Land Use Dynamics in Peri-Urban Areas and Their Implications on the Urban Growth and Form: The Case of Dar Es Salaam, Tanzania. Habitat Int. 2005, 29, 113–135. [Google Scholar] [CrossRef]
- Banai, R.; Rapino, M.A. Urban Theory since a Theory of Good City Form (1981)—A Progress Review. J. Urban. 2009, 2, 259–276. [Google Scholar] [CrossRef]
- Brzenczek, K.; Wiegandt, C.C. Peculiarities in the Visual Appearance of German Cities—About Locally Specific Routines and Practices in Urban Design Related Governance. Erdkunde 2009, 63, 245–255. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yu, L. A Systematic Sensitivity Analysis of Constrained Cellular Automata Model for Urban Growth Simulation Based on Different Transition Rules. Int. J. Geogr. Inf. Sci. 2014, 28, 1317–1335. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M.; Serra, P. Unraveling Latent Dimensions of the Urban Mosaic: A Multi-Criteria Spatial Approach to Metropolitan Transformations. Environ. Plan. A 2018, 50, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Alobaydi, D.; Al-Mosawe, H.; Lateef, I.M.; Albayati, A.H. Impact of Urban Morphological Changes on Traffic Performance of Jadriyah Intersection. Cogent Eng. 2020, 7, 1772946. [Google Scholar] [CrossRef]
- Wygonik, E.; Goodchild, A.V. Urban Form and Last-Mile Goods Movement: Factors Affecting Vehicle Miles Travelled and Emissions. Transp. Res. Part D Transp. Environ. 2018, 61, 217–229. [Google Scholar] [CrossRef]
- Dovey, K.; Woodcock, I.; Pike, L. Isochrone Mapping of Urban Transport: Car-Dependency, Mode-Choice and Design Research. Plan. Pract. Res. 2017, 32, 402–416. [Google Scholar] [CrossRef]
- Kozak, D.; Henderson, H.; de Castro Mazarro, A.; Rotbart, D.; Aradas, R. Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires. Sustainability 2020, 12, 2163. [Google Scholar] [CrossRef] [Green Version]
- Maretto, M. Teaching Urban Morphology in a Sustainable Perspective; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Swaid, B.; Bilotta, E.; Pantano, P.; Lucente, R. Emergence Nonlinear Multifractal Architecture by Hypervolume Estimation Algorithm for Evolutionary Multi-Criteria Optimisation. Int. J. Parallel Emergent Distrib. Syst. 2017, 32, S101–S113. [Google Scholar] [CrossRef]
- Zhun Min Adrian, C.; Nyuk Hien, W.; Marcel, I.; Steve Kardinal, J. Predicting the Envelope Performance of Commercial Office Buildings in Singapore. Energy Build. 2013, 66, 66–76. [Google Scholar] [CrossRef]
- Srebric, J.; Heidarinejad, M.; Liu, J. Building Neighborhood Emerging Properties and Their Impacts on Multi-Scale Modeling of Building Energy and Airflows. Build. Environ. 2015, 91, 246–262. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Martilli, A.; Santiago, J.L.; González, J.E. A Mechanical Drag Coefficient Formulation and Urban Canopy Parameter Assimilation Technique for Complex Urban Environments. Bound.-Layer Meteorol. 2015, 157, 333–341. [Google Scholar] [CrossRef]
- Gros, A.; Bozonnet, E.; Inard, C.; Musy, M. Simulation Tools to Assess Microclimate and Building Energy—A Case Study on the Design of a New District. Energy Build. 2016, 114, 112–122. [Google Scholar] [CrossRef]
- Javanroodi, K.; Mahdavinejad, M.; Nik, V.M. Impacts of Urban Morphology on Reducing Cooling Load and Increasing Ventilation Potential in Hot-Arid Climate. Appl. Energy 2018, 231, 714–746. [Google Scholar] [CrossRef]
- Javanroodi, K.; Nik, V.M. Impacts of Microclimate Conditions on the Energy Performance of Buildings in Urban Areas. Buildings 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Natanian, J.; Kastner, P.; Dogan, T.; Auer, T. From Energy Performative to Livable Mediterranean Cities: An Annual Outdoor Thermal Comfort and Energy Balance Cross-Climatic Typological Study. Energy Build. 2020, 224, 110283. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D.; Ruá, M.J.; Juan, P. A Methodology for Predicting the Energy Performance and Indoor Thermal Comfort of Residential Stocks on the Neighbourhood and City Scales. A Case Study in Spain. J. Clean. Prod. 2016, 139, 646–665. [Google Scholar] [CrossRef] [Green Version]
- Vahabzadeh Manesh, S.; Tadi, M.; Zanni, F. Integrated Sustainable Urban Design: Neighbourhood Design Proceeded by Sustainable Urban Morphology Emergence. WIT Trans. Ecol. Environ. 2011, 155, 631–642. [Google Scholar] [CrossRef] [Green Version]
- García-Pérez, S.; Sierra-Pérez, J.; Boschmonart-Rives, J. Environmental Assessment at the Urban Level Combining LCA-GIS Methodologies: A Case Study of Energy Retrofits in the Barcelona Metropolitan Area. Build. Environ. 2018, 134, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Taleb, H.; Musleh, M.A. Applying Urban Parametric Design Optimisation Processes to a Hot Climate: Case Study of the UAE. Sustain. Cities Soc. 2015, 14, 236–253. [Google Scholar] [CrossRef]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the Wind Environment in High-Density Cities by Understanding Urban Morphology and Surface Roughness: A Study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Relationships among Local-Scale Urban Morphology, Urban Ventilation, Urban Heat Island and Outdoor Thermal Comfort under Sea Breeze Influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, L.; Li, L.; Wang, H.; He, B.-J. Local Climate Zone Classification Scheme Can Also Indicate Local-Scale Urban Ventilation Performance: An Evidence-Based Study. Atmosphere 2020, 11, 776. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Yuan, C. Natural Ventilation Modeling and Analysis for Climate-Sensitive Architecture Design; Springer: Singapore, 2018; pp. 101–114. [Google Scholar] [CrossRef]
