Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context
Abstract
:1. Introduction
2. Literature Review
2.1. Measuring Public Opinion in Politics
2.2. Online Public Opinion and Its Methods
- Q1.
- How do we collect and process an extensive amount of unstructured data and user-generated non-English texts to measure aggregated sentiment?
- Q2.
- Does the measured online public opinion represent the population of a survey in political context?
3. Methods
3.1. Data
3.2. Methods
4. Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacDougall, C.D. Understanding Public Opinion: A Guide for Newspapermen and Newspaper Readers; The Macmillan Company: New York, NY, USA, 1952. [Google Scholar]
- Gronke, P.; Newman, B. Public Evaluations of Presidents. In The Oxford Handbook of the American Presidency; Edwards, G.C., III, Howel, W., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 232–253. [Google Scholar]
- Kreiss, D. Seizing the moment: The presidential campaigns’ use of Twitter during the 2012 electoral cycle. New Media Soc. 2016, 18, 1473–1490. [Google Scholar] [CrossRef]
- Klašnja, M.; Barberá, P.; Beauchamp, N.; Nagler, J.; Tucker, J. Measuring public opinion with social media data. In The Oxford Handbook of Polling and Survey Methods; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Tucker, J.A.; Nagler, J.; MacDuffee, M.M.; Barberá, P.; Penfold-Brown, D.; Bonneau, R. Big data, social media, and protest: Foundations for a research agenda. In Computational Social Science: Discovery and Prediction; Alvarez, R.M., Ed.; Cambridge University Press: New York, NY, USA, 2016; pp. 199–224. [Google Scholar]
- Tufekci, Z.; Wilson, C. Social media and the decision to participate in political protest: Observations from Tahrir Square. J. Commun. 2012, 62, 363–379. [Google Scholar] [CrossRef]
- Erikson, R.S.; Tedin, K.L. American Public Opinion; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Stimson, J.A. Public Opinion in America: Moods, Cycles, and Swings; Routledge: London, UK, 2018. [Google Scholar]
- Gartner, S.S.; Segura, G.M. War, casualties, and public opinion. J. Confl. Resolut. 1998, 42, 278–300. [Google Scholar] [CrossRef]
- Campbell, A.; Converse, P.E.; Miller, W.E.; Stokes, D.E. The American Voter; University of Chicago Press: Chicago, IL, USA, 1980. [Google Scholar]
- Berinsky, A.J. Measuring public opinion with surveys. Annu. Rev. Political Sci. 2017, 20, 309–329. [Google Scholar] [CrossRef]
- Koo, B. Automatic response system and its failure in sampling young female Korean voters: Gender gap in politically opinionated voters. Surv. Res. 2017, 18, 31–60. [Google Scholar] [CrossRef]
- Canes-Wrone, B. Who Leads Whom? The Policy Effects of Presidents’ Relationship with the Masses; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Eshbaugh-Soha, M.; Rottinghaus, B. Presidential position taking and the puzzle of representation. Pres. Stud. Q. 2013, 43, 1–15. [Google Scholar] [CrossRef]
- Canes-Wrone, B.; De Marchi, S. Presidential approval and legislative success. J. Politics 2002, 64, 491–509. [Google Scholar] [CrossRef]
- Mueller, J.E. War, Presidents, and Public Opinion; John Wiley & Sons: Hoboken, NJ, USA, 1973. [Google Scholar]
- Berlemann, M.; Enkelmann, S. The economic determinants of US presidential approval: A survey. Eur. J. Political Econ. 2014, 36, 41–54. [Google Scholar] [CrossRef] [Green Version]
- MacKuen, M.B.; Erikson, R.S.; Stimson, J.A. Peasants or bankers? The American electorate and the US economy. Am. Political Sci. Rev. 1992, 86, 597–611. [Google Scholar]
- Norpoth, H. Presidents and the prospective voter. J. Politics 1996, 58, 776–792. [Google Scholar] [CrossRef]
- Ostrom, C.; Simon, D. Promise and Performance: A Dynamic Model of Presidential Popularity. Am. Political Sci. Rev. 1985, 79, 334–358. [Google Scholar] [CrossRef]
- Duggan, M.; Brenner, J. The Demographics of Social Media Users, 2012; Pew Research Center’s Internet & American Life Project: Washington, DC, USA, 2013; Volume 14. [Google Scholar]
- Mellon, J.; Prosser, C. Twitter and Facebook are not representative of the general population: Political attitudes and demographics of British social media users. Res. Politics 2017, 4, 2053168017720008. [Google Scholar] [CrossRef]
- Eom, K. Whose Opinions Are Represented in the Online World? J. Future Politics 2020, 10, 99–122. [Google Scholar]
