Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review
Abstract
:1. Introduction
2. Environmental Fate and Risk of Chemical Fungicides
2.1. Inorganic Fungicides
2.2. Organic Fungicides
2.3. Chiral Fungicides
2.4. Nanofungicides
2.5. Chemical Plant Defense Activators
3. The Role of Vegetation and Microbial Communities on Fungicide Removal in CWs and Other Phytoremediation Systems
3.1. Storbilurins
3.2. Demethylation Inhibitors (DMI)
3.3. Other Chemical Fungicides
4. Tools, Technologies, and Methodologies for Fungicide Phytoaccumulation Improvement
4.1. Plant-Growth Regulators and Phytohormones
4.2. Chelation
Bioaugmentation with PGPR Plant Growth-Promoting Rhizobacteria and AMF Arbuscular Mycorrhizal Fungi
5. Conclusions, Perspectives, and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Bruhl, C.A.; Imfeld, G.; Knabel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmuller, A.; et al. Fungicides: An overlooked pesticide class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M. Worldwide Pesticide Usage and its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agrienvironmental_indicator_consumption_of_pesticides (accessed on 9 September 2021).
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddhartha; Verma, A.; Bashyal, B.M.; Gogoi, R.; Kumar, R. New nano-fungicides for the management of sheath blight disease (Rhizoctonia solani) in rice. Int. J. Pest Manag. 2020, 1–10. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 24, 11–23. [Google Scholar] [CrossRef]
- Jeschke, P. Current status of chirality in agrochemicals. Pest Manag. Sci. 2018, 74, 2389–2404. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. Front. Plant Sci. 2018, 9, 1613. [Google Scholar] [CrossRef] [Green Version]
- Sheir, S.K.; Osman, G.Y.; Galal, M.A.; Soliman, M.M. Biohazards of the biofungicide, Trichoderma harzianum on the crayfish, Procambarus clarkii: Histological and biochemical implications. Egypt. J. Basic Appl. Sci. 2015, 2, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Abbeya, J.A.; Percivala, D.; Abbeya, L.; Asiedua, S.K.; Prithiviraja, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)—Prospects and challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Brown, M.S.; Baysal-Gurel, F.; Oliver, J.B.; Addesso, K.M. Comparative Performance of Fungicides, Biofungicides, and Host Plant Defense Inducers in Suppression of Phytophthora Root Rot in Flowering Dogwood during Simulated Root Flooding Events. Plant Dis. 2019, 103, 1703–1711. [Google Scholar] [CrossRef]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef] [PubMed]
- Kaewchangwat, N.; Dueansawang, S.; Tumcharern, G.; Suttisintong, K. Synthesis of Copper-Chelates Derived from Amino Acids and Evaluation of Their Efficacy as Copper Source and Growth Stimulator for Lactuca sativa in Nutrient Solution Culture. J. Agric. Food Chem. 2017, 65, 9828–9837. [Google Scholar] [CrossRef] [PubMed]
- Song, X.S.; Gu, K.X.; Gao, J.; Wang, J.X.; Ding, S.C.; Zhou, M. Ethylenediaminetetraacetic Acid Disodium Salt Acts as an Antifungal Candidate Molecule against Fusarium graminearum by Inhibiting DON Biosynthesis and Chitin Synthase Activity. Toxins 2020, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Papaevangelou, V.A.; Gikas, G.D.; Vryzas, Z.; Tsihrintzis, V.A. Treatment of agricultural equipment rinsing water containing a fungicide in pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2017, 101, 193–200. [Google Scholar] [CrossRef]
- Gikas, G.D.; Pérez-Villanueva, M.; Tsioras, M.; Alexoudis, C.; Pérez-Rojas, G.; Masís-Mora, M.; Lizano-Fallas, V.; Rodríguez-Rodríguez, C.E.; Vryzas, Z.; Tsihrintzis, V.A. Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: Constructed wetlands and biopurification system. Chem. Eng. J. 2018, 335, 647–656. [Google Scholar] [CrossRef]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management Indian. J. Microbiol. 2020, 60, 125–138. [Google Scholar]
- Vymazal, J.; Březinová, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef]
- Parlakidis, P.; Mavropoulos, T.; Vryzas, Z.; Gikas, G.D. Fluopyram removal from agricultural equipment rinsing water using HSF pilot-scale constructed wetlands. Environ Sci. Pollut. Res. 2021, in press. [Google Scholar] [CrossRef]
- Gikas, G.D.; Vryzas, Z.; Tsihrintzis, V.A. S-metolachlor herbicide removal in pilot-scale horizontal subsurface flow constructed wetlands. Chem. Eng, J. 2018, 339, 108–116. [Google Scholar] [CrossRef]
- Kiaune, L.; Singhasemanon, N. Pesticidal copper (I) oxide: Environmental fate and aquatic toxicity. Rev. Environ. Contam. Toxicol. 2011, 213, 1–26. [Google Scholar]
- Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Copper: Environmental dynamics and human exposure issues. J. Toxicol. Environ. Health Part B 2001, 4, 341–394. [Google Scholar] [CrossRef] [PubMed]
- Rader, K.J.; Carbonaro, R.F.; van Hullebusch, E.D.; Baken, S.; Delbeke, K. The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environ. Toxicol. Chem. 2019, 7, 1386–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.J.; Sañudo-Wilhelmy, S.A. Impact of water temperature and dissolved oxygen on copper cycling in an urban estuary. Environ. Sci. Technol. 2007, 41, 6103–6108. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. ECOTOX Database. 2009. Available online: http://cfpub.epa.gov/ecotox/ (accessed on 10 September 2021).
