A Sustainable Intermodal Location-Routing Optimization Approach: A Case Study of the Bohai Rim Region
Abstract
:1. Introduction
2. Literature Review
3. Model Formulation and Method
3.1. Fuzzy C-Means Clustering Method
3.2. Multi-Objective Optimization Model
3.2.1. Model Assumptions and Variables
3.2.2. The Multi-Objective Optimization Model Construction
3.2.3. Solution Methodology
4. Case Analysis
4.1. Data Sources
4.2. Node Selection
4.3. Route Optimization Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sea | Rail | Road | |
---|---|---|---|
Variable transportation cost ($/km) | 0.19 | 0.5 | 2 |
Average speed (km/h) | 35 | 60 | 90 |
Carbon footprint (kg/ton-km) | 0.084 | 0.205 | 0.472 |
Sea | Rail | Road | |
---|---|---|---|
Sea | 0.7 | 0.17 | 0.17 |
Rail | 0.17 | 0.4 | 0.12 |
Road | 0.17 | 0.12 | 0.1 |
Sea | Rail | Road | |
Sea | 100 | 150 | 88 |
Rail | 150 | 80 | 100 |
Road | 88 | 100 | 50 |
Guangzhou | Dalian | Tianjin | Qingdao | Shenyang | Beijing | Tangshan | Shijiazhuang | Jinan | Changchun | Huhhot | Baotou | Taiyuan | Harbin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhanjiang | 432 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Guangzhou | - | 3264 | 2374 | 2121 | 3078 | 2478 | 2455 | 2199 | 2027 | 3393 | 2840 | 3112 | 2251 | 3753 |
Dalian | - | - | 1104 | - | 397 | 1138 | 722 | 1523 | 1464 | 702 | 1805 | 1957 | 1652 | 944 |
Tianjin | - | - | - | 753 | 707 | 137 | 123 | 419 | 360 | 1012 | 804 | 961 | 650 | 1254 |
Qingdao | - | - | - | - | 1460 | 953 | 818 | 822 | 393 | 1765 | 1557 | 1777 | 925 | 2007 |
Shenyang | - | - | - | - | - | 741 | 552 | 1126 | 1067 | 305 | 1408 | 1560 | 1255 | 547 |
Beijing | - | - | - | - | - | - | 151 | 283 | 497 | 1046 | 667 | 824 | 514 | 1288 |
Tangshan | - | - | - | - | - | - | - | 420 | 579 | 866 | 802 | 975 | 643 | 1105 |
Shijiazhuang | - | - | - | - | - | - | - | - | 301 | 1431 | 871 | 1069 | 231 | 1673 |
Jinan | - | - | - | - | - | - | - | - | - | 1372 | 1164 | 1213 | 532 | 1614 |
Changchun | - | - | - | - | - | - | - | - | - | - | 1713 | 1639 | 1560 | 242 |
Huhhot | - | - | - | - | - | - | - | - | - | - | - | 272 | 640 | 1955 |
Baotou | - | - | - | - | - | - | - | - | - | - | - | - | 668 | 1878 |
Taiyuan | - | - | - | - | - | - | - | - | - | - | - | - | - | 1802 |
Guangzhou | Dalian | Tianjin | Qingdao | Shenyang | Beijing | Tangshan | Shijiazhuang | Jinan | Changchun | Huhhot | Baotou | Taiyuan | Harbin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhanjiang | 416.5 | 3243.6 | 2441.2 | 2310.7 | 3100.4 | 2458 | 2551.9 | 2191.5 | 2168.9 | 3376.7 | 2639.2 | 2786.2 | 2207.7 | 3708.7 |
Guangzhou | - | 2899.1 | 2096.2 | 1907.5 | 2756 | 2112.7 | 2206.9 | 1846.2 | 1823.2 | 3032.5 | 2294.1 | 2441.2 | 1862.6 | 3363.9 |
Dalian | - | - | 824 | 397 | 379 | 840 | 702 | 1105 | 1122 | 676 | 1313 | 1488 | 1304 | 936 |
Tianjin | - | - | - | 527 | 679 | 134 | 131 | 314 | 330 | 956 | 612 | 787 | 513 | 1293 |
Qingdao | - | - | - | - | 1176 | 652 | 637 | 644 | 351 | 1452 | 1131 | 1306 | 852 | 1790 |
Shenyang | - | - | - | - | - | 696 | 558 | 962 | 979 | 308 | 1170 | 1345 | 1163 | 567 |
Beijing | - | - | - | - | - | - | 179 | 292 | 410 | 972 | 482 | 657 | 490 | 1287 |
Tangshan | - | - | - | - | - | - | - | 424 | 440 | 834 | 654 | 828 | 622 | 1172 |
Shijiazhuang | - | - | - | - | - | - | - | - | 327 | 1237 | 593 | 765 | 224 | 1574 |
Jinan | - | - | - | - | - | - | - | - | - | 1256 | 864 | 1037 | 522 | 1593 |
Changchun | - | - | - | - | - | - | - | - | - | - | 1413 | 1587 | 1446 | 254 |
Huhhot | - | - | - | - | - | - | - | - | - | - | - | 180 | 440 | 1721 |
Baotou | - | - | - | - | - | - | - | - | - | - | - | 618 | 1902 | |
