RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Datasets
2.3. The RSEI-Based Ecological Security Assessment Model
2.3.1. The ESO Identification Method
2.3.2. The Ecological Security Identification Method
3. Results
3.1. The ESOs Identification
3.2. The Ecological Security Patterns
3.3. The Impacts on Soil Quality
4. Discussion
4.1. The Analysis of the ESO Identification
4.2. The Analysis of the Spatiotemporal Ecological Security Pattern
4.3. The Analysis of the Spatial Impacts on Soil Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Yang, Q.; Tong, X.; Chen, L. Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Sci. Total Environ. 2018, 633, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Lee, L.S.; Zhang, H.; Jim, C.Y. Serviceable tree volume: An alternative tool to assess ecosystem services provided by ornamental trees in urban forests. Urban For. Urban Green. 2021, 59, 127003. [Google Scholar] [CrossRef]
- Lee, L.S.; Jim, C.Y.; Zhang, H. Tree density and diversity in Hong Kong’s public housing estates: From provision injustice to socio-ecological inclusiveness. Urban For. Urban Green. 2019, 46, 126468. [Google Scholar] [CrossRef]
- Pirages, D.C.; DeGeest, T.M. Ecological Security: An Evolutionary Perspective on Globalization; Rowman & Littlefield Publishers: Lanham, MA, USA, 2003. [Google Scholar]
- Rogers, K.S. Ecological security and multinational corporations. Environ. Change Secur. Proj. Rep. 1997, 3, 29–36. [Google Scholar]
- Hodson, M.; Marvin, S. ‘Urban ecological security’: A new urban paradigm? Int. J. Urban Reg. Res. 2009, 33, 193–215. [Google Scholar] [CrossRef]
- Bashagaluke, J.B.; Logah, V.; Opoku, A.; Sarkodie-Addo, J.; Quansah, C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 2018, 13, e0208250. [Google Scholar] [CrossRef] [Green Version]
- Mensah, C.A. Destruction of urban green spaces: A problem beyond urbanization in Kumasi city (Ghana). Am. J. Environ. Prot. 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Chen, X.; Liao, J.; Zhang, H.; Wang, C.; Ye, Y.; Wang, Y. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 2016, 19, 35–46. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, X.; Li, H. Constructing the ecological security pattern for sponge city: A case study in zhengzhou, china. Water 2019, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zhang, H.; Chen, X.; Huang, G.; Ye, Y.; Wu, Q.; Huang, N.; Kuang, Y. The ecological security patterns and construction land expansion simulation in Gaoming. Acta Ecol. Sin. 2013, 33, 1524–1534. [Google Scholar]
- Haeuber, R.; Ringold, P. Ecology, the social sciences, and environmental policy 1. Ecol. Appl. 1998, 8, 330–331. [Google Scholar] [CrossRef]
- Chen, L.; Fu, B.; Zhao, W. Source-sink landscape theory and its ecological significance. Front. Biol. China 2008, 3, 131–136. [Google Scholar] [CrossRef]
- Brawn, J.D.; Robinson, S.K. Source-sink population dynamics may complicate the interpretation of long-term census data. Ecology 1996, 77, 3–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Li, Y.; Yang, Z.; Wang, X.; Li, X. Construction and optimization of an urban ecological security pattern based on habitat quality assessment and the minimum cumulative resistance model in Shenzhen city, China. Forests 2021, 12, 847. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Doko, T.; Fukui, H.; Kooiman, A.; Toxopeus, A.; Ichinose, T.; Chen, W.; Skidmore, A. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol. Model. 2011, 222, 748–761. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Khansefid, M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area. Urban Ecosyst. 2010, 13, 23–36. [Google Scholar] [CrossRef]
- Vergnes, A.; Kerbiriou, C.; Clergeau, P. Ecological corridors also operate in an urban matrix: A test case with garden shrews. Urban Ecosyst. 2013, 16, 511–525. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; Xia, B. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Mandle, L.; Douglass, J.; Lozano, J.S.; Sharp, R.P.; Vogl, A.L.; Denu, D.; Walschburger, T.; Tallis, H. OPAL: An open-source software tool for integrating biodiversity and ecosystem services into impact assessment and mitigation decisions. Environ. Model. Softw. 2016, 84, 121–133. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Hu, Y.; Wu, K. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Lin, W.-C.; Wang, Y.-C.; Lien, W.-Y.; Huang, T.; Hsu, C.-C.; Schmeller, D.S.; Crossman, N.D. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Model. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