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Kohl, J.; Jones, J.B.; Noel, J. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef] [Green Version]
- Kuklińska, K.; Wolska, L.; Namieśnik, J.; Monika Cieszynska, M. Analytical and bioanalytical problems associated with the toxicity of elemental sulfur in the environment. Trends. Analyt. Chem. 2013, 48, 14–21. [Google Scholar] [CrossRef]
- Díaz-Raviña, M.; Calvo de Anta, R.; Bååth, E. Tolerance (PICT) of the bacterial communities to copper in vineyards soils from Spain. J. Environ. Qual. 2007, 36, 1760–1764. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Voges, J.G.; Canton, L.; da Rosa Couto, R.; Ferreira, P.A.A.; Comin, J.J.; Soares, C.R.F.S. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Braz. J. Microbiol. 2015, 46, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Schoffer, J.T.; Sauvé, S.; Neaman, A.; Ginocchio, R. Role of Leaf Litter on the Incorporation of Copper-Containing Pesticides into Soils Under Fruit Production: A Review. J. Soil Sci. Plant Nutr. 2020, 20, 990–1000. [Google Scholar] [CrossRef]
- Cetkauskaite, A.; Pessala, P.; Södergren, A. Elemental sulfur: Toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase. Environ. Toxicol. 2004, 19, 372–386. [Google Scholar] [CrossRef]
- Huber, B.; Herzog, B.; Drewes, J.E.; Koch, K.; Muller, E. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiol. 2016, 16, 153. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, E.N.; Vryzas, Z.; Kotopoulou, A.; Kintzikoglou, K.; Makris, K.C.; Papadopoulou-Mourkidou, E. A Pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol. Environ. Saf. 2018, 116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Marsala, R.Z.; Capri, E.; Russo, E.; Bisagni, M.; Colla, R.; Lucini, L.; Gallo, A.; Suciu, N.A. First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Sci. Total Environ. 2020, 736, 139730. [Google Scholar] [CrossRef] [PubMed]
- PPDB (Pesticide Properties Data Base). Pesticides General Information; University of Hertfordshire: Hatfield, UK, 2016; Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1362.htm (accessed on 1 July 2021).
- FRAC Code List 2021: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action. Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/fraccode-list-2021--final.pdf?sfvrsn=f7ec499a_2 (accessed on 15 October 2021).
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Hernández, E.; Andrades, M.S.; Álvarez-Martín, A.; Pose-Juan, E..; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J. Hydrol. 2013, 486, 234–245. [Google Scholar] [CrossRef]
- Wightwick, A.M.; Bui, A.D.; Zhang, P.; Rose, G.; Allinson, M.; Myers, J.H.; Reichman, S.M.; Menzies, N.W.; Pettigrove, V.; Allinson, G. Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Arch Environ. Contam. Toxicol. 2012, 62, 380–390. [Google Scholar] [CrossRef]
- Merel, S.; Benzing, S.; Gleiser, C.; Di Napoli-Davis, G.; Zwiener, C. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water. Environ. Pollut. 2018, 239, 512–521. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, S.; Wang, Y.; An, X.; Cai, L.; Zhao, X.; Wu, C. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol. Vitro 2015, 29, 1473–1481. [Google Scholar] [CrossRef]
- Altenhofen, S.; Nabinger, D.D.; Wiprich, M.T.; Pereira, T.C.B.; Bogo, M.R.; Bonan, C.D. Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio). Chemosphere 2017, 180, 483–490. [Google Scholar] [CrossRef]
- Cui, F.; Chai, T.; Liu, X.; Wang, C. Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin on Daphnia magna. Environ. Toxicol. Chem. 2017, 36, 182–189. [Google Scholar] [CrossRef]
- Giddings, J.M.; Arts, G.; Hommen, U. The relative sensitivity of macrophyte and algal species to herbicides and fungicides: An analysis using species sensitivity distributions. Integr. Environ. Assess. Manag. 2013, 9, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, É.; Coughlan, N.E.; O’Brien, S.; Jansen, M.; Kuehnhold, H. Density Dependence Influences the Efficacy of Wastewater Remediation by Lemna minor. Plants 2021, 10, 1366. [Google Scholar] [CrossRef] [PubMed]
- Ekperusi, A.O.; Nwachukwu, E.O.; Sikoki, F.D. Assessing and Modelling the Efficacy of Lemna paucicostata for the Phytoremediation of Petroleum Hydrocarbons in Crude Oil-Contaminated Wetlands. Sci. Rep. 2020, 10, 8489. [Google Scholar] [CrossRef] [PubMed]