Taiyuan | - | - | - | - | - | - | - | - | - | - | - | - | 1773 |
Guangzhou | Dalian | Tianjin | Qingdao | Shenyang | Beijing | Tangshan | Shijiazhuang | Jinan | Changchun | Huhhot | Baotou | Taiyuan | Harbin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhanjiang | - | 2683.8 | 2939.4 | 2426.4 | - | - | - | - | - | - | - | - | - | - |
Guangzhou | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Dalian | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tianjin | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Qingdao | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Shenyang | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Beijing | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tangshan | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Shijiazhuang | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Jinan | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Changchun | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Huhhot | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Baotou | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Taiyuan | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Dalian | Tianjin | Qingdao | Shenyang | Beijing | Tangshan | Shijiazhuang | Jinan | Changchun | Huhhot | Baotou | Taiyuan | Harbin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Busan | - | - | - | - | - | - | - | - | - | - | - | - | - |
Dalian | - | 1104 | - | 397 | 1138 | 722 | 1523 | 1464 | 702 | 1805 | 1957 | 1652 | 944 |
Tianjin | - | - | 753 | 707 | 137 | 123 | 419 | 360 | 1012 | 804 | 961 | 650 | 1254 |
Qingdao | - | - | - | 1460 | 953 | 818 | 822 | 393 | 1765 | 1557 | 1777 | 925 | 2007 |
Shenyang | - | - | - | - | 741 | 552 | 1126 | 1067 | 305 | 1408 | 1560 | 1255 | 547 |
Beijing | - | - | - | - | - | 151 | 283 | 497 | 1046 | 667 | 824 | 514 | 1288 |
Tangshan | - | - | - | - | - | - | 420 | 579 | 866 | 802 | 975 | 643 | 1105 |
Shijiazhuang | - | - | - | - | - | - | - | 301 | 1431 | 871 | 1069 | 231 | 1673 |
Jinan | - | - | - | - | - | - | - | - | 1372 | 1164 | 1213 | 532 | 1614 |
Changchun | - | - | - | - | - | - | - | - | - | 1713 | 1639 | 1560 | 242 |
Huhhot | - | - | - | - | - | - | - | - | - | - | 165 | 640 | 1955 |
Baotou | - | - | - | - | - | - | - | - | - | - | - | 668 | 1878 |
Taiyuan | - | - | - | - | - | - | - | - | - | - | - | - | 1802 |
Dalian | Tianjin | Qingdao | Shenyang | Beijing | Tangshan | Shijiazhuang | Jinan | Changchun | Huhhot | Baotou | Taiyuan | Harbin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Busan | - | - | - | - | - | - | - | - | - | - | - | - | - |
Dalian | - | 824 | 397 | 379 | 840 | 702 | 1105 | 1122 | 676 | 1313 | 1488 | 1304 | 936 |
Tianjin | - | - | 527 | 679 | 134 | 131 | 314 | 330 | 956 | 612 | 787 | 513 | 1293 |
Qingdao | - | - | - | 1176 | 652 | 637 | 644 | 351 | 1452 | 1131 | 1306 | 852 | 1790 |
Shenyang | - | - | - | - | 696 | 558 | 962 | 979 | 308 | 1170 | 1345 | 1163 | 567 |
Beijing | - | - | - | - | - | 179 | 292 | 410 | 972 | 482 | 657 | 490 | 1287 |
Tangshan | - | - | - | - | - | - | 424 | 440 | 834 | 654 | 828 | 622 | 1172 |
Shijiazhuang | - | - | - | - | - | - | - | 327 | 1237 | 593 | 765 | 224 | 1574 |
Jinan | - | - | - | - | - | - | - | - | 1256 | 864 | 1037 | 522 | 1593 |
Changchun | - | - | - | - | - | - | - | - | - | 1413 | 1587 | 1446 | 254 |
Huhhot | - | - | - | - | - | - | - | - | - | - | 180 | 440 | 1721 |
Baotou | - | - | - | - | - | - | - | - | - | - | - | 618 | 1902 |
Taiyuan | - | - | - | - | - | - | - | - | - | - | - | - | 1773 |