- Wang, W.; Ng, E.; Yuan, C.; Raasch, S. Large-Eddy Simulations of Ventilation for Thermal Comfort—A Parametric Study of Generic Urban Configurations with Perpendicular Approaching Winds. Urban Clim. 2017, 20, 202–227. [Google Scholar] [CrossRef]
- Mei, S.-J.; Hu, J.-T.; Liu, D.; Zhao, F.-Y.; Li, Y.; Wang, H.-Q. Airborne Pollutant Dilution inside the Deep Street Canyons Subjecting to Thermal Buoyancy Driven Flows: Effects of Representative Urban Skylines. Build. Environ. 2019, 149, 592–606. [Google Scholar] [CrossRef]
- Peng, Y.; Gao, Z.; Buccolieri, R.; Ding, W. An Investigation of the Quantitative Correlation between Urban Morphology Parameters and Outdoor Ventilation Efficiency Indices. Atmosphere 2019, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.K.; Liu, C.-H.; Wong, C.C.C.; Lo, J.C.Y.; Ng, G.C.T. On the Study of Ventilation and Pollutant Removal over Idealized Two-Dimensional Urban Street Canyons. Build. Simul. 2012, 5, 359–369. [Google Scholar] [CrossRef]
- Hassan, A.M.; ELMokadem, A.A.; Megahed, N.A.; Abo Eleinen, O.M. Urban Morphology as a Passive Strategy in Promoting Outdoor Air Quality. J. Build. Eng. 2020, 29, 101204. [Google Scholar] [CrossRef]
- Yuan, C. Empirical Morphological Model to Evaluate Urban Wind Permeability in High-Density Cities; Springer: Singapore, 2018; pp. 19–42. [Google Scholar] [CrossRef]
- Shen, C.; Chen, X.; Dai, W.; Li, X.; Wu, J.; Fan, Q.; Wang, X.; Zhu, L.; Chan, P.; Hang, J.; et al. Impacts of High-Resolution Urban Canopy Parameters within the WRF Model on Dynamical and Thermal Fields over Guangzhou, China. J. Appl. Meteorol. Climatol. 2019, 58, 1155–1176. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Wang, X.; Chen, L.; Yu, B.; Zhang, Y.; Miao, S. High-Resolution Dataset of Urban Canopy Parameters for Beijing and Its Application to the Integrated WRF/Urban Modelling System. J. Clean. Prod. 2019, 208, 373–383. [Google Scholar] [CrossRef]
- de Morais, M.V.B.; de Freitas, E.D.; Marciotto, E.R.; Guerrero, V.V.U.; Martins, L.D.; Martins, J.A. Implementation of Observed Sky-View Factor in a Mesoscale Model for Sensitivity Studies of the Urban Meteorology. Sustainability 2018, 10, 2183. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Miao, S.; Chen, F.; Liu, Y. Introducing and Evaluating a New Building-Height Categorization Based on the Fractal Dimension into the Coupled WRF/Urban Model. Int. J. Climatol. 2017, 37, 3111–3122. [Google Scholar] [CrossRef]
- Chan, A.; Fung, J.C.H.; Lau, A.K.H. Influence of Urban Morphometric Modification on Regional Boundary-Layer Dynamics. J. Geophys. Res. Atmos. 2013, 118, 2729–2747. [Google Scholar] [CrossRef]
- Pattacini, L. Climate and Urban Form. Urban Des. Int. 2012, 17, 106–114. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy Consumption and Urban Texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Sanaieian, H.; Tenpierik, M.; Van Den Linden, K.; Mehdizadeh Seraj, F.; Mofidi Shemrani, S.M. Review of the Impact of Urban Block Form on Thermal Performance, Solar Access and Ventilation. Renew. Sustain. Energy Rev. 2014, 38, 551–560. [Google Scholar] [CrossRef]
- Ratti, C.; Richens, P. Raster Analysis of Urban Form. Environ. Plan. B Plan. Des. 2004, 31, 297–309. [Google Scholar] [CrossRef]
- Palme, M.; Privitera, R.; La Rosa, D. The Shading Effects of Green Infrastructure in Private Residential Areas: Building Performance Simulation to Support Urban Planning. Energy Build. 2020, 229, 110531. [Google Scholar] [CrossRef]
- Othman, H.A.S.; Alshboul, A.A. The Role of Urban Morphology on Outdoor Thermal Comfort: The Case of Al-Sharq City—Az Zarqa. Urban Clim. 2020, 34, 100706. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A. Which Urban Design Parameters Provide Climate-Proof Cities? An Application of the Urban Cooling InVEST Model in the City of Milan Comparing Historical Planning Morphologies. Sustain. Cities Soc. 2020, 63, 102459. [Google Scholar] [CrossRef]
- Battisti, A. Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces. Energies 2020, 13, 5819. [Google Scholar] [CrossRef]
- Uçlar, S.; Buldurur, M.A. Relation between Urban Form and Heating Energy Consumption. A/Z ITU J. Fac. Archit. 2020, 17, 89–101. [Google Scholar] [CrossRef]
- Leng, H.; Chen, X.; Ma, Y.; Wong, N.H.; Ming, T. Urban Morphology and Building Heating Energy Consumption: Evidence from Harbin, a Severe Cold Region City. Energy Build. 2020, 224, 110143. [Google Scholar] [CrossRef]
- Apreda, C.; Reder, A.; Mercogliano, P. Urban Morphology Parameterization for Assessing the Effects of Housing Blocks Layouts on Air Temperature in the Euro-Mediterranean Context. Energy Build. 2020, 223, 110171. [Google Scholar] [CrossRef]
- Poon, K.H.; Kämpf, J.H.; Tay, S.E.R.; Wong, N.H.; Reindl, T.G. Parametric Study of URBAN Morphology on Building Solar Energy Potential in Singapore Context. Urban Clim. 2020, 33, 100624. [Google Scholar] [CrossRef]
- Liu, N.; Morawska, L. Modeling the Urban Heat Island Mitigation Effect of Cool Coatings in Realistic Urban Morphology. J. Clean. Prod. 2020, 264, 121560. [Google Scholar] [CrossRef]