- Jin, X.; Wei, L.; Wang, Y.; Lu, Y. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Shi, X.; He, J.; Yuan, Y.; Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J. Building ecological security patterns based on ecosystem services value reconstruction in an arid inland basin: A case study in Ganzhou District, NW China. J. Clean. Prod. 2019, 241, 118337. [Google Scholar] [CrossRef]
- Gao, J.; Du, F.; Zuo, L.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.; Doran, J.W.; Cline, R.; Harris, R.; Schuman, G. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. Defin. Soil Qual. Sustain. Environ. 1994, 35, 1–21. [Google Scholar]
- Moarrab, Y.; Salehi, E.; Amiri, M.; Hovidi, H. Spatial–temporal assessment and modeling of ecological security based on land-use/cover changes (case study: Lavasanat watershed). Int. J. Environ. Sci. Technol. 2021, 1–16. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Cheng, H.; Jia, H.; Wu, Y.; Wang, G.; Zhang, C.; Gao, S. Assessing the ecological security of the Tibetan plateau: Methodology and a case study for Lhaze County. J. Environ. Manag. 2006, 80, 120–131. [Google Scholar] [CrossRef]
- Sun, C.; Li, X.; Zhang, W.; Li, X. Evolution of ecological security in the tableland region of the chinese loess plateau using a Remote-Sensing-Based index. Sustainability 2020, 12, 3489. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, H. A new remote sensing index based on the pressure-state-response framework to assess regional ecological change. Environ. Sci. Pollut. Res. 2019, 26, 5381–5393. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Karbalaei Saleh, S.; Amoushahi, S.; Gholipour, M. Spatiotemporal ecological quality assessment of metropolitan cities: A case study of central Iran. Environ. Monit. Assess. 2021, 193, 305. [Google Scholar] [CrossRef]
- Qureshi, S.; Alavipanah, S.K.; Konyushkova, M.; Mijani, N.; Fathololomi, S.; Firozjaei, M.K.; Homaee, M.; Hamzeh, S.; Kakroodi, A.A. A remotely sensed assessment of surface ecological change over the Gomishan Wetland, Iran. Remote Sens. 2020, 12, 2989. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Ming, C.; Tao, Y.; Quan, Y.; Hui, X.; Jinxia, N. Characterization of heavy metal pollution in vegetable field soils and health risk assessment in Dayu County, China. INMATEH-Agric. Eng. 2016, 48, 95–102. [Google Scholar]
- Feng, Y.; Liu, Y. Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: A case study of Lingang New City, China. Environ. Monit. Assess. 2016, 188, 540. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, Q.; Tong, X.; Wang, J.; Chen, S.; Lei, Z.; Gao, C. Long-term regional environmental risk assessment and future scenario projection at Ningbo, China coupling the impact of sea level rise. Sustainability 2019, 11, 1560. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Li, H.; Tong, X.; Chen, L.; Liu, Y. Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China. Glob. Planet. Change 2018, 167, 24–34. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Ibrahim, G.R.F.; Hameed, H.M.; Wheeler, J.; Adamu, B.; Ibrahim, S.A.; Najmaddin, P.M. Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Roh, S.; Tae, S.; Kim, R. Developing a Green Building Index (GBI) certification system to effectively reduce carbon emissions in South Korea’s building industry. Sustainability 2018, 10, 1872. [Google Scholar] [CrossRef] [Green Version]
- Peterman, W.E.; Connette, G.M.; Semlitsch, R.D.; Eggert, L.S. Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol. Ecol. 2014, 23, 2402–2413. [Google Scholar] [CrossRef]
- Ye, Y.; Su, Y.; Zhang, H.-o.; Liu, K.; Wu, Q. Construction of an ecological resistance surface model and its application in urban expansion simulations. J. Geogr. Sci. 2015, 25, 211–224. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Jin, Y.; Liu, S.; Wu, P.; Ye, Z.; Gu, C. Modeling urban encroachment on ecological land using cellular automata and cross-entropy optimization rules. Sci. Total Environ. 2020, 744, 140996. [Google Scholar] [CrossRef]
- Dayu County Government. Inspection of Nature Reserves. Available online: http://lyj.ganzhou.gov.cn/gnlyw/c102371/201807/97bb9302a5784d4c9aa7e9adf7588f73.shtml (accessed on 6 February 2022).