Dalian | Tianjin | Qingdao | Shenyang | Beijing | Tangshan | Shijiazhuang | Jinan | Changchun | Huhhot | Baotou | Taiyuan | Harbin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Busan | 982.8 | 1324.8 | 891 | - | - | - | - | - | - | - | - | - | - |
Dalian | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tianjin | - | - | - | - | - | - | - | - | - | - | - | - | - |
Qingdao | - | - | - | - | - | - | - | - | - | - | - | - | - |
Shenyang | - | - | - | - | - | - | - | - | - | - | - | - | - |
Beijing | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tangshan | - | - | - | - | - | - | - | - | - | - | - | - | - |
Shijiazhuang | - | - | - | - | - | - | - | - | - | - | - | - | - |
Jinan | - | - | - | - | - | - | - | - | - | - | - | - | - |
Changchun | - | - | - | - | - | - | - | - | - | - | - | - | - |
Huhhot | - | - | - | - | - | - | - | - | - | - | - | - | - |
Baotou | - | - | - | - | - | - | - | - | - | - | - | - | - |
Taiyuan | - | - | - | - | - | - | - | - | - | - | - | - | - |
Task | Origin | Destination | Intermodal Transport Route | Cost | Time | Carbon Emission |
---|---|---|---|---|---|---|
Lowest Cost | ||||||
1 | Zhanjiang | Harbin | 19,838.44 | 103.17 | 8379.184 | |
2 | Zhanjiang | Taiyuan | 17,869.720 | 106.17 | 7603.192 | |
3 | Zhanjiang | Baotou | 20,979.720 | 111.170 | 8878.292 | |
4 | Zhanjiang | Huhhot | 19,409.720 | 109.170 | 8234.592 | |
5 | Zhanjiang | Changchun | 17,418. 440 | 99.170 | 7386.984 | |
6 | Zhanjiang | Jinan | 13,350.320 | 88.170 | 5687.652 | |
7 | Zhanjiang | Shijiazhuang | 15,559.720 | 102.170 | 6656.092 | |
8 | Zhanjiang | Tangshan | 12,599.720 | 97.170 | 5442.492 | |
9 | Zhanjiang | Beijing | 12,739.720 | 98.170 | 5499.892 | |
10 | Zhanjiang | Shenyang | 14,368.440 | 94.170 | 6136.484 | |
Fastest Time | ||||||
1 | Zhanjiang | Harbin | 148,348.000 | 50.008 | 35,010.128 | |
2 | Zhanjiang | Taiyuan | 88,308.000 | 33.33 | 20,840.688 | |
3 | Zhanjiang | Baotou | 111,448.000 | 39.758 | 26,301.728 | |
4 | Zhanjiang | Huhhot | 105,568.000 | 38.124 | 24,914.048 | |
5 | Zhanjiang | Changchun | 135,068.000 | 46.319 | 31,876.048 | |
6 | Zhanjiang | Jinan | 86,756.000 | 32.899 | 20,474.416 | |
7 | Zhanjiang | Shijiazhuang | 87,660.000 | 33.150 | 20,687.760 | |
8 | Zhanjiang | Tangshan | 102,076.000 | 37.154 | 24,089.936 | |
9 | Zhanjiang | Beijing | 98,320.000 | 36.111 | 23,203.520 | |
10 | Zhanjiang | Shenyang | 124,016.000 | 43.249 | 29,267.776 | |
Lowest Carbon Emission | ||||||
1 | Zhanjiang | Harbin | 19,838.440 | 103.17 | 8379.184 | |
2 | Zhanjiang | Taiyuan | 17,869.720 | 106.17 | 7603.192 | |
3 | Zhanjiang | Baotou | 20,979.720 | 111.170 | 8878.292 | |
4 | Zhanjiang | Huhhot | 19,409.720 | 109.170 | 8234.592 | |
5 | Zhanjiang | Changchun | 17,418.440 | 99.170 | 7386.984 | |
6 | Zhanjiang | Jinan | 13,350.320 | 88.170 | 5687.652 | |
7 | Zhanjiang | Shijiazhuang | 15,559.720 | 102.170 | 6656.092 | |
8 | Zhanjiang | Tangshan | 12,599.720 | 97.170 | 5442.492 | |
9 | Zhanjiang | Beijing | 12,739.720 | 98.170 | 5499.892 | |
10 | Zhanjiang | Shenyang | 14,368.440 | 94.170 | 6136.484 |
Task | Origin | Destination | Intermodal Transport Route | Cost | Time | Carbon Emission |
---|---|---|---|---|---|---|
Lowest Cost | ||||||
1 | Busan | Harbin | 13,374.640 | 55.170 | 5521.504 | |
2 | Busan | Taiyuan | 11,734.240 | 60.170 | 4890.664 | |
3 | Busan | Baotou | 14,844.240 | 65.170 | 6165.764 | |
4 | Busan | Huhhot | 13,274.240 | 63.170 | 5522.064 | |
5 | Busan | Changchun | 10,954.640 | 51.170 | 4529.304 | |
6 | Busan | Jinan | 7515.800 | 44.170 | 3108.180 | |
7 | Busan | Shijiazhuang | 9424.240 | 56.170 | 3943.564 | |
8 | Busan | Tangshan | 6464.240 | 51.170 | 2729.964 | |
9 | Busan | Beijing | 6604.240 | 52.170 | 2787.364 | |