- Nikoloudakis, N.; Stagakis, S.; Mitraka, Z.; Kamarianakis, Y.; Chrysoulakis, N. Spatial Interpolation of Urban Air Temperatures Using Satellite-Derived Predictors. Theor. Appl. Climatol. 2020, 141, 657–672. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.X.; Norford, L. Mitigating Intensity of Urban Heat Island by Better Understanding on Urban Morphology and Anthropogenic Heat Dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Ramírez, G.; Montes, S.; Lamiquiz, P.J. New Urban Forms, Diversity, and Computational Design: Exploring the Open Block. J. Urban Plan. Dev. 2020, 146, 04020002. [Google Scholar] [CrossRef]
- Salvati, A.; Palme, M.; Chiesa, G.; Kolokotroni, M. Built Form, Urban Climate and Building Energy Modelling: Case-Studies in Rome and Antofagasta. J. Build. Perform. Simul. 2020, 13, 209–225. [Google Scholar] [CrossRef]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the Performance of a Novel WUDAPT Averaging Technique to Define Urban Morphology with Mesoscale Models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Chokhachian, A.; Perini, K.; Giulini, S.; Auer, T. Urban Performance and Density: Generative Study on Interdependencies of Urban Form and Environmental Measures. Sustain. Cities Soc. 2020, 53, 101952. [Google Scholar] [CrossRef]
- Yoseph, W.E.S. Parametric Assessment for Achieving Indoor Environmental Quality (Ieq) in Egypt’s New Urban Communities: Considering New Borg El-Arab City Urban Morphology and Openings’ Specifications; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030173081. [Google Scholar]
- Xu, X.; Yin, C.; Wang, W.; Xu, N.; Hong, T.; Li, Q. Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China. Sustainability 2019, 11, 3683. [Google Scholar] [CrossRef] [Green Version]
- Ghassoun, Y.; Löwner, M.-O.; Weber, S. Wind Direction Related Parameters Improve the Performance of a Land Use Regression Model for Ultrafine Particles. Atmos. Pollut. Res. 2019, 10, 1180–1189. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Y.; Wang, W.; Hong, T.; Xu, N. Performance-Driven Optimization of Urban Open Space Configuration in the Cold-Winter and Hot-Summer Region of China. Build. Simul. 2019, 12, 411–424. [Google Scholar] [CrossRef] [Green Version]
- He, B.-J.; Ding, L.; Prasad, D. Enhancing Urban Ventilation Performance through the Development of Precinct Ventilation Zones: A Case Study Based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khan, A.; Dinda, A.; Mithun, S.; Khatun, R.; Akbari, H.; Kusaka, H.; Mitra, C.; Bhatti, S.S.; Van Doan, Q.; et al. Simulating Micro-Scale Thermal Interactions in Different Building Environments for Mitigating Urban Heat Islands. Sci. Total Environ. 2019, 663, 610–631. [Google Scholar] [CrossRef] [PubMed]
- Salvati, A.; Monti, P.; Coch Roura, H.; Cecere, C. Climatic Performance of Urban Textures: Analysis Tools for a Mediterranean Urban Context. Energy Build. 2019, 185, 162–179. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Wang, S.; Hu, J. Dose Urban Landscape Pattern Affect CO2 Emission Efficiency? Empirical Evidence from Megacities in China. J. Clean. Prod. 2018, 203, 164–178. [Google Scholar] [CrossRef]
- Amaral, A.R.; Rodrigues, E.; Rodrigues Gaspar, A.; Gomes, Á. Review on Performance Aspects of Nearly Zero-Energy Districts. Sustain. Cities Soc. 2018, 43, 406–420. [Google Scholar] [CrossRef]
- Cody, B.; Loeschnig, W.; Eberl, A. Operating Energy Demand of Various Residential Building Typologies in Different European Climates. Smart Sustain. Built Environ. 2018, 7, 226–250. [Google Scholar] [CrossRef] [Green Version]
- Moraitis, P.; Kausika, B.B.; Nortier, N.; Van Sark, W. Urban Environment and Solar PV Performance: The Case of the Netherlands. Energies 2018, 11, 1333. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, V.; Yao, R.; Essah, E.; Shao, L.; Shahrestani, M.; Oliveira, A.C.; Araz, M.; Hepbasli, A.; Biyik, E. A Method of Strategic Evaluation of Energy Performance of Building Integrated Photovoltaic in the Urban Context. J. Clean. Prod. 2018, 184, 82–91. [Google Scholar] [CrossRef]
- Hammerberg, K.; Brousse, O.; Martilli, A.; Mahdavi, A. Implications of Employing Detailed Urban Canopy Parameters for Mesoscale Climate Modelling: A Comparison between WUDAPT and GIS Databases over Vienna, Austria. Int. J. Climatol. 2018, 38, e1241–e1257. [Google Scholar] [CrossRef] [Green Version]
- Pili, S.; Desogus, G.; Melis, D. A GIS Tool for the Calculation of Solar Irradiation on Buildings at the Urban Scale, Based on Italian Standards. Energy Build. 2018, 158, 629–646. [Google Scholar] [CrossRef]
- Pacifici, M.; de Castro Marins, K.R.; Catto, V.d.M.; Rama, F.; Lamour, Q. Morphological and Climate Balance: Proposal for a Method to Analyze Neighborhood Urban Forms by Way of Densification. Sustain. Cities Soc. 2017, 35, 145–156. [Google Scholar] [CrossRef]
- Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B. Simulation of Trace Metals and PAH Atmospheric Pollution over Greater Paris: Concentrations and Deposition on Urban Surfaces. Atmos. Environ. 2017, 167, 360–376. [Google Scholar] [CrossRef]
- Shi, Z.; Fonseca, J.A.; Schlueter, A. A Review of Simulation-Based Urban Form Generation and Optimization for Energy-Driven Urban Design. Build. Environ. 2017, 121, 119–129. [Google Scholar] [CrossRef]