- Megateli, S.; Dosnon-Olette, R.; Trotel-Aziz, P.; Geffrad, A.; Semsari, S.; Couderchet, M. Simultaneous effects of two fungicides (copper and dimethomorph) on their phytoremediation using Lemna minor. Ecotoxicology 2013, 22, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Cedergreen, N. Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology. PLoS ONE 2014, 9, e96580. [Google Scholar] [CrossRef]
- Sgolastra, F.; Arnan, X.; Cabbri, R.; Isani, G.; Medrzycki, P.; Teper, D.; Bosch, J. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc. Biol. Sci. 2018, 285, 20180887. [Google Scholar] [CrossRef]
- Han, W.; Yang, Y.; Gao, J.; Zhao, D.; Ren, C.; Wang, S.; Zhao, S.; Zhong, Y. Chronic toxicity and biochemical response of Apis cerana cerana (Hymenoptera: Apidae) exposed to acetamiprid and propiconazole alone or combined. Ecotoxicology 2019, 28, 399–411. [Google Scholar] [CrossRef]
- Wade, A.; Lin, C.H.; Kurkul, C.; Regan, E.R.; Johnson, R.M. Combined Toxicity of Insecticides and Fungicides Applied to California Almond Orchards to Honey Bee Larvae and Adults. Insects 2019, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, K.C. Acute toxicity of copper hydroxide and glyphosate mixture in Clarias gariepinus: Interaction and prediction using mixture assessment models. Environ. Health Toxicol. 2019, 34, e2019003. [Google Scholar] [CrossRef] [Green Version]
- Mullin, C.A.; Chen, J.; Fine, J.D.; Frazier, M.T.; Frazier, J.L. The formulation makes the honey bee poison. Pestic. Biochem. Physiol. 2015, 120, 27–35. [Google Scholar] [CrossRef]
- Hage-Ahmed, K.; Rosner, K.; Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci. 2019, 75, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Shahid, M.; Khan, M.S.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Pichtel, J. Fungicide-Tolerant Plant Growth-Promoting Rhizobacteria Mitigate Physiological Disruption of White Radish Caused by Fungicides Used in the Field Cultivation. Int. J. Environ. Res. Public Health 2020, 17, 7251. [Google Scholar] [CrossRef] [PubMed]
- Buysens, C.; Dupré de Boulois, H.; Declerck, S. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza 2015, 25, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Bielská, L.; Hale, S.E.; Škulcová, L. A review on the stereospecific fate and effects of chiral conazole fungicides. Sci. Total Environ. 2021, 750, 141600. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, W.; Qin, Y.; Liu, R.; Zhang, L.; Wang, Z.; Zhou, Z.; Diao, J. Stereoselective toxicity of metconazole to the antioxidant defenses and the photosynthesis system of Chlorella pyrenoidosa. Aquat. Toxicol. 2019, 210, 129–138. [Google Scholar] [CrossRef]
- Liu, C.; Wang, B.; Diao, J.; Zhou, Z. Enantioselective toxicity and bioaccumulation of epoxiconazole enantiomers to the green alga Scenedesmus obliquus. RSC Adv. 2016, 6, 59842–59850. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Luo, F.; Sheng, H.; Zhou, L.; Zhong, Q.; Lou, Z.; Sun, H.; Yang, M.; Cui, X.; et al. Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultraperformance liquid chromatography-tandem mass spectrometry. Ecotoxicol. Environ. Saf. 2019, 15, 530–537. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, Y.; Dong, F.; Liu, N.; Xu, J.; Liu, X.; Wu, X.; Zheng, Y. Stereoselective bioactivity, acute toxicity and dissipation in typical paddy soils of the chiral fungicide propiconazole. J. Hazard. Mater. 2018, 359, 194–202. [Google Scholar] [CrossRef]
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019, 670, 292–299. [Google Scholar] [CrossRef]
- Shyla, K.; Natarajan, N.; Nakkeeran, S. Antifungal Activity of Zinc Oxide, Silver and Titanium Dioxide Nanoparticles against Macrophomina phaseolina. J. Mycol. Plant Pathol. 2014, 44, 269–274. [Google Scholar]
- Safari, Z.S.; Ding, P.; Nakasha, J.J.; Yusoff, S.F. Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin. Coatings 2021, 11, 367. [Google Scholar] [CrossRef]
- Xu, L.; Cao, L.; Li, F.; Wang, X.; Huang, Q. Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J. Dispers. Sci. Technol. 2014, 35, 544–550. [Google Scholar] [CrossRef]
- Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crop. Prod. 2015, 67, 216–220. [Google Scholar] [CrossRef]