10 | Busan | Shenyang | 7904.640 | 46.170 | 3278.804 | |
Fastest Time | ||||||
1 | Busan | Harbin | 41,292.040 | 49.370 | 10,486.944 | |
2 | Busan | Taiyuan | 37,583.200 | 46.437 | 9539.760 | |
3 | Busan | Baotou | 55,743.200 | 51.481 | 13,825.520 | |
4 | Busan | Huhhot | 48,743.200 | 49.537 | 12,173.520 | |
5 | Busan | Changchun | 30,892.040 | 46.481 | 8032.544 | |
6 | Busan | Jinan | 17,543.2 | 40.87 | 4810.32 | |
7 | Busan | Shijiazhuang | 28,983.200 | 44.048 | 7510.160 | |
8 | Busan | Tangshan | 29,263.200 | 44.126 | 7576.240 | |
9 | Busan | Beijing | 17,543.200 | 40.870 | 4810.320 | |
10 | Busan | Shenyang | 19,012.040 | 43.181 | 5228.864 | |
Lowest Carbon Emission | ||||||
1 | Busan | Harbin | 13,374.640 | 55.170 | 5521.504 | |
2 | Busan | Taiyuan | 11,734.240 | 60.170 | 4890.664 | |
3 | Busan | Baotou | 14,844.240 | 65.170 | 6165.764 | |
4 | Busan | Huhhot | 13,274.240 | 63.170 | 5522.064 | |
5 | Busan | Changchun | 10,954.640 | 51.170 | 4529.304 | |
6 | Busan | Jinan | 7515.800 | 44.170 | 3108.180 | |
7 | Busan | Shijiazhuang | 9424.240 | 56.170 | 3943.564 | |
8 | Busan | Tangshan | 6464.240 | 51.170 | 2729.964 | |
9 | Busan | Beijing | 6604.240 | 52.170 | 2787.364 | |
10 | Busan | Shenyang | 7904.640 | 46.170 | 3278.804 |
References
- Duan, X.; Heragu, S. Carbon Emission Tax Policy in an Intermodal Transport Network. In IIE Annual Conference. Proceedings; Institute of Industrial and Systems Engineers (IISE): Norcross, GA, USA, 2015; p. 566. [Google Scholar]
- He, J.; Huang, Y.; Chang, D. Simulation-based heuristic method for container supply chain network optimization. Adv. Eng. Inform. 2015, 29, 339–354. [Google Scholar] [CrossRef]
- Göçmen, E.; Erol, R. The problem of sustainable intermodal transport: A case study of an international logistics company, turkey. Sustainability 2018, 10, 4268. [Google Scholar] [CrossRef] [Green Version]
- Roso, V.; Woxenius, J.; Lumsden, K. The dry port concept: Connecting container seaports with the hinterland. J. Transp. Geogr. 2009, 17, 338–345. [Google Scholar] [CrossRef]
- Idri, A.; Oukarfi, M.; Boulmakoul, A.; Zeitouni, K.; Masri, A. A new time-dependent shortest path algorithm for multimodal transport network. Procedia Comput. Sci. 2017, 109, 692–697. [Google Scholar] [CrossRef]
- Munim, Z.H.; Haralambides, H. Competition and cooperation for intermodal container transhipment: A network optimization approach. Res. Transp. Bus. Manag. 2018, 26, 87–99. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q. Discrete intermodal freight transport network design with route choice behavior of intermodal operators. Transp. Res. Part B Methodol. 2017, 95, 76–104. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, S.; Zhou, X.; Mahmoudi, M.; Zhen, L. Green logistics location-routing problem with eco-packages. Transp. Res. Part E Logist. Transp. Rev. 2020, 143, 102118. [Google Scholar] [CrossRef]
- Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation centers in city logistics: A cooperative approach based on the location routing problem. Int. J. Ind. Eng. Comput. 2019, 10, 393–404. [Google Scholar] [CrossRef]
- Chen, J.; Gui, P.; Ding, T.; Na, S.; Zhou, Y. Optimization of transportation routing problem for fresh food by improved ant colony algorithm based on tabu search. Sustainability 2019, 11, 6584. [Google Scholar] [CrossRef] [Green Version]