- Saratsis, E.; Dogan, T.; Reinhart, C.F. Simulation-Based Daylighting Analysis Procedure for Developing Urban Zoning Rules. Build. Res. Inf. 2017, 45, 478–491. [Google Scholar] [CrossRef]
- Palme, M.; Inostroza, L.; Villacreses, G.; Lobato-Cordero, A.; Carrasco, C. From Urban Climate to Energy Consumption. Enhancing Building Performance Simulation by Including the Urban Heat Island Effect. Energy Build. 2017, 145, 107–120. [Google Scholar] [CrossRef]
- Perišić, M.; Maletić, D.; Stojić, S.S.; Rajšić, S.; Stojić, A. Forecasting Hourly Particulate Matter Concentrations Based on the Advanced Multivariate Methods. Int. J. Environ. Sci. Technol. 2017, 14, 1047–1054. [Google Scholar] [CrossRef]
- Demuzere, M.; Harshan, S.; Järvi, L.; Roth, M.; Grimmond, C.S.B.; Masson, V.; Oleson, K.W.; Velasco, E.; Wouters, H. Impact of Urban Canopy Models and External Parameters on the Modelled Urban Energy Balance in a Tropical City. Q. J. R. Meteorol. Soc. 2017, 143, 1581–1596. [Google Scholar] [CrossRef]
- Perišić, A.; Lazić, M.; Obradović, R.; Galić, I. Daylight and Urban Morphology: A Model for Analysing the Average Annual Illumination of Residential Housing. Teh. Vjesn. 2016, 23, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the Impact of Urban Morphology Heterogeneity on Land Surface Temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Rodríguez Algeciras, J.A.; Gómez Consuegra, L.; Matzarakis, A. Spatial-Temporal Study on the Effects of Urban Street Configurations on Human Thermal Comfort in the World Heritage City of Camagüey-Cuba. Build. Environ. 2016, 101, 85–101. [Google Scholar] [CrossRef]
- Taki, A.; Alabid, J. Learning from Bioclimatic Desert Architecture: A Case Study of Ghadames, Libya. In Research Methodology in the Built Environment: A Selection of Case Studies; Routledge: London, UK, 2016; Volume 1, pp. 169–185. ISBN 9781317534259. [Google Scholar]
- Jurelionis, A.; Bouris, D.G. Impact of Urban Morphology on Infiltration-Induced Building Energy Consumption. Energies 2016, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Oertel, A.; Emmanuel, R.; Drach, P. Assessment of Predicted versus Measured Thermal Comfort and Optimal Comfort Ranges in the Outdoor Environment in the Temperate Climate of Glasgow, UK. Build. Serv. Eng. Res. Technol. 2015, 36, 482–499. [Google Scholar] [CrossRef]
- Sarralde, J.J.; Quinn, D.J.; Wiesmann, D.; Steemers, K. Solar Energy and Urban Morphology: Scenarios for Increasing the Renewable Energy Potential of Neighbourhoods in London. Renew. Energy 2015, 73, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Pay, M.T.; Martínez, F.; Guevara, M.; Baldasano, J.M. Air Quality Forecasts on a Kilometer-Scale Grid over Complex Spanish Terrains. Geosci. Model Dev. 2014, 7, 1979–1999. [Google Scholar] [CrossRef] [Green Version]
- Bueno, B.; Roth, M.; Norford, L.; Li, R. Computationally Efficient Prediction of Canopy Level Urban Air Temperature at the Neighbourhood Scale. Urban Clim. 2014, 9, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Hofman, J.; Lefebvre, W.; Janssen, S.; Nackaerts, R.; Nuyts, S.; Mattheyses, L.; Samson, R. Increasing the Spatial Resolution of Air Quality Assessments in Urban Areas: A Comparison of Biomagnetic Monitoring and Urban Scale Modelling. Atmos. Environ. 2014, 92, 130–140. [Google Scholar] [CrossRef]
- Gros, A.; Bozonnet, E.; Inard, C. Modelling the Radiative Exchanges in Urban Areas: A Review. Adv. Build. Energy Res. 2011, 5, 163–206. [Google Scholar] [CrossRef]
- Salat, S. Energy Loads, CO2 Emissions and Building Stocks: Morphologies, Typologies, Energy Systems and Behaviour. Build. Res. Inf. 2009, 37, 598–609. [Google Scholar] [CrossRef]
- Al-Maiyah, S.; Elkadi, H. The Role of Daylight in Preserving Identities in Heritage Context. Renew. Sustain. Energy Rev. 2007, 11, 1544–1557. [Google Scholar] [CrossRef]
- Blocken, B. 50 Years of Computational Wind Engineering: Past, Present and Future. J. Wind Eng. Ind. Aerodyn. 2014, 129, 69–102. [Google Scholar] [CrossRef]
- WHO Air Quality Guidelines for Europe. Environ. Sci. Pollut. Res. 2000, 3, 23. [CrossRef]
- Neophytou, M.K.-A.; Britter, R.E. Modelling the Wind Flow in Complex Urban Topographies: A Computational-Fluid-Dynamics Simulation of the Central London Area. In Proceedings of the 5th GRACM International Congress on Comput Mech, Limassol, Cyprus, 29 June–1 July 2005; pp. 967–974. [Google Scholar]
- Hang, J.; Sandberg, M.; Li, Y. Age of Air and Air Exchange Efficiency in Idealized City Models. Build. Environ. 2009, 44, 1714–1723. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK; New York, NY, USA, 1987. [Google Scholar]
- Bottema, M. Urban roughness modelling in relation to pollutant dispersion. Atmos. Environ. 1997, 31, 3059–3075. [Google Scholar] [CrossRef]
- Lettau, H. Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness-Element Description. J. Appl. Meteorol. Climatol. 1969, 8, 828–832. [Google Scholar] [CrossRef] [Green Version]
- Wieringa, J. Updating the Davenport Roughness Classification. J. Wind. Eng. Ind. Aerodyn. 1992, 41, 357–368. [Google Scholar] [CrossRef]
- Wieringa, J. Representative Roughness Parameters for Homogeneous Terrain. Bound.-Layer Meteorol. 1993, 63, 323–363. [Google Scholar] [CrossRef]