- Chaud, M.; Souto, E.B.; Zielinska, A.; Severino, P.; Batain, F.; Oliveira-Junior, J.; Alves, T. Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 2021, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; ALNadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef]
- Goswami, P.; Yadav, S.; Mathur, J. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci. Today 2019, 6, 232–234. [Google Scholar] [CrossRef]
- Grillo, R.; Fraceto, L.F.; Amorim, M.J.B.; Scott-Fordsmand, J.J.; Schoonjans, R.; Chaudhry, Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J. Hazard Mater. 2021, 404, 124148. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Q.; Huang, Y.; Keller, A.A. Response at Genetic, Metabolic, and Physiological Levels of Maize (Zea mays) Exposed to a Cu(OH)2 Nanopesticide. ACS Sustain. Chem. Eng. 2017, 5, 8294–8301. [Google Scholar] [CrossRef] [Green Version]
- Abd-Alla, M.H.; Nafady, N.A.; Khalaf, D.M. Assessment of silver nanoparticles contamination on faba bean Rhizobium leguminosarumbv. Viciae, Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agric. Ecosyst. Environ. 2016, 218, 163–177. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Si, Y.; Shu, K. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE 2018, 13, e0209020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, V.; Goodhead, R.; Tyler, C.R. Ecotoxicology of Nanomaterials in Aquatic Systems. Front. Nanosci. 2015, 8, 3–45. [Google Scholar]
- Sun, H.; Luo, F.; Zhang, X.; Zhou, L.; Lou, Z.; Chen, Z. Residue analysis and dietary exposure risk assessment of acibenzolar-S-methyl and its metabolite acibenzolar acid in potato, garlic, cabbage, grape and tomato. Ecotoxicol. Environ. Saf. 2021, 207, 111178. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.A.S.; Blum, L.E.B.; Duatre, E.A.A.; Luz, E.D.M.N. Reduction of Papaya Rot Phytophrora palmivora with Phosnite and Acibenzolar-s-methyl in Preharvest and Postharvest. J. Biosci. 2018, 34, 1522–1531. [Google Scholar] [CrossRef]
- Ganiyu, S.A.; Popoola, A.R.; Agbolade, J.O.; Enikuomehim, O.A. Thymol and acibenzolar-s-methyl reduce incidence and severity of bacterial wilt of tomato caused by race I biovar III (R1B3) strain of Ralstonia solanacearum in Nigeria. Arch. Phytopathol. Plant Prot. 2018, 51, 1106–1129. [Google Scholar] [CrossRef]
- Buiarelli, F.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Marsiglia, R.; Console, C.; Puri, D. Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Analysis of Fosetyl-Aluminum in Airborne Particulate Matter. J. Anal. Methods Chem. 2018, 7, 8792085. [Google Scholar] [CrossRef]
- Barreto, A.; Santos, J.; Amorim, M.J.B.; Maria, V.L. Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus? Appl. Sci. 2021, 11, 7209. [Google Scholar] [CrossRef]
- Guziejewski, D.; Brycht, M.; Nosal-Wiercińska, A.; Smarzewska, S.; Ciesielski, W.; Skrzypek, S. Electrochemical study of the fungicide acibenzolar-s-methyl and its voltammetric determination in environmental samples. J. Environ. Sci. Health B 2014, 49, 550–556. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Basto, M.C.P.; Almeida, C.M.R.; Brix, H. A review of plant–pharmaceutical interactions: From uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ. Sci. Pollut. Res. 2014, 21, 11729–11763. [Google Scholar] [CrossRef]
- Guο, W.; Zhang, H.; Huo, H. Organochlorine pesticides in aquatic hydrophyte tissues and surrounding sediments in Baiyangdian wetland, China. Ecol. Eng. 2014, 67, 150–155. [Google Scholar] [CrossRef]
- Vryzas, Z. The Plant as Metaorganism and Research on Next-Generation Systemic Pesticides—Prospects and Challenges. Front. Microbiol. 2016, 7, 1968. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Luetjohann, J.; Rohn, S.; Jantzen, E.; Kuballa, J. Development of a suspect screening strategy for pesticide metabolites in fruit and vegetables by UPLC–Q–TOF–MS. Food Anal. Methods 2018, 11, 1591–1607. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, T.; Xu, Y.; Du, Z.; Li, B.; Wang, J.; Wang, J.; Zhu, L. Ecotoxicology of strobilurin fungicides. Sci. Total Environ. 2020, 742, 140611. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, O. Constructed Wetlands Revisited: Microbial Diversity in the–Omics Era. Microb. Ecol. 2017, 73, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Tondera, K.; Chazarenc, F.; Chagnon, P.L.; Brisson, J. Bioaugmentation of treatment wetlands—A review. Sci. Total Environ. 2021, 775, 145820. [Google Scholar] [CrossRef]