- Fazayeli, S.; Eydi, A.; Kamalabadi, I.N. Location-routing problem in multimodal transport network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Comput. Ind. Eng. 2018, 119, 233–246. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Fathi, M.R.; Hassani, N.S. Eco-innovation and cleaner production as sustainable competitive advantage antecedents: The mediating role of green performance. Int. J. Bus. Innov. Res. 2020, 22, 388–407. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Fathi, M.R.; Sanouni, H.R.; Sobhani, S.M.; Behrooz, A. Impact of coercive and non-coercive environmental supply chain sustainability drivers on supply chain performance: Mediation role of monitoring and collaboration. Int. J. Sustain. Eng. 2021, 14, 98–106. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Gu, Y. A market-oriented approach for intermodal network optimisation meeting cost 1987, time and environmental requirements. Int. J. Prod. Econ. 2016, 171, 266–274. [Google Scholar] [CrossRef]
- Resat, H.G.; Turkay, M. A bi-objective model for design and analysis of sustainable intermodal transport systems: A case study of Turkey. Int. J. Prod. Res. 2019, 57, 6146–6161. [Google Scholar] [CrossRef]
- Mostert, M.; Caris, A.; Limbourg, S. Intermodal network design: A three-mode bi-objective model applied to the case of Belgium. Flex. Serv. Manuf. J. 2018, 30, 397–420. [Google Scholar] [CrossRef] [Green Version]
- Gohari, A.; Nasir Matori, A.; Yusof, K.W.; Toloue, I.; Myint, K.C.; Sholagberu, A.T. Route/Modal choice analysis and tradeoffs evaluation of the intermodal transport network of Peninsular Malaysia. Cogent Eng. 2018, 5, 1436948. [Google Scholar] [CrossRef]
- Göçmen, E.; Erol, R. Transport problems for intermodal networks: Mathematical models, exact and heuristic algorithms, and machine learning. Expert Syst. Appl. 2019, 135, 374–387. [Google Scholar] [CrossRef]
- Dai, Q.; Yang, J.; Li, D. Modeling a three-mode two-phase port-hinterland freight intermodal distribution network with environmental consideration: The case of the Yangtze river economic belt in China. Sustainability 2018, 10, 3081. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yang, Z.; Haralambides, H. Optimizing the transport of export containers along China’s coronary artery: The Yangtze River. J. Transp. Geogr. 2019, 77, 11–25. [Google Scholar] [CrossRef]
- Lu, W.; Park, S.H.; Liu, S.; Nam, T.H.; Yeo, G.T. Connection analysis of container ports of the Bohai Rim Economic Circle (BREC). Asian J. Shipp. Logist. 2018, 34, 145–150. [Google Scholar] [CrossRef]
- Meraklı, M.; Yaman, H. Robust intermodal hub location under polyhedral demand uncertainty. Transp. Res. Part B Methodol. 2016, 86, 66–85. [Google Scholar] [CrossRef] [Green Version]
- Caris, A.; Macharis, C.; Janssens, G.K. Decision support in intermodal transport: A new research agenda. Comput. Ind. 2013, 64, 105–112. [Google Scholar] [CrossRef]
- Chang, Z.; Notteboom, T.; Lu, J. A two-phase model for dry port location with an application to the port of Dalian in China. Transp. Plan. Technol. 2015, 38, 442–464. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Zhang, J.; Zhou, L.; Meng, M.; He, Y. A data-driven optimization of large-scale dry port location using the two-phase approach of data mining and complex network theory. Transp. Res. Part E Logist. Transp. Rev. 2020, 134, 101816. [Google Scholar] [CrossRef]
- Wang, R.; Yang, K.; Yang, L.; Gao, Z. Modeling and optimization of a road–rail intermodal transport system under uncertain information. Eng. Appl. Artif. Intell. 2018, 72, 423–436. [Google Scholar] [CrossRef]
- Kaddani, S.; Vanderpooten, D.; Vanpeperstraete, J.M.; Aissi, H. Weighted sum model with partial preference information: Application to multi-objective optimization. Eur. J. Oper. Res. 2017, 260, 665–679. [Google Scholar] [CrossRef]