- Lee, H.; Yang, S.M. Effects of demographics and personality factors on categorizing SNS users into three groups: Non-user, light user, and heavy users. Korean J. Broadcast. Telecommun. Stud. 2017, 31, 5–40. [Google Scholar]
- Barberá, P.; Rivero, G. Understanding the political representativeness of Twitter users. Soc. Sci. Comput. Rev. 2015, 33, 712–729. [Google Scholar] [CrossRef] [Green Version]
- Vaccari, C.; Valeriani, A.; Barberá, P.; Bonneau, R.; Jost, J.T.; Nagler, J.; Tucker, J. Social media and political communication. A survey of Twitter users during the 2013 Italian general election. Riv. Ital. Di Sci. Politica 2013, 43, 381–410. [Google Scholar]
- Hampton, K.N.; Goulet, L.S.; Rainie, L.; Purcell, K. Social Networking Sites and Our Lives; Pew Internet & American Life Project: Washington, DC, USA, 2011; Volume 1. [Google Scholar]
- Franch, F. 2010 UK Election prediction with social media. J. Inf. Technol. Politics 2013, 10, 57–71. [Google Scholar] [CrossRef]
- Jensen, M.J.; Anstead, N. Psephological investigations: Tweets, votes, and unknown unknowns in the republican nomination process. Policy Internet 2013, 5, 161–182. [Google Scholar] [CrossRef]
- Tumasjan, A.; Sprenger, T.O.; Sandner, P.G.; Welpe, I.M. Election forecasts with Twitter: How 140 characters reflect the political landscape. Soc. Sci. Comput. Rev. 2011, 29, 402–418. [Google Scholar] [CrossRef] [Green Version]
- Elmer, G. Live research: Twittering an election debate. New Media Soc. 2013, 15, 18–30. [Google Scholar] [CrossRef]
- Shamma, D.A.; Kennedy, L.; Churchill, E.F. Tweet the debates: Understanding community annotation of uncollected sources. In Proceedings of the First SIGMM Workshop on Social Media ACM, Beijing, China, 23 October 2009; pp. 3–10. [Google Scholar]
- Gonzalez-Bailon, S.; Banchs, R.E.; Kaltenbrunner, A. Emotional reactions and the pulse of public opinion: Measuring the impact of political events on the sentiment of online discussions. arXiv 2010, arXiv:1009.4019. [Google Scholar]
- Chung, C.; Rhee, Y.; Cha, H. Big Data analyses of Korea’s nation branding on Google and Facebook. Korea Obs. 2020, 51, 151–174. [Google Scholar] [CrossRef]
- Skoric, M.; Poor, N.; Achananuparp, P.; Lim, E.P.; Jiang, J. Tweets and votes: A study of the 2011 Singapore general election. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2583–2591. [Google Scholar]
- Bermingham, A.; Smeaton, A. On using Twitter to monitor political sentiment and predict election results. In Proceedings of the Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP 2011), Chiang Mai, Thailand, 13 November 2011; pp. 2–10. [Google Scholar]
- Liu, B. Sentiment Analysis and Opinion Mining; Morgan & Claypool: Chicago, IL, USA, 2012. [Google Scholar]
- Alaparthi, S.; Mishra, M. BERT: A sentiment analysis odyssey. J. Mark. Anal. 2021, 9, 118–126. [Google Scholar] [CrossRef]
- Dodds, P.S.; Harris, K.D.; Kloumann, I.M.; Bliss, C.A.; Danforth, C.M. Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. PLoS ONE 2011, 6, e26752. [Google Scholar] [CrossRef] [PubMed]
- González-Bailón, S.; Banchs, R.E.; Kaltenbrunner, A. Emotions, public opinion, and US presidential approval rates: A 5-year analysis of online political discussions. Hum. Commun. Res. 2012, 38, 121–143. [Google Scholar] [CrossRef]
- Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A. Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 2010, 62, 419. [Google Scholar] [CrossRef] [Green Version]
- Young, L.; Soroka, S. Affective news: The automated coding of sentiment in political texts. Political Commun. 2012, 29, 205–231. [Google Scholar] [CrossRef]
- Korea Information Society Development Institute. Analysis on SNS Trend and Use Behavior. KISDI STAT Report 19-10. 2019. Available online: https://stat.kisdi.re.kr/MediaStat/Library/Library_detail1.aspx?MENU_ID=233&Division=1&seq=2466 (accessed on 28 February 2019).
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Vaswani, A.; Bengio, S.; Brevdo, E.; Chollet, F.; Gomez, A.N.; Gouws, S.; Jones, L.; Kaiser, Ł.; Kalchbrenner, N.; Parmar, N.; et al. Tensor2tensor for neural machine translation. arXiv 2018, arXiv:1803.07416. [Google Scholar]
- SKTBrain. Korean BERT Pre-Trained Cased (KoBERT). Available online: https://github.com/SKTBrain/KoBERT/ (accessed on 28 February 2020).