- Raupach, M.R.; Thom, A.S.; Edwards, I. A Wind-Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surfaces. Bound.-Layer Meteorol. 1980, 18, 373–397. [Google Scholar] [CrossRef]
- Hussain, M.; Lee, B.E. A Wind Tunnel Study of the Mean Pressure Forces Acting on Large Groups of Low-Rise Buildings. J. Wind Eng. Ind. Aerodyn. 1980, 6, 207–225. [Google Scholar] [CrossRef]
- Cheng, H.; Castro, I.P. Near wall flow over urban-like roughness. Bound.-Layer Meteorol. 2002, 104, 229–259. [Google Scholar] [CrossRef]
- Kanda, M.; Moriwaki, R.; Kasamatsu, F. Large-Eddy Simulation of Turbulent Organized Structures within and above Explicitly Resolved Cube Arrays. Bound.-Layer Meteorol. 2004, 112, 343–368. [Google Scholar] [CrossRef]
- Coceal, O.; Thomas, T.G.; Castro, I.P.; Belcher, S.E. Mean Flow and Turbulence Statistics over Groups of Urban-like Cubical Obstacles. Bound.-Layer Meteorol. 2006, 121, 491–519. [Google Scholar] [CrossRef]
- Kanda, M. Large-Eddy Simulations on the Effects of Surface Geometry of Building Arrays on Turbulent Organized Structures. Bound.-Layer Meteorol. 2006, 118, 151–168. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Hunter, L.J.; Johnson, G.T.; Watson, I.D. An Investigation of Three-Dimensional Characteristics of Flow Regimes within the Urban Canyon. Atmos. Environ. 1992, 26, 425–432. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Sini, J.F.; Anquetin, S.; Mestayer, P.G. Pollutant Dispersion and Thermal Effects in Urban Street Canyons. Atmos. Environ. 1996, 30, 2659–2677. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Palusci, O.; Pini, A.; Leuzzi, G.; Cacciani, M.; Pelliccioni, A.; Monti, P. Air Circulation in Urban Areas. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 195–221. ISBN 978-3-030-65421-4. [Google Scholar]
- Britter, R.E.; Hanna, S.R. Flow and Dispersion in Urban Areas. Annu. Rev. Phys. Chem. 2000, 51, 275–296. [Google Scholar] [CrossRef]
- Xiaomin, X.; Zhen, H.; Jiasong, W. The Impact of Urban Street Layout on Local Atmospheric Environment. Build. Environ. 2006, 41, 1352–1363. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Water-Channel Estimation of Eulerian and Lagrangian Time Scales of the Turbulence in Idealized Two-Dimensional Urban Canopies. Bound.-Layer Meteorol. 2017, 165, 251–276. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Pollutant Fluxes in Two-Dimensional Street Canyons. Urban Clim. 2018, 24, 80–93. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J.S. Impact of Building Configuration on Air Quality in Street Canyon. Atmos. Environ. 2005, 39, 4519–4530. [Google Scholar] [CrossRef]
- Badas, M.G.; Ferrari, S.; Garau, M.; Querzoli, G. On the Effect of Gable Roof on Natural Ventilation in Two-Dimensional Urban Canyons. J. Wind. Eng. Ind. Aerodyn. 2017, 162, 24–34. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J.; Xie, Z. The Impact of Solar Radiation and Street Layout on Pollutant Dispersion in Street Canyon. Build. Environ. 2005, 40, 201–212. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M. CFD Simulation of Flow in a Long Street Canyon under a Perpendicular Wind Direction: Evaluation of Three Computational Settings. Build. Environ. 2017, 114, 293–306. [Google Scholar] [CrossRef]
- Llaguno-Munitxa, M.; Bou-Zeid, E. Shaping Buildings to Promote Street Ventilation: A Large-Eddy Simulation Study. Urban Clim. 2018, 26, 76–94. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Claesson, L. Wind Conditions and Ventilation in High-Rise Long Street Models. Build. Environ. 2010, 45, 1353–1365. [Google Scholar] [CrossRef] [Green Version]
- Hunter, L.J.; Watson, I.D.; Johnson, G.T. Modelling Air Flow Regimes in Urban Canyons. Energy Build. 1990, 91, 15–16. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M. Experimental and Numerical Studies of Flows through and within High-Rise Building Arrays and Their Link to Ventilation Strategy. J. Wind Eng. Ind. Aerodyn. 2011, 99, 1036–1055. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y. Age of Air and Air Exchange Efficiency in High-Rise Urban Areas and Its Link to Pollutant Dilution. Atmos. Environ. 2011, 45, 5572–5585. [Google Scholar] [CrossRef]
- Hu, T.; Yoshie, R. Indices to Evaluate Ventilation Efficiency in Newly-Built Urban Area at Pedestrian Level. J. Wind Eng. Ind. Aerodyn. 2013, 112, 39–51. [Google Scholar] [CrossRef]
- Yim, S.H.L.; Fung, J.C.H.; Lau, A.K.H.; Kot, S.C. Air Ventilation Impacts of the “Wall Effect” Resulting from the Alignment of High-Rise Buildings. Atmos. Environ. 2009, 43, 4982–4994. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; Di Sabatino, S. The Influence of Building Height Variability on Pollutant Dispersion and Pedestrian Ventilation in Idealized High-Rise Urban Areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Lin, M.; Hang, J.; Li, Y.; Luo, Z.; Sandberg, M. Quantitative Ventilation Assessments of Idealized Urban Canopy Layers with Various Urban Layouts and the Same Building Packing Density. Build. Environ. 2014, 79, 152–167. [Google Scholar] [CrossRef]
- Hagishima, A.; Tanimoto, J.; Nagayama, K.; Meno, S. Aerodynamic Parameters of Regular Arrays of Rectangular Blocks with Various Geometries. Bound.-Layer Meteorol. 2009, 132, 315–337. [Google Scholar] [CrossRef]
- Razak, A.A.; Hagishima, A.; Ikegaya, N.; Tanimoto, J. Analysis of Airflow over Building Arrays for Assessment of Urban Wind Environment. Build. Environ. 2013, 59, 56–65. [Google Scholar] [CrossRef]