- Majidi, M.; Nojavan, S.; Esfetanaj, N.N.; Najafi-Ghalelou, A.; Zare, K. A multi-objective model for optimal operation of a battery/PV/fuel cell/grid two-phase energy system using weighted sum technique and fuzzy satisfying approach considering responsible load management. Sol. Energy 2017, 144, 79–89. [Google Scholar] [CrossRef]
- Lin, C.; Gao, F.; Bai, Y. An intelligent sampling approach for metamodel-based multi-objective optimization with guidance of the adaptive weighted-sum method. Struct. Multidiscip. Optim. 2018, 57, 1047–1060. [Google Scholar] [CrossRef]
- Hrušovský, M.; Demir, E.; Jammernegg, W.; Van Woensel, T. Real-time disruption management approach for intermodal freight transport. J. Clean. Prod. 2021, 280, 124826. [Google Scholar] [CrossRef]
- Wang, C.N.; Nhieu, N.L.; Chung, Y.C.; Pham, H.T. Multi-objective optimization models for sustainable perishable intermodal multi-product networks with delivery time window. Mathematics 2021, 9, 379. [Google Scholar] [CrossRef]
Authors and Year | Intermodal Route Problem | Intermodal Location-Route Problem | Multi-Objective | Sustainability Problem | Model | Solving Approach | Real Application |
---|---|---|---|---|---|---|---|
Idri et al. (2017) | √ | - | - | - | the shortest paths | - | - |
Munima (2018) | √ | - | - | - | MIP model | - | - |
Wang and Meng (2017) | √ | - | - | - | Mixed-integer nonlinear | Non-convex program | - |
Saeed Fazayeli (2018) | √ | √ | - | - | MIP fuzzy model | A two-part GA | - |
Resat and Turkay (2019) | √ | - | √ | √ | Mixed-integer linear optimization model | Exact solution methods | √ |
Mostert et al. (2018) | √ | - | √ | √ | Bi-objective mathematical formulation | CPLEX | √ |
Gohari et al. (2018) | √ | - | - | - | - | ArcMap software; the shortest path algorithm | √ |
Göçmen and Erol (2019) | √ | √ | - | - | Mathematical models | Exact and heuristic algorithms | √ |
Dai et al. (2018) | √ | - | √ | √ | - | Distribution network topology | √ |
Zhao et al. (2019) | √ | - | - | - | - | Super networks | √ |
Seo et al. (2017) | √ | - | - | - | Multimodal Transport Cost-Model | - | √ |
Mohammad and Hector (2016) | √ | √ | - | - | Path-based formulation | Decomposition-based search algorithm | √ |
The current work | √ | √ | √ | √ | MILP | FCM; GA | √ |
Influencing Factors | Quantitative Indexes |
---|---|
Regional economy | X1 Gross regional product |
Foreign trade | X2 Total value of imports and exports |
Transportation system | X3 Urban road area |
X4 Transport freight volume | |
X5 Urban connectivity | |
Consumption level | X6 Total retail sales of social consumer goods |
Sets | |
Set of all nodes | |
Nodes passed on the way to completion of transport tasks | |
Set of all transportation modes | |
Set of all transportation modes | |
M | Set of all transportation tasks |
Decision Variables | |
If task is transported by between nodes and , then , otherwise it is 0 | |
If task is converted from transport mode to transport mode at node , then , otherwise it is 0 | |
Parameters | |
Unit variable cost for mode of transport between nodes and | |
Unit changeover cost for node converted from transport mode to transport mode s | |
Conversion time for node to change from transport mode to transport mode s | |
Transport distance between nodes and using transport mode | |
Transport speed of transport mode between nodes and | |
Maximum transport capacity of transport mode between nodes and | |
Volume of transport task | |
Carbon emissions per unit of transport mode |
Numerical Representation | Level of Sensitivity | ||
---|---|---|---|
Strong | General | Weak | |
Numerical value | 7 | 5 | 3 |