- Lyu, T.; Zhang, L.; Xu, X.; Arias, C.A.; Brix, H.; Carvalho, P.N. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environ. Pollut. 2018, 233, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Rìos-Montes, K.A.; Casas-Zapata, J.C.; Briones-Gallardo, R.; Peñuela, G. Optimal conditions for chlorothalonil and dissolved organic carbon in horizontal subsurface flow constructed wetlands. J. Environ. Sci. Health B 2017, 52, 274–281. [Google Scholar] [CrossRef]
- Lv, T.; Carvalho, P.N.; Zhang, T.; Zhang, Y.; Button, M.; Arias, C.A.; Weber, K.; Brix, H. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Res. 2017, 110, 241–251. [Google Scholar] [CrossRef]
- Lv, T.; Zhang, Y.; Casas, M.E.; Carvalho, P.N.; Arias, C.A.; Bester, K.; Brix, H. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere 2016, 148, 459–466. [Google Scholar] [CrossRef]
- Amaro, A.C.E.; Baron, D.; Ono, E.O.; Rodrigues, J.D. Physiological effects of strobilurin and carboxamides on plants: An overview. Acta Physiol. Plant 2020, 42, 4. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, X.; Xu, X.T.; Wen, Y.; He, J.; Zhao, Y.H. Freshwater quality criteria of four strobilurin fungicides: Interspecies correlation and toxic mechanism. Chemosphere 2021, 284, 131340. [Google Scholar] [CrossRef] [PubMed]
- Maillard, E.; Payraudeau, S.; Faivre, E.; Grégoire, C.; Gangloff, S.; Imfeld, G. Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci. Total Environ. 2011, 409, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- McKnight, A.M.; Gannon, T.W.; Yelverton, F. Phytoremediation of azoxystrobin and imidacloprid by wetland plant species Juncus effusus, Pontederia cordata and Sagittaria latifolia. Int. J. Phytoremediat. 2021, 14, 196–204. [Google Scholar] [CrossRef]
- Elsaesser, D.; Stang, C.; Bakanov, N.; Schulz, R. The Landau Stream Mesocosm Facility: Pesticide mitigation in vegetated flow-through streams. Bull. Environ. Contam. Toxicol. 2013, 90, 640–645. [Google Scholar] [CrossRef]
- Pedersen, M.; Wegner, C.; Phansak, P.; Sarath, G.; Gaussoin, R.; Schlegel, V. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellin, P.; King, R.; Urban, M.; Hammond-Kosack, K.E.; Legrève, A. The adaptation of Fusarium culmorum to DMI Fungicides Is Mediated by Major Transcriptome Modifications in Response to Azole Fungicide, Including the Overexpression of a PDR Transporter (FcABC1). Front. Microbiol. 2018, 9, 1385. [Google Scholar] [CrossRef]
- Stang, C.; Bakanov, N.; Schulz, R. Experiments in water-macrophyte systems to uncover the dynamics of pesticide mitigation processes in vegetated surface waters/streams. Environ. Sci. Pollut. Res. 2016, 23, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kiiker, R.; Juurik, M.; Heick, T.M.; Mäe, A. Changes in DMI, SDHI, and QoI Fungicide Sensitivitin the Estonian Zymoseptoria tritici Population between 2019 and 2020. Microorganisms 2021, 9, 814. [Google Scholar] [CrossRef]
- Jiménez, R.R.; Alvarado, G.; Ruepert, C.; Ballestero, E.; Sommer, S. The Fungicide Chlorothalonil Changes the Amphibian Skin Microbiome: A Potential Factor Disrupting a Host Disease-Protective Trait. Appl. Microbiol. 2021, 1, 26–37. [Google Scholar] [CrossRef]
- Mackie, K.A.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef]
- Mosbach, A.; Edel, D.; Farmer, A.D.; Widdison, S.; Barchietto, T.; Dietrich, R.A.; Corran, A.; Scalliet, G. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function. Front. Microbiol. 2017, 8, 2361. [Google Scholar] [CrossRef] [PubMed]
- Dosnon-Olette, R.; Couderchet, M.; Eullaffroy, P. Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicol. Environ. Saf. 2009, 72, 2096–2101. [Google Scholar] [CrossRef] [PubMed]
- Dosnon-Olette, R.; Couderchet, M.; El Arfaoui, A.; Sayen, S.; Eullaffroy, P. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Sci. Total Environ. 2010, 408, 2254–2259. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Huang, J.; Yan, C.; Liu, J.; Hu, Q.; Guan, W. Shifts of system performance and microbial community structure in a constructed wetland after exposing silver nanoparticles. Chemosphere 2018, 199, 661–669. [Google Scholar] [CrossRef]