- Cantelli, A.; Monti, P.; Leuzzi, G. Numerical Study of the Urban Geometrical Representation Impact in a Surface Energy Budget Model. Environ. Fluid Mech. 2015, 15, 251–273. [Google Scholar] [CrossRef]
- Chen, L.; Hang, J.; Sandberg, M.; Claesson, L.; Sabatino, S.D.; Wigo, H. The Impacts of Building Height Variations and Building Packing Densities on Flow Adjustment and City Breathability in Idealized Urban Models. Build. Environ. 2017, 118, 344–361. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Turbulent Schmidt Number Measurements Over Three-Dimensional Cubic Arrays. Bound.-Layer Meteorol. 2020, 174, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Conigliaro, E.; Monti, P.; Leuzzi, G.; Cantelli, A. Urban Climate A Three-Dimensional Urban Canopy Model for Mesoscale Atmospheric Simulations and Its Comparison with a Two-Dimensional Urban Canopy Model in an Idealized Case. Urban Clim. 2021, 37, 100831. [Google Scholar] [CrossRef]
- Santiago, J.L.; Coceal, O.; Martilli, A.; Belcher, S.E. Variation of the Sectional Drag Coefficient of a Group of Buildings with Packing Density. Build. Vent. Theory Meas. 2008, 128, 445–457. [Google Scholar] [CrossRef]
- Ikegaya, N.; Ikeda, Y.; Hagishima, A.; Razak, A.A.; Tanimoto, J. A Prediction Model for Wind Speed Ratios at Pedestrian Level with Simplified Urban Canopies. Theor. Appl. Climatol. 2017, 127, 655–665. [Google Scholar] [CrossRef]
- Soulhac, L.; Garbero, V.; Salizzoni, P.; Mejean, P.; Perkins, R.J. Flow and Dispersion in Street Intersections. Atmos. Environ. 2009, 43, 2981–2996. [Google Scholar] [CrossRef]
- Amicarelli, A.; Salizzoni, P.; Leuzzi, G.; Monti, P.; Soulhac, L.; Cierco, F.-X.; Leboeuf, F. Sensitivity Analysis of a Concentration Fluctuation Model to Dissipation Rate Estimates. Int. J. Environ. Pollut. 2012, 48, 164–173. [Google Scholar] [CrossRef]
- Kubota, T.; Miura, M.; Tominaga, Y.; Mochida, A. Wind Tunnel Tests on the Relationship between Building Density and Pedestrian-Level Wind Velocity: Development of Guidelines for Realizing Acceptable Wind Environment in Residential Neighborhoods. Build. Environ. 2008, 43, 1699–1708. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S.S.Y. Urban Form and Density as Indicators for Summertime Outdoor Ventilation Potential: A Case Study on High-Rise Housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Tsichritzis, L.; Nikolopoulou, M. The Effect of Building Height and Façade Area Ratio on Pedestrian Wind Comfort of London. J. Wind Eng. Ind. Aerodyn. 2019, 191, 63–75. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M. Application of Computational Fluid Dynamics in Building Performance Simulation for the Outdoor Environment: An Overview. J. Build. Perform. Simul. 2011, 157–184. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; Stathopoulos, T.; van Heijst, G.J.F. CFD Simulation of Near-Field Pollutant Dispersion on a High-Resolution Grid: A Case Study by LES and RANS for a Building Group in Downtown Montreal. Atmos. Environ. 2011, 45, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Nozu, T.; Tamura, T. LES of Turbulent Wind and Gas Dispersion in a City. J. Wind Eng. Ind. Aerodyn. 2012, 104–106, 492–499. [Google Scholar] [CrossRef]
- Tominaga, Y. Visualization of City Breathability Based on CFD Technique: Case Study for Urban Blocks in Niigata City. J. Vis. 2012, 15, 269–276. [Google Scholar] [CrossRef]
- Janssen, W.D.; Blocken, B.; van Hooff, T. Pedestrian Wind Comfort around Buildings: Comparison of Wind Comfort Criteria Based on Whole-Flow Field Data for a Complex Case Study. Build. Environ. 2013, 59, 547–562. [Google Scholar] [CrossRef]
- Panagiotou, I.; Neophytou, M.K.-A.; Hamlyn, D.; Britter, R.E. City Breathability as Quantified by the Exchange Velocity and Its Spatial Variation in Real Inhomogeneous Urban Geometries: An Example from Central London Urban Area. Sci. Total Environ. 2013, 442, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Toparlar, Y.; Blocken, B.; Vos, P.; Van Heijst, G.J.F.; Janssen, W.D.; van Hooff, T.; Montazeri, H.; Timmermans, H.J.P. CFD Simulation and Validation of Urban Microclimate: A Case Study for Bergpolder Zuid, Rotterdam. Build. Environ. 2015, 83, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B.; Vervoort, R.; van Hooff, T. Reduction of Outdoor Particulate Matter Concentrations by Local Removal in Semi-Enclosed Parking Garages: A Preliminary Case Study for Eindhoven City Center. J. Wind Eng. Ind. Aerodyn. 2016, 159, 80–98. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Monti, P.; Leuzzi, G. An Alternative Wind Profile Formulation for Urban Areas in Neutral Conditions. Environ. Fluid Mech. 2015, 15, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, N.; Montazeri, H.; Wigo, H.; Neophytou, M.K.A.; Blocken, B.; Sandberg, M. CFD and Wind-Tunnel Analysis of Outdoor Ventilation in a Real Compact Heterogeneous Urban Area: Evaluation Using “Air Delay”. Build. Environ. 2017, 126, 355–372. [Google Scholar] [CrossRef]
- Ricci, A.; Kalkman, I.; Blocken, B.; Burlando, M.; Freda, A.; Repetto, M.P. Local-Scale Forcing Effects on Wind Flows in an Urban Environment: Impact of Geometrical Simplifications. J. Wind Eng. Ind. Aerodyn. 2017, 170, 238–255. [Google Scholar] [CrossRef]