Category | X1 | X2 | X3 | X4 | X5 | X6 |
---|---|---|---|---|---|---|
I | 277.49 | 318.16 | 10.47 | 19.79 | 2.11 | 114.13 |
II | 63.99 | 26.66 | 8.35 | 24.31 | 3.64 | 39.07 |
III | 28.37 | 12.12 | 7.05 | 26.36 | 2.53 | 23.18 |
Ⅳ | 5.66 | 1.71 | 1.65 | 8.62 | 2.37 | 6.27 |
City | I | II | III | Ⅳ | City | I | II | III | Ⅳ | City | I | II | III | Ⅳ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Changchun | 0.00 | 0.52 | 0.38 | 0.10 | Harbin | 0.00 | 0.41 | 0.48 | 0.11 | Qitaihe | 0.00 | 0.01 | 0.05 | 0.94 |
Jilin | 0.00 | 0.03 | 0.14 | 0.83 | Qiqihar | 0.00 | 0.00 | 0.02 | 0.97 | Mudanjiang | 0.00 | 0.01 | 0.02 | 0.97 |
Siping | 0.00 | 0.02 | 0.11 | 0.87 | Jixi | 0.00 | 0.01 | 0.03 | 0.96 | Heihe | 0.00 | 0.02 | 0.05 | 0.93 |
Liaoyuan | 0.00 | 0.01 | 0.04 | 0.96 | Hegang | 0.00 | 0.01 | 0.05 | 0.94 | Suihua | 0.00 | 0.01 | 0.03 | 0.96 |
Tonghua | 0.00 | 0.01 | 0.03 | 0.96 | Shuangyashan | 0.00 | 0.01 | 0.05 | 0.94 | Shenyang | 0.00 | 0.65 | 0.28 | 0.06 |
Baishan | 0.00 | 0.01 | 0.04 | 0.95 | Daqing | 0.00 | 0.07 | 0.34 | 0.59 | Dalian | 0.00 | 0.57 | 0.35 | 0.08 |
Songyuan | 0.00 | 0.00 | 0.01 | 0.99 | Yichun | 0.00 | 0.02 | 0.05 | 0.93 | Anshan | 0.00 | 0.03 | 0.17 | 0.80 |
Baicheng | 0.00 | 0.01 | 0.04 | 0.95 | Jiamusi | 0.00 | 0.01 | 0.97 | 0.97 | Fushun | 0.00 | 0.00 | 0.01 | 0.99 |
Benxi | 0.00 | 0.00 | 0.01 | 0.99 | Chaoyang | 0.00 | 0.01 | 0.02 | 0.98 | Hulunbuir | 0.00 | 0.00 | 0.02 | 0.98 |
Dandong | 0.00 | 0.00 | 0.01 | 0.99 | Huludao | 0.00 | 0.00 | 0.01 | 0.98 | Bayannur | 0.00 | 0.00 | 0.02 | 0.98 |
Jinzhou | 0.00 | 0.01 | 0.06 | 0.93 | Huhhot | 0.00 | 0.18 | 0.48 | 0.34 | Ulanqab | 0.00 | 0.00 | 0.02 | 0.98 |
Yingkou | 0.00 | 0.01 | 0.08 | 0.91 | Baotou | 0.00 | 0.12 | 0.64 | 0.23 | Taiyuan | 0.00 | 0.08 | 0.79 | 0.14 |
Fuxin | 0.00 | 0.01 | 0.02 | 0.97 | Wuhai | 0.00 | 0.01 | 0.03 | 0.97 | Datong | 0.00 | 0.00 | 0.01 | 0.98 |
Liaoyang | 0.00 | 0.01 | 0.03 | 0.96 | Chifeng | 0.00 | 0.02 | 0.09 | 0.90 | Yangquan | 0.00 | 0.01 | 0.02 | 0.97 |
Panjin | 0.00 | 0.01 | 0.04 | 0.95 | Tongliao | 0.00 | 0.00 | 0.01 | 0.98 | Changzhi | 0.00 | 0.00 | 0.00 | 0.99 |
Tieling | 0.00 | 0.00 | 0.02 | 0.98 | Ordos | 0.00 | 0.02 | 0.14 | 0.84 | Jincheng | 0.00 | 0.00 | 0.01 | 0.98 |
Shuozhou | 0.00 | 0.01 | 0.02 | 0.97 | Qinhuangdao | 0.00 | 0.01 | 0.05 | 0.94 | Hengshui | 0.00 | 0.00 | 0.01 | 0.99 |
Jinzhong | 0.00 | 0.00 | 0.02 | 0.98 | Handan | 0.00 | 0.05 | 0.43 | 0.52 | Jinan | 0.00 | 0.83 | 0.13 | 0.04 |
Yuncheng | 0.00 | 0.01 | 0.05 | 0.94 | Xingtai | 0.00 | 0.03 | 0.18 | 0.79 | Qingdao | 0.02 | 0.63 | 0.23 | 0.13 |
Xinzhou | 0.00 | 0.00 | 0.02 | 0.98 | Baoding | 0.00 | 0.04 | 0.30 | 0.66 | Zibo | 0.00 | 0.09 | 0.84 | 0.08 |
Linfen | 0.00 | 0.01 | 0.04 | 0.96 | Zhangjiakou | 0.00 | 0.01 | 0.03 | 0.97 | Zaozhuang | 0.00 | 0.01 | 0.05 | 0.94 |
Luliang | 0.00 | 0.00 | 0.02 | 0.98 | Chengde | 0.00 | 0.00 | 0.01 | 0.98 | Dongying | 0.00 | 0.12 | 0.46 | 0.42 |
Shijiazhuang | 0.00 | 0.19 | 0.70 | 0.11 | Cangzhou | 0.00 | 0.04 | 0.32 | 0.63 | Yantai | 0.00 | 0.40 | 0.44 | 0.16 |
Tangshan | 0.00 | 0.12 | 0.79 | 0.09 | Langfang | 0.00 | 0.01 | 0.04 | 0.95 | Weifang | 0.00 | 0.08 | 0.78 | 0.14 |
Jining | 0.00 | 0.04 | 0.81 | 0.15 | Laiwu | 0.00 | 0.00 | 0.01 | 0.98 | Binzhou | 0.00 | 0.02 | 0.12 | 0.86 |
Taian | 0.00 | 0.03 | 0.13 | 0.84 | Linyi | 0.00 | 0.06 | 0.81 | 0.13 | Heze | 0.00 | 0.03 | 0.21 | 0.75 |
Weihai | 0.00 | 0.05 | 0.27 | 0.68 | Dezhou | 0.00 | 0.03 | 0.18 | 0.80 | Beijing | 1.00 | 0.00 | 0.00 | 0.00 |
Rizhao | 0.00 | 0.02 | 0.07 | 0.91 | Liaocheng | 0.00 | 0.03 | 0.21 | 0.75 | Tianjin | 0.17 | 0.40 | 0.25 | 0.19 |