- Dayu County Government. National Voluntary Tree Planting. Available online: http://lyj.ganzhou.gov.cn/gnlyw/c102332/201803/2146eecce3854f408fe991b0b0fd1f8c.shtml (accessed on 6 February 2022).
- Dayu County Government. Reconstruction of Low-Quality and Low-Efficiency Forests. Available online: http://lyj.ganzhou.gov.cn/gnlyw/c102332/201703/fd4675700c2d40249f76e4a63f29317f.shtml (accessed on 6 February 2022).
- Zhang, X.; Hu, Z.; Wei, X.; Huang, Y. Study on Identification of Key Areas for Ecological Protection and Restoration in Resource-exhausted Region: Take Dayu County, Jiangxi as an Example. J. Ecol. Rural Environ. 2021, 37, 1031–1040. [Google Scholar]
- Zhang, W.-L.; Du, Y.; Zhai, M.-M.; Shang, Q. Cadmium exposure and its health effects: A 19-year follow-up study of a polluted area in China. Sci. Total Environ. 2014, 470, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Shiwen, C.; Lin, Y.; Zhineng, H.; Xianzu, Z.; Zhaolu, Y.; Huidong, X.; Yuanrong, L.; Rongdi, J.; Wenhua, Z.; Fangyuan, Z. Cadmium exposure and health effects among residents in an irrigation area with ore dressing wastewater. Sci. Total Environ. 1990, 90, 67–73. [Google Scholar] [CrossRef]
- Cheng, H.; Duan, X.; Liu, S.; Lin, C.; Shao, X. Thallium, arsenic, and mercury contamination of soil near the world’s largest and longest-operating tungsten mine. Pol. J. Environ. Stud. 2013, 22, 301–305. [Google Scholar]
Data | Source | Time | Purpose |
---|---|---|---|
Remote sensing images | Landsat-7 ETM from Geospatial Data Cloud | December 2012 | Produce the ecological resistance factors for quantifying the ecological security pattern |
Remote sensing images | Landsat-8 OLI and TIRS from Geospatial Data Cloud | February 2016 | Produce the ecological resistance factors for quantifying the ecological security pattern |
Remote sensing images | Landsat-8 OLI and TIRS from Geospatial Data Cloud | February 2020 | Produce the ecological resistance factors for quantifying the ecological security pattern |
DEM | The United States Geological Survey | 2017 | Calculate the ecological resisting surface in 2012, 2016 and 2020 |
Statistical yearbooks | The Dayu local government | 2012, 2016, 2020 | Evaluate the ecological security and model the urban expansion |
The soil nutrient content | The soil nutrient content tests | 2012, 2015, 2019 | Analyze the soil quality and ecological security |
Type | Resisting Factor | Weight | Level | Resisting Score |
---|---|---|---|---|
Living environments | Land-use | 0.46 | Water | 1 |
Forest | 2 | |||
Farm | 3 | |||
Bare land | 4 | |||
Urban | 5 | |||
NDBI | 0.15 | 0–0.2 | 1 | |
0.2–0.4 | 2 | |||
0.4–0.6 | 3 | |||
0.6–0.8 | 4 | |||
0.8–1 | 5 | |||
Natural environments | NDVI | 0.27 | 0.8–1 | 1 |
0.6–0.8 | 2 | |||
0.4–0.6 | 3 | |||
0.2–0.4 | 4 | |||
0–0.2 | 5 | |||
landform characteristics | DEM | 0.04 | 0–240 m | 1 |
240–480 m | 2 | |||
480–720 m | 3 | |||
720–960 m | 4 | |||
960–1367 m | 5 | |||
Slope | 0.08 | 0–5° | 1 | |
5–15° | 2 | |||
15–24° | 3 | |||
24–54° | 4 | |||
54–87° | 5 |