- Cao, C.; Huang, J.; Yan, C.; Zhang, X. Hydraulic flow direction alters impacts of AgNPs on pollutant removal and silver spatial distribution in vertical flow constructed wetlands. Environ. Sci. Pollut. Res. 2021, 28, 67736–67747. [Google Scholar] [CrossRef]
- Xu, L.; Wu, C.; Oelmüller, R.; Zhang, W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front. Microbiol. 2018, 9, 1646. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Arshad, M.; Hussain, S.; Bhatti, A.S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 2007, 34, 635–648. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L.; Yang, Y.; Guo, X.; Chen, G.; Xiong, X.; Dong, D.; Li, G. Transcriptome analysis reveals that exogenous ethylene activates immune and defense responses in a high late blight resistant potato genotype. Sci. Rep. 2020, 10, 21294. [Google Scholar] [CrossRef]
- Tripathi, G.D.; Javedm, Z.; Mishram, M.; Fasakem, V.; Dashora, K. Phytomelatonin in stress management in agriculture. Heliyon 2021, 7, e06150. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, X.; Reiter, R.J.; Feng, S.; Wang, Y.; Liu, S.; Jin, L.; Li, Z.; Datla, R.; Ren, M. Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front. Plant Sci. 2017, 8, 1993. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Hernández-Ruiz, J. Role of Melatonin to Enhance Phytoremediation Capacity. Appl. Sci. 2019, 9, 5293. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Sun, S.; Zhao, N.; Yang, W.; Shi, Q.; Gong, B. COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environ. Pollut. 2019, 252, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, Y. Induction of disease resistance by salicylic acid and calcium ion against Botrytis cinerea in tomato (Lycopersicon esculentum). Emir. J. Food Agric. 2017, 29, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qiu, L.; Zhang, Q.; Zhuansun, X.; Li, H.; Chen, X.; Krugman, T.; Sun, Q.; Xie, C. Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. Plant Direct. 2020, 4, e00212. [Google Scholar] [CrossRef]
- Zalewski, K.; Lahuta, L.B.; Martysiak-Żurowska, D.; Okorski, A.; Nitkiewicz, B.; Zielonka, Ł. Effect of Exogenous Application of Methyl Jasmonate on the Lipid and Carbohydrate Content and Composition of Winter Triticale (Triticosecale Wittm.) Grain and the Severity of Fungal Infections in Triticale Plants and Grain. J. Agric. Food Chem. 2019, 67, 5932–5939. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A.; Rostami, M.; Samaei, M.R. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Chemosphere 2016, 161, 219–223. [Google Scholar] [CrossRef]
- Khan, A.; Halo, B.A.; Elyassi, A.R.; Ali, S.; Ali, S.; Al-Hosni, K.; Hussain, J.; Al-Harrasi, A.; Lee, I. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron. J. 2016, 21, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Basalah, M.O. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 2011, 248, 503–511. [Google Scholar] [CrossRef]
- Ji, P.; Tang, X.; Jiang, Y.; Tong, Y.; Gao, P.; Han, W. Potential of Gibberellic Acid 3 (GA3) for Enhancing the Phytoremediation Efficiency of Solanum nigrum L. Bull. Environ. Contam. Toxicol. 2015, 95, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, T.; Touchell, D.; Bunn, E.; Dixon, K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. J. Plant Growth Regul. 2000, 30, 157–161. [Google Scholar] [CrossRef]
- Mateo, A.; Funck, D.; Mühlenbock, P.; Kular, B.; Mullineaux, P.M.; Karpinski, S. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J. Exp. Bot. 2006, 57, 1795–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afrousheh, M.; Tehranifar, A.; Shoor, M.; Safari, V.R. Salicylic Acid Alleviates the Copper Toxicity in Tagetes Erecta. Int. J. Farming Allied Sci. 2015, 4, 232–238. [Google Scholar]
- Mirbolook, A.; Rasouli-Sadaghiani, M.; Sepehr, E.; Lakzian, A.; Hakimi, M. Synthesized Zn(II)-Amino Acid and -Chitosan Chelates to Increase Zn Uptake by Bean (Phaseolus vulgaris) Plants. J. Plant Growth Regul. 2021, 40, 831–847. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Martín-Gil, J.; Marcos-Robles, J.L.; Fombellida-Villafruela, Á.; Pérez-Lebeña, E.; Martín-Ramos, P. Antifungal Activity of Chitosan Oligomers–Amino Acid Conjugate Complexes against Fusarium culmorum in Spelt (Triticum spelta L.). Agronomy 2021, 10, 1427. [Google Scholar] [CrossRef]