- Liu, S.; Pan, W.; Zhao, X.; Zhang, H.; Cheng, X.; Long, Z.; Chen, Q. Influence of Surrounding Buildings on Wind Flow around a Building Predicted by CFD Simulations. Build. Environ. 2018, 140, 1–10. [Google Scholar] [CrossRef]
- Vervoort, R.; Blocken, B.; van Hooff, T. Reduction of Particulate Matter Concentrations by Local Removal in a Building Courtyard: Case Study for the Delhi American Embassy School. Sci. Total Environ. 2019, 686, 657–680. [Google Scholar] [CrossRef]
- Longo, R.; Bellemans, A.; Derudi, M.; Parente, A. A Multi-Fidelity Framework for the Estimation of the Turbulent Schmidt Number in the Simulation of Atmospheric Dispersion. Build. Environ. 2020, 185, 107066. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Monti, P.; Cattani, G.; Boccuni, F.; Cacciani, M.; Canepari, S.; Capone, P.; Catrambone, M.; Cusano, M.; D’Ovidio, M.C.; et al. Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project. Sustainability 2020, 12, 9758. [Google Scholar] [CrossRef]
- Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S. Application of Improved CFD Modeling for Prediction and Mitigation of Traffic-Related Air Pollution Hotspots in a Realistic Urban Street. Atmos. Environ. 2021, 246, 118127. [Google Scholar] [CrossRef]
- Iannarelli, A.M.; Di Bernardino, A.; Casadio, S.; Bassani, C.; Cacciani, M.; Campanelli, M.; Casasanta, G.; Cadau, E.; Diémoz, H.; Mevi, G.; et al. The Boundary Layer Air Quality-Analysis Using Network of Instruments (BAQUNIN) Supersite for Atmospheric Research and Satellite Validation over Rome Area. Bull. Am. Meteorol. Soc. 2021, 103, E599–E618. [Google Scholar] [CrossRef]
- Buccolieri, R.; Wigö, H.; Sandberg, M.; Di Sabatino, S. Direct Measurements of the Drag Force over Aligned Arrays of Cubes Exposed to Boundary-Layer Flows. Environ. Fluid Mech. 2017, 17, 373–394. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment; University of Hamburg: Hamburg, Germany, 2007; Volume 44, ISBN 3000183124. [Google Scholar]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems. Atmos. Environ. 2007, 41, 238–252. [Google Scholar] [CrossRef]
- van Hooff, T.; Blocken, B. Coupled Urban Wind Flow and Indoor Natural Ventilation Modelling on a High-Resolution Grid: A Case Study for the Amsterdam ArenA Stadium. Environ. Model. Softw. 2010, 25, 51–65. [Google Scholar] [CrossRef]
- Schatzmann, M.; Olesen, H.; Franke, J. Cost 732 Model Evaluation Case Studies: Approach and Results; University of Hamburg: Hamburg, Germany, 2010; ISBN 3000183124. [Google Scholar]
- Roache, P.J. Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef] [Green Version]
- Heinke Schlunzen, K.; Grawe, D.; Bohnenstengel, S.I.; Schï Uter, C.I.; Koppmann, R. Joint Modelling of Obstacle Induced and Mesoscale Changes-Current Limits and Challenges. Jnl. Wind Eng. Ind. Aerodyn. 2011, 99, 217–225. [Google Scholar] [CrossRef]
- Morris, H.M.J. Flow in Rough Conduits. Trans. Am. Soc. Civ. Eng. 1955, 120, 373–398. [Google Scholar] [CrossRef]
- Lee, B.E.; Soliman, B.F. An Investigation of the Forces on Three Dimensional Bluff Bodies in Lough Wall Turbulent Boundary Layers. Fluids Eng. 1977, 99, 503–509. [Google Scholar] [CrossRef]
- Grosso, M.; Parisi, E.; D’Elia, I.C. The Effect of Urban Form on Wind Pressure Drag. In Proceedings of the World Renewable Energy Congress VI, Pergamon, Germany, 1 January 2000; pp. 444–449. [Google Scholar]
- Ho, Y.-K.; Liu, C.-H.; Wong, M.S. Preliminary Study of the Parameterisation of Street-Level Ventilation in Idealised Two-Dimensional Simulations. Build. Environ. 2015, 89, 345–355. [Google Scholar] [CrossRef]
- Buccolieri, R.; Salizzoni, P.; Soulhac, L.; Garbero, V.; Di Sabatino, S. The Breathability of Compact Cities. Urban Clim. 2015, 13, 73–93. [Google Scholar] [CrossRef]
- Bentham, T.; Britter, R.E. Spatially Averaged Flow within Obstacle Arrays. Atmos. Environ. 2003, 37, 2037–2043. [Google Scholar] [CrossRef]
- Buccolieri, R.; Sandberg, M.; Di Sabatino, S. City Breathability and Its Link to Pollutant Concentration Distribution within Urban-like Geometries. Atmos. Environ. 2010, 44, 1894–1903. [Google Scholar] [CrossRef]
- Hang, J.; Wang, Q.; Chen, X.; Sandberg, M.; Zhu, W.; Buccolieri, R.; Di Sabatino, S. City Breathability in Medium Density Urban-like Geometries Evaluated through the Pollutant Transport Rate and the Net Escape Velocity. Build. Environ. 2015, 94, 166–182. [Google Scholar] [CrossRef]
- Skote, M.; Sandberg, M.; Westerberg, U.; Claesson, L.; Johansson, A.V. Numerical and Experimental Studies of Wind Environment in an Urban Morphology. Atmos. Environ. 2005, 39, 6147–6158. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Pulvirenti, B.; Britter, R.E. Simulations of Pollutant Dispersion within Idealised Urban-Type Geometries with CFD and Integral Models. Atmos. Environ. 2007, 41, 8316–8329. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y.; Claesson, L. Pollutant Dispersion in Idealized City Models with Different Urban Morphologies. Atmos. Environ. 2009, 43, 6011–6025. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y. Effect of Urban Morphology on Wind Condition in Idealized City Models. Atmos. Environ. 2009, 43, 869–878. [Google Scholar] [CrossRef]
- Bady, M.; Kato, S.; Huang, H. Towards the Application of Indoor Ventilation Efficiency Indices to Evaluate the Air Quality of Urban Areas. Build. Environ. 2008, 43, 1991–2004. [Google Scholar] [CrossRef]