- Gronke, P.; Koch, J.; Wilson, J.M. Follow the leader? Presidential approval, presidential support, and representatives’ electoral fortunes. J. Politics 2003, 65, 785–808. [Google Scholar]
Type | Strength | Weakness |
---|---|---|
Counting Method |
|
|
Sentiment Analysis Unsupervised Learning |
|
|
Sentiment Analysis: Supervised Learning |
|
|
Order | Classification | Embedding Type | Embedding Dimension | Neural Network Model | Accuracy |
---|---|---|---|---|---|
1 | 3 | Word2Vec | 100 | CNN | 82.64 |
2 | 3 | Word2Vec | 200 | CNN | 84.40 |
3 | 3 | Word2Vec | 300 | CNN | 84.08 |
4 | 3 | Word2Vec | 100 | RNN | 82.48 |
5 | 3 | Word2Vec | 200 | RNN | 80.56 |
6 | 3 | Word2Vec | 300 | RNN | 77.20 |
7 | 3 | FastText | 100 | CNN | 78.96 |
8 | 3 | FastText | 200 | CNN | 80.56 |
9 | 3 | FastText | 300 | CNN | 80.40 |
10 | 3 | FastText | 100 | RNN | 81.92 |
11 | 3 | FastText | 200 | RNN | 79.84 |
12 | 3 | FastText | 300 | RNN | 83.04 |
13 | 3 | BERT | - | BERT | 84.92 |
14 | 2 | Word2Vec | 100 | CNN | 91.94 |
15 | 2 | Word2Vec | 200 | CNN | 93.38 |
16 | 2 | Word2Vec | 300 | CNN | 92.84 |
17 | 2 | Word2Vec | 100 | RNN | 91.72 |
18 | 2 | Word2Vec | 200 | RNN | 91.72 |
19 | 2 | Word2Vec | 300 | RNN | 94.26 |
10 | 2 | FastText | 100 | CNN | 90.95 |
21 | 2 | FastText | 200 | CNN | 90.62 |
22 | 2 | FastText | 300 | CNN | 91.50 |
23 | 2 | FastText | 100 | RNN | 92.16 |
24 | 2 | FastText | 200 | RNN | 91.50 |
25 | 2 | FastText | 300 | RNN | 92.20 |
26 | 2 | BERT | - | BERT | 94.18 |
Online Sentiment | ||
---|---|---|
Positive | Negative | |
Realmeter Daily Poll | 0.127 (0.342) | 0.164 (0.273) |
Online Sentiment | ||
---|---|---|
Positive | Negative | |
Realmeter’s Weekly Poll | 0.193 (0.607) | 0.278 (0.449) |
Gallup’s Weekly Poll | −0.100 (74.233) | 0.066 (58.458) |
Realmeter | Gallup | ||||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
Online Sentiments | t − 1 | 0.196 (0.655) | 0.298 (0.477) | 0.304 (0.006) | 0.366 (0.005) |
t − 2 | 0.194 (0.679) | 0.307 (0.494) | 0.310 (0.006) | 0.386 (0.005) | |
t − 3 | 0.154 (0.664) | 0.273 (0.484) | 0.050 (0.007) | 0.110 (0.005) | |
t + 1 | 0.180 (0.579) | 0.288 (0.420) | 0.040 (0.005) | 0.103 (0.004) | |
t + 2 | 0.135 (0.593) | 0.236 (0.429) | 0.127 (0.006) | 0.143 (0.006) | |
t + 3 | 0.026 (0.643) | 0.162 (0.484) | 0.212 (0.006) | 0.254 (0.005) |
Realmeter | Gallup | ||||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
Online Sentiments | 20 | 0.100 (0.326) | 0.240 (0.271) | 0.266 (0.348) | 0.071 (0.395) |
30 | 0.185 (0.338) | 0.233 (0.321) | 0.167 (0.402) | 0.123 (0.379) | |
40 | 0.116 (0.501) | 0.212 (0.428) | 0.030 (0.406) | 0.065 (0.392) | |
50 | 0.014 (0.393) | 0.156 (0.368) | −0.012 (0.379) | 0.048 (0.331) | |
60+ | 0.210 (0.488) | 0.176 (0.258) | 0.282 (0.340) | 0.369 (0.256) |
Realmeter | Gallup | ||||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
Online Sentiments | Male | 0.302 (0.562) | 0.411 (0.484) | 0.191 (0.606) | 0.195 (0.499) |
Female | 0.063 (0.479) | 0.156 (0.343) | 0.320 (0.509) | 0.283 (0.455) |
Realmeter | Gallup | ||||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
Online Sentiments | Conservative | −0.127 (0.559) | 0.015 (0.466) | 0.135 (0.408) | 0.198 (0.322) |
Neutral | 0.310 (0.317) | 0.327 (0.280) | 0.094 (0.432) | 0.160 (0.371) | |
Progressive | −0.263 (0.247) | −0.060 (0.373) | 0.152 (0.479) | 0.059 (0.492) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Chung, C.J.; Eom, K. Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context. Sustainability 2022, 14, 4113. https://doi.org/10.3390/su14074113
Kim D, Chung CJ, Eom K. Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context. Sustainability. 2022; 14(7):4113. https://doi.org/10.3390/su14074113
Chicago/Turabian StyleKim, Daesik, Chung Joo Chung, and Kihong Eom. 2022. "Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context" Sustainability 14, no. 7: 4113. https://doi.org/10.3390/su14074113
APA StyleKim, D., Chung, C. J., & Eom, K. (2022). Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context. Sustainability, 14(7), 4113. https://doi.org/10.3390/su14074113