- Dibona-Villanueva, L.; Fuentealba, D. Novel Chitosan-Riboflavin Conjugate with Visible Light-Enhanced Antifungal Properties against Penicillium digitatum. J. Agric. Food Chem. 2021, 69, 945–954. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Haensch, R.; Schnug, E. EDTA application on agricultural soils affects microelement uptake of plants. Sci. Total Environ. 2017, 577, 166–173. [Google Scholar] [CrossRef]
- Zaier, H.; Ghnaya, T.; Ben Rejeb, K.; Lakhdar, A.; Rejeb, S.; Jemal, F. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour. Technol. 2010, 101, 3978–3983. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Song, Z.; Wang, D.; Qiu, W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 2019, 237, 124480. [Google Scholar] [CrossRef]
- Batool, A.; Saleh, T.A. Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol. Environ. Saf. 2020, 189, 109924. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzen, N.; Heick, M.S.; Jørgensen, L.N. Control of powdery mildew (Blumeria graminis spp.) in cereals by Serenade® ASO (Bacillus amyloliquefaciens (former subtilis) strain QST 713). Biol. Control 2019, 139, 104067. [Google Scholar] [CrossRef]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.L.; Thonart, P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhang, F.; Yao, S.; Liu, Y.; Chen, J. Application of Pseudomonas flava WD600 3 for sewage treatment in constructed wetland in winter. Environ. Technol. 2015, 36, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Syranidou, E.; Christofilopoulos, S.; Gkavrou, G.; Thijs, S.; Weyens, N.; Vangronsveld, J.; Kalogerakis, N. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus acutus. Front. Microbiol. 2016, 7, 1016. [Google Scholar] [CrossRef] [PubMed]
- Riva, V.; Riva, F.; Vergani, L.; Crotti, E.; Borin, S.; Mapelli, F. Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats. Chemosphere 2020, 241, 1248432. [Google Scholar] [CrossRef]
- Shahid, M.J.; AL-surhanee, A.A.; Kouadri, F.; Ali, S.; Nawaz, N.; Afzal, M.; Rizwan, M.; Ali, B.; Soliman, M.H. Role of microorganisms in the remediation of wastewater in floating treatment wetlands: A review. Sustainability 2020, 12, 5559. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [Green Version]
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef] [Green Version]
- Myresiotis, C.K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Appl. Soil Ecol. 2014, 77, 26–33. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, H.; Li, T.; Zhu, Z.; Zhang, J.; He, Z.; Yang, X. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ. Sci. Pollut. Res. 2013, 20, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Podbielska, M.; Kus-Liśkiewicz, M.; Jagusztyn, B.; Piechowicz, B.; Sadło, S.; Słowik-Borowiec, M.; Twarużek, M.; Szpyrka, E. Influence of Bacillus subtilis and Trichoderma harzianum on Penthiopyrad Degradation under Laboratory and Field Studies. Molecules 2020, 25, 1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myresiotis, C.K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 2012, 23, 297–310. [Google Scholar] [CrossRef]
- Liao, D.; Wang, S.; Cui, M.; Liu, J.; Chen, A.; Xu, G. Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. Int. J. Mol. Sci. 2018, 19, 3146. [Google Scholar] [CrossRef] [Green Version]
- Göhre, V.; Paszkowski, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 2016, 223, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.; Arslan, M.; Shabir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale. Sci. Total Environ. 2019, 685, 370–379. [Google Scholar] [CrossRef]
- Fahid, M.; Arslan, M.; Shabir, G.; Younus, S.; Yasmeen, T.; Rizwan, M.; Siddique, K.; Ahmad, S.R.; Tahseen, R.; Iqbal, S.; et al. Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere 2020, 240, 124890. [Google Scholar] [CrossRef]
Chemical Family | Group Name | Active Substances | Target Site | Mode of Action |
---|---|---|---|---|
Acylalanines | Phenyl Amides (PA) | metalaxyl | RNA polymerase I | Disruption of nucleic acid synthesis-RNA polymerase 1 |
Thiophanates | Methyl Benzimidazole Carbamates (MBC) | thiophanate | protein B1: ß-tubuline assembly in mitosis | Inhibition of mitosis and cell division (Beta-tubulin assembly in mitosis) |