- Sandberg, M. What Is Ventilation Efficiency? Build. Environ. 1981, 16, 123–135. [Google Scholar] [CrossRef]
- Etheridge, D.W.; Sandberg, M. Building Ventilation: Theory and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 1996; ISBN 9780471960874. [Google Scholar]
- Huang, H.; Kato, S.; Ooka, R.; Jiang, T. CFD Analysis of Ventilation Efficiency around an Elevated Highway Using Visitation Frequency and Purging Flow Rate. Wind Struct. Int. J. 2006, 9, 297–313. [Google Scholar] [CrossRef]
- Cheng, W.C.; Liu, C.H.; Leung, D.Y.C. Computational Formulation for the Evaluation of Street Canyon Ventilation and Pollutant Removal Performance. Atmos. Environ. 2008, 42, 9041–9051. [Google Scholar] [CrossRef]
- Bu, Z.; Kato, S.; Ishida, Y.; Huang, H. New Criteria for Assessing Local Wind Environment at Pedestrian Level Based on Exceedance Probability Analysis. Build. Environ. 2009, 44, 1501–1508. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y. Ventilation Strategy and Air Change Rates in Idealized High-Rise Compact Urban Areas. Build. Environ. 2010, 45, 2754–2767. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y.; Claesson, L. Flow Mechanisms and Flow Capacity in Idealized Long-Street City Models. Build. Environ. 2010, 45, 1042–1053. [Google Scholar] [CrossRef]
- Hang, J.; Luo, Z.; Sandberg, M.; Gong, J. Natural Ventilation Assessment in Typical Open and Semi-Open Urban Environments under Various Wind Directions. Build. Environ. 2013, 70, 318–333. [Google Scholar] [CrossRef]
- Mei, S.-J.; Hu, J.-T.; Liu, D.; Zhao, F.-Y.; Li, Y.; Wang, Y.; Wang, H.-Q. Wind Driven Natural Ventilation in the Idealized Building Block Arrays with Multiple Urban Morphologies and Unique Package Building Density. Energy Build. 2017, 155, 324–338. [Google Scholar] [CrossRef]
- Peng, Y.; Buccolieri, R.; Gao, Z.; Ding, W. Indices Employed for the Assessment of “Urban Outdoor Ventilation”—A Review. Atmos. Environ. 2020, 223, 117211. [Google Scholar] [CrossRef]
- Bady, M.; Kato, S.; Takahashi, T.; Huang, H. An Experimental Investigation of the Wind Environment and Air Quality within a Densely Populated Urban Street Canyon. J. Wind Eng. Ind. Aerodyn. 2011, 99, 857–867. [Google Scholar] [CrossRef]
- Carpentieri, M.; Robins, A.G. Influence of Urban Morphology on Air Flow over Building Arrays. J. Wind Eng. Ind. Aerodyn. 2015, 145, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Juan, Y.-H.; Yang, A.-S.; Wen, C.-Y.; Lee, Y.-T.; Wang, P.-C. Optimization Procedures for Enhancement of City Breathability Using Arcade Design in a Realistic High-Rise Urban Area. Build. Environ. 2017, 121, 247–261. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Juan, Y.-H.; Yang, A.-S. Enhancement of City Breathability with Half Open Spaces in Ideal Urban Street Canyons. Build. Environ. 2017, 112, 322–336. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Li, Y. Application of a Multi-Variable Optimization Method to Determine Lift-up Design for Optimum Wind Comfort. Build. Environ. 2018, 131, 242–254. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Li, Y. A Multi-Stage Optimization of Pedestrian Level Wind Environment and Thermal Comfort with Lift-up Design in Ideal Urban Canyons. Sustain. Cities Soc. 2019, 46, 101424. [Google Scholar] [CrossRef]
- Melbourne, W.H. Criteria for Environmental Wind Conditions. J. Wind Eng. Ind. Aerodyn. 1978, 3, 241–249. [Google Scholar] [CrossRef]
- Williams, C.J.; Hunter, M.A.; Waechter, W.F. Criteria for Assessing the Pedestrian Wind Environment. J. Wind Eng. Ind. Aerodyn. 1990, 36, 811–815. [Google Scholar] [CrossRef]
- Lawson, T.V. The Wind Content of the Built Environment. J. Wind Eng. Ind. Aerodyn. 1978, 3, 93–105. [Google Scholar] [CrossRef]
- QGIS Documentation. Available online: https://docs.qgis.org/3.16/en/docs/training_manual (accessed on 9 June 2021).
- Carta Tecnica Regionale. Available online: http://dati.lazio.it/catalog/it/dataset/carta-tecnica-regionale-2002-2003-5k-roma/resource/ee089059-bdec-499c-a91c-a3f2a71f32ce (accessed on 28 November 2016).
- Urban Atlas. 2006. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 31 July 2014).
Daily Mean Temperature (°C) | |||
---|---|---|---|
<10 | 10–25 | >25 | |
Daily mean wind velocity range causing thermal discomfort due to insufficient wind speed (m/s) | - | - | <0.7 |
Daily mean wind velocity range realizing acceptable wind environment (m/s) | <1.3 | <1.5 | 0.7–1.7 |
Transition range of daily mean wind velocity from acceptable wind to strong wind (m/s) | 1.3–2.0 | 1.5–2.3 | 1.7–2.9 |
Daily mean wind velocity range causing strong wind-inducted discomfort (m/s) | >2.0 | >2.3 | >2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palusci, O.; Cecere, C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability 2022, 14, 3948. https://doi.org/10.3390/su14073948
Palusci O, Cecere C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability. 2022; 14(7):3948. https://doi.org/10.3390/su14073948
Chicago/Turabian StylePalusci, Olga, and Carlo Cecere. 2022. "Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas" Sustainability 14, no. 7: 3948. https://doi.org/10.3390/su14073948
APA StylePalusci, O., & Cecere, C. (2022). Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability, 14(7), 3948. https://doi.org/10.3390/su14073948