Task | Origin | Destination | Intermodal Transport Route | Cost | Time | Carbon Emission |
---|---|---|---|---|---|---|
(Strong cost sensitivity) | ||||||
1 | Zhanjiang | Harbin | 41,956.600 | 80.400 | 17,158.500 | |
2 | Zhanjiang | Taiyuan | 26,936.600 | 55.400 | 11,000.300 | |
3 | Zhanjiang | Baotou | 35,546.600 | 69.400 | 14,530.400 | |
4 | Zhanjiang | Huhhot | 32,826.600 | 65.400 | 13,415.200 | |
5 | Zhanjiang | Changchun | 38,356.600 | 74.400 | 38,356.600 | |
6 | Zhanjiang | Jinan | 24,696.600 | 51.400 | 10,081.900 | |
7 | Zhanjiang | Shijiazhuang | 26,416.600 | 54.400 | 10,787.100 | |
8 | Zhanjiang | Tangshan | 28,976.600 | 58.400 | 11,836.700 | |
9 | Zhanjiang | Beijing | 29,206.600 | 59.400 | 11,931.000 | |
10 | Zhanjiang | Shenyang | 35,206.600 | 69.400 | 14,391.000 | |
11 | Busan | Harbin | 13,374.640 | 55.170 | 5521.504 | |
12 | Busan | Taiyuan | 12,835.800 | 53.170 | 5289.380 | |
13 | Busan | Baotou | 14,844.240 | 65.170 | 6165.764 | |
14 | Busan | Huhhot | 13,274.240 | 63.170 | 5522.064 | |
15 | Busan | Changchun | 10,954.640 | 51.170 | 4529.304 | |
16 | Busan | Jinan | 7515.800 | 44.170 | 3108.180 | |
17 | Busan | Shijiazhuang | 10,525.800 | 49.170 | 4342.280 | |
18 | Busan | Tangshan | 6464.240 | 51.170 | 2729.964 | |
19 | Busan | Beijing | 6604.240 | 52.170 | 2787.364 | |
20 | Busan | Shenyang | 7904.640 | 46.170 | 3278.804 | |
(Strong time sensitivity) | ||||||
1 | Zhanjiang | Harbin | 11,3259.40 | 57.120 | 28,620.436 | |
2 | Zhanjiang | Taiyuan | 39,303.400 | 52.120 | 13,160.860 | |
3 | Zhanjiang | Baotou | 47,913.400 | 67.120 | 16,690.960 | |
4 | Zhanjiang | Huhhot | 96,503.400 | 49.120 | 24,258.860 | |
5 | Zhanjiang | Changchun | 50,723.400 | 71.120 | 17,843.060 | |
6 | Zhanjiang | Jinan | 37,063.400 | 49.120 | 12,242.460 | |
7 | Zhanjiang | Shijiazhuang | 38,783.400 | 51.120 | 12,947.660 | |
8 | Zhanjiang | Tangshan | 41,343.400 | 56.120 | 13,997.260 | |
9 | Zhanjiang | Beijing | 41,573.400 | 56.120 | 14,091.560 | |
10 | Zhanjiang | Shenyang | 47,573.400 | 66.120 | 16,551.560 | |
11 | Busan | Harbin | 33,445.440 | 52.290 | 9024.744 | |
12 | Busan | Taiyuan | 12,835.800 | 53.170 | 5289.380 | |
13 | Busan | Baotou | 16,965.040 | 62.290 | 6081.824 | |
14 | Busan | Huhhot | 26,017.640 | 58.446 | 7337.444 | |
15 | Busan | Changchun | 10,954.640 | 51.170 | 4529.304 | |
16 | Busan | Jinan | 17,543.200 | 40.870 | 4810.320 | |
17 | Busan | Shijiazhuang | 10,525.800 | 49.170 | 4342.280 | |
18 | Busan | Tangshan | 6464.240 | 51.170 | 2729.964 | |
19 | Busan | Beijing | 17,543.200 | 40.870 | 4810.320 | |
20 | Busan | Shenyang | 19,012.04 | 43.181 | 5228.864 |
Freight Volumes (t) | Transport Route |
---|---|
0–13 | |
14–28 | |
29- | |
0–12 | |
13–20 | |
20–90 | |
90- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Shi, S.; Gao, H.; Hu, Y. A Sustainable Intermodal Location-Routing Optimization Approach: A Case Study of the Bohai Rim Region. Sustainability 2022, 14, 3987. https://doi.org/10.3390/su14073987
Han B, Shi S, Gao H, Hu Y. A Sustainable Intermodal Location-Routing Optimization Approach: A Case Study of the Bohai Rim Region. Sustainability. 2022; 14(7):3987. https://doi.org/10.3390/su14073987
Chicago/Turabian StyleHan, Bing, Shanshan Shi, Haotian Gao, and Yan Hu. 2022. "A Sustainable Intermodal Location-Routing Optimization Approach: A Case Study of the Bohai Rim Region" Sustainability 14, no. 7: 3987. https://doi.org/10.3390/su14073987
APA StyleHan, B., Shi, S., Gao, H., & Hu, Y. (2022). A Sustainable Intermodal Location-Routing Optimization Approach: A Case Study of the Bohai Rim Region. Sustainability, 14(7), 3987. https://doi.org/10.3390/su14073987