Pyridine-carboxamides | Succinate-dehydrogenase inhibitors (SDHI) | boscalid | complex II: succinate-dehydrogenase | Inhibition of mitochondrial ATP production in fungal cells |
Pyridinyl-ethyl-benzamides | Succinate-dehydrogenase inhibitors (SDHI) | fluopyram | complex II: succinate-dehydrogenase | Succinate dehydrogenase inhibition within mitochondria blocking electron transport |
Methoxy-carbamates | Quinone outside Inhibitors (QoI) | pyraclostrobin | complex III: cytochrome bc1 | Respiration inhibitor of QoI |
Dicarboximides | dicarboximides | iprodione | MAP/Histidine-Kinase in osmotic signal transduction | Signal transduction inhibitor |
Triazoles | De-Methylation Inhibitors (DMI) | tebuconazole | C14- demethylase in sterol biosynthesis | Sterol 14-demethylase enzyme inhibition in membranes |
Ethyl phosphonates | phosphonates | fosetyl-Al | phosphonates | Mycelial growth and spore production—Plant’s defense elicitor |
Dithio-carbamates and relatives | dithio-carbamates and relatives | mancozeb | multi-site contact activity | Chemicals with multi-site activity |
Target Fungicide | Vegetation | Microbial Changes/Contribution | Plant Removal | Wastewater Type | CW Type | Reference |
---|---|---|---|---|---|---|
Fluopyram | Phragmites australis, Typha latifiola | bioaugmentation with Pseudomonas spp | efficiency | synthetic | pilot scale HSF | [19] |
Tebuconazole | Juncus effuses, Berula erecta, Iris pseudacorus, Phragmites australis, Typha latifiola | not specified | P. australis absorbed higher amount of fluopyram than T. latifiola | synthetic | pilot scale HSF, FWS | [90] |
Boscalid | Phragmites australis | not specified | B. erecta achieved significantly higher removal efficiency than the other plant species | synthetic | pilot scale HSF | [15] |
Chlorothalonil | Phragmites australis | response to fungicide exposure: non-optimal bacteria group growth | the presence of vegetation greatly enhances boscalid removal | synthetic | pilot scale HSF | [91] |
Tebuconazole | Juncus effuses, Berula erecta, Iris pseudacorus, Phragmites australis, Typha latifiola | plants promoted higher microbial activity than unplanted CWs | non-specified | synthetic | pilot scale HSF, FWS, VFS | [92] |
Tebuconazole, imazamil | Juncus effuses, Berula erecta, Iris pseudacorus, Phragmites australis, Typha latifiola | nitrifying bacteria may play an active role in biodegradation | B. erecta achieved significantly higher removal efficiency than the other plant species | synthetic | pilot scale HSF, FWS | [93] |
Group Name and Mode of Action | Chemical/Biological Family | Organism Origin | Target Site |
---|---|---|---|
Plant extracts, Biologicals with multiple modes of action | Polypeptide | Extract from lupine plantlets | Multiple effects on ion membrane |
Phenols, sesquiterpenes, triterpenoids, and coumarins | Extract from Swinglea glutinosa | Affects fungal spores and germ tubes, induces plant defense | |
Terpene hydrocarbons, terpene alcohols, and terpene phenols | Extract from Melaleuca alternifolia | Competition, cell membrane disruption, induced plant defense | |
Microbial, Biologicals with multiple modes of action | Bacterial Bacillus spp. | Bacillus amyloliquefaciens strain QST713 | Competition, mycoparasitism, antibiosis, induced plant defense |
Bacterial Pseudomonas spp. | Pseudomonas chlororaphis strain AFS009 | ||
Fungal Trichoderma spp. | Trichoderma atroviride strain I-1237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gikas, G.D.; Parlakidis, P.; Mavropoulos, T.; Vryzas, Z. Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. Sustainability 2022, 14, 4056. https://doi.org/10.3390/su14074056
Gikas GD, Parlakidis P, Mavropoulos T, Vryzas Z. Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. Sustainability. 2022; 14(7):4056. https://doi.org/10.3390/su14074056
Chicago/Turabian StyleGikas, Georgios D., Paraskevas Parlakidis, Theodoros Mavropoulos, and Zisis Vryzas. 2022. "Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review" Sustainability 14, no. 7: 4056. https://doi.org/10.3390/su14074056
APA StyleGikas, G. D., Parlakidis, P., Mavropoulos, T., & Vryzas, Z. (2022). Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. Sustainability, 14(7), 4056. https://doi.org/10.3390/su14074056