Security Level | 2012 | 2016 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Level 1 | 478..07 | 34.96 | 406.87 | 29.75 | 510.80 | 37.35 |
Level 2 | 349.47 | 25.55 | 390.73 | 28.57 | 401.81 | 29.38 |
Level 3 | 261.51 | 19.12 | 304.02 | 22.23 | 256.43 | 18.75 |
Level 4 | 198.61 | 14.52 | 173.01 | 12.65 | 138.13 | 10.10 |
Level 5 | 79.97 | 5.84 | 93.00 | 6.80 | 60.45 | 4.42 |
Soil Composition | Organic Matter (mg/kg) | Alkaline Hydrolyzed Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2015 | 2019 | 2012 | 2015 | 2019 | 2012 | 2015 | 2019 | 2012 | 2015 | 2019 | |
Average | 21.90 | 22.20 | 29.90 | 122.70 | 140.80 | 125.80 | 26.40 | 27.83 | 51.38 | 87.576 | 111.45 | 78.08 |
Nan’an | 30.65 | 23.99 | 72.90 | 137.80 | 127.96 | 155.35 | 34.27 | 21.44 | 30.40 | 151.50 | 89.20 | 45.00 |
Xincheng | 14.15 | 22.82 | 11.63 | 100.32 | 147.58 | 94.67 | 25.70 | 30.48 | 45.40 | 43.81 | 110.03 | 52.50 |
Chijiang | 24.69 | 22.10 | 15.15 | 148.84 | 143.98 | 103.31 | 27.61 | 27.56 | 29.53 | 84.53 | 109.12 | 89.25 |
Qinglong | 17.24 | 22.45 | 26.30 | 126.11 | 148.36 | 132.44 | 27.31 | 24.69 | 30.30 | 88.67 | 105.52 | 76.40 |
Huanglong | 16.85 | 24.45 | 29.85 | 96.38 | 145.50 | 156.03 | 29.66 | 29.84 | 54.00 | 119.90 | 99.74 | 77.25 |
Jicun | 28.29 | 21.44 | 13.30 | 117.78 | 137.05 | 89.00 | 27.53 | 27.96 | 18.00 | 83.02 | 113.8 | 93.00 |
Hedong | 24.47 | 24.45 | 20.35 | 132.24 | 128.35 | 116.15 | 23.22 | 31.66 | 27.80 | 59.03 | 99.04 | 89.50 |
Neiliang | 21.03 | 21.72 | 35.15 | 115.56 | 126.78 | 135.79 | 26.84 | 22.15 | 5.05 | 86.60 | 107.70 | 93.00 |
Fujiang | 20.02 | 22.95 | 31.90 | 123.24 | 124.83 | 127.56 | 22.99 | 32.10 | 83.30 | 83.23 | 187.90 | 57.00 |
Zuoba | 22.81 | 19.16 | 48.20 | 134.41 | 157.60 | 144.84 | 23.93 | 26.09 | 109.00 | 79.64 | 72.00 | 74.00 |
Zhangdou | 21.15 | 19.55 | 24.50 | 117.13 | 161.55 | 129.00 | 22.04 | 32.19 | 132.40 | 83.41 | 132.00 | 112.00 |
The Threshold | Count of ESOs | Total Area of ESOs (km2) | Average Area of ESOs (km2) | Max Area of ESOs (km2) | Min Area of ESOs(km2) |
---|---|---|---|---|---|
0.5 | 182 | 32,452.42 | 178.31 | 737.49 | 101.32 |
0.6 | 79 | 15,696.01 | 198.69 | 737.49 | 102.64 |
0.7 | 43 | 11,154.00 | 259.40 | 737.49 | 104.33 |
0.8 | 25 | 4674.25 | 186.97 | 484.35 | 102.04 |
0.9 | 2 | 545.24 | 272.62 | 371.25 | 171.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Wu, J.; Li, P.; Li, R.; Cheng, P. RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China. Sustainability 2022, 14, 4428. https://doi.org/10.3390/su14084428
Su X, Wu J, Li P, Li R, Cheng P. RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China. Sustainability. 2022; 14(8):4428. https://doi.org/10.3390/su14084428
Chicago/Turabian StyleSu, Xiaoxia, Jing Wu, Pengshuo Li, Renjie Li, and Penggen Cheng. 2022. "RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China" Sustainability 14, no. 8: 4428. https://doi.org/10.3390/su14084428
APA StyleSu, X., Wu, J., Li, P., Li, R., & Cheng, P. (2022). RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China. Sustainability, 14(8), 4428. https://doi.org/10.3390/su14084428