Functional Bakery Snacks for the Post-COVID-19 Market, Fortified with Omega-3 Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacture of Bakery Products
2.1.1. Design of the Products
2.1.2. Design of Flowchart, HACCP Plan—Recipe and Manufacture of the Products
2.1.3. Product Production
2.2. Sensory Evaluation
2.3. Chemical Analysis
2.4. Shelf-Life Determination
2.5. Anti-Thrombotic and Anti-Inflammatory Activity
2.5.1. Lipid Extraction
2.5.2. In Vitro Anti-Thrombotic and Anti-Inflammatory Activity
2.6. Marketing Plan: Development
2.7. Statistics
3. Results
3.1. Manufacture of Bakery Products
3.2. Sensory Evaluation of the New Products
3.3. Chemical Analysis of the Products
3.4. Shelf-Life Assessment
3.5. Lipid Extraction and In Vitro Antithrombotic and Anti-Inflammatory Activity
3.6. Marketing Plan
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ceniti, C.; Tilocca, B.; Britti, D.; Santoro, A.; Costanzo, N. Food Safety Concerns in “COVID-19 Era”. Microbiol. Res. 2021, 12, 53–68. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Shahbaz, H.M.; Fatima, N.; Munir, S.; Holley, R.A. Food Safety during and after the Era of Covid-19 Pandemic. Front. Microbiol. 2020, 11, 1854. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (CoVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Hasler, C.M.; Bloch, A.S.; Thomson, C.A. Position of the American Dietetic Association: Functional Foods. J. Am. Diet. Assoc. 2004, 104, 814–826. [Google Scholar] [CrossRef]
- Kaur, R.; Sood, A.; Kanotra, M.; Arora, S.; Subramaniyan, V.; Bhatia, S.; Al-Harrasi, A.; Aleya, L.; Behl, T. Pertinence of Nutriments for a Stalwart Body. Environ. Sci. Pollut. Res. 2021, 28, 54531–54550. [Google Scholar] [CrossRef]
- Ruiz, J.C.R.; Vazquez, E.L.L.O.; Campos, M.R.S. Encapsulation of Vegetable Oils as Source of Omega-3 Fatty Acids for Enriched Functional Foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1423–1434. [Google Scholar] [CrossRef]
- Schoefield, L. The Omega 3 Market Essentially Innovative. Available online: https://www.nutraceuticalsworld.com/issues/2013-09/view_features/the-Omega-3-market-essentially-innovative/ (accessed on 9 September 2013).
- Nieburg, O. Omega-3 Bread: Health, Claims, Sources and Dosage. Specially Edition “Riding the Health Claims”. Nutra Ingredients.Com. Available online: https://www.nutraingredients.com/article/2013/04/18/Omega-3-bread-and-health-claims (accessed on 17 April 2021).
- Friedberg, J. Next-Generation Fats and Oils for Snack and Bakery R&D. Available online: https://www.preparedfoods.com/articles/126620-next-generation-fats-and-oils-for-snack-and-bakery-r-and-d (accessed on 17 February 2022).
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods OJ L 404; European Parliament, Council of the European Union: Brussels, Belgium, 2006; pp. 9–25.
- Commission Regulation (EC) No 983/2009 of 21 October 2009 on the Authorisation and Refusal of Authorisation of Certain Health Claims Made on Food and Referring to the Reduction of Disease Risk and to Children’s Development and Health; European Commission: Brussels, Belgium, 2009.
- Ayerza, R.; Coates, W.; Lauria, M. Chia Seed (Salvia hispanica L.) as an ω-3 Fatty Acid Source for Broilers: Influence on Fatty Acid Composition, Cholesterol and Fat Content of White and Dark Meats, Growth Performance, and Sensory Characteristics. Poult. Sci. 2002, 81, 826–837. [Google Scholar] [CrossRef]
- Umesha, S.S.; Manohar, R.S.; Indiramma, A.R.; Akshitha, S.; Naidu, K.A. Enrichment of Biscuits with Microencapsulated Omega-3 Fatty Acid (Alpha-Linolenic Acid) Rich Garden Cress (Lepidium Sativum) Seed Oil: Physical, Sensory and Storage Quality Characteristics of Biscuits. LWT-Food Sci. Technol. 2015, 62, 654–661. [Google Scholar] [CrossRef]
- Kumar, N.A.; Rao, U.J.S.P.; Jeyarani, T.; Indrani, D. Effect of Ingredients on Rheological, Physico-Sensory, and Nutritional Characteristics of Omega-3-Fatty Acid Enriched Eggless Cake. J. Texture Stud. 2017, 48, 439–449. [Google Scholar] [CrossRef]
- Alejandre, M.; Astiasarán, I.; Ansorena, D. Omega-3 Fatty Acids and Plant Sterols as Cardioprotective Ingredients in Beef Patties Composition and Relevance of Nutritional Information on Sensory Characterization. Food Funct. 2019, 10, 7883–7891. [Google Scholar] [CrossRef]
- Faccinetto-Beltrán, P.; Gómez-Fernández, A.R.; Orozco-Sánchez, N.E.; Pérez-Carrillo, E.; Marín-Obispo, L.M.; Hernández-Brenes, C.; Santacruz, A.; Jacobo-Velázquez, D.A. Physicochemical Properties and Sensory Acceptability of a Next-Generation Functional Chocolate Added with Omega-3 Polyunsaturated Fatty Acids and Probiotics. Foods 2021, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Puranik, S.S. Emulsions of Omega-3 Fatty Acids for Better Bioavailability and Beneficial Health Effects; Springer Publishing: New York, NY, USA, 2016; ISBN 9783319404585. [Google Scholar]
- Köhler, A.; Heinrich, J.; Von Schacky, C. Bioavailability of Dietary Omega-3 Fatty Acids Added to a Variety of Sausages in Healthy Individuals. Nutrients 2017, 9, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punia, S.; Sandhu, K.S.; Siroha, A.K.; Dhull, S.B. Omega 3-Metabolism, Absorption, Bioavailability and Health Benefits–A Review. PharmaNutrition 2019, 10, 100162. [Google Scholar] [CrossRef]
- Calviello, G.; Su, H.-M.; Weylandt, K.H.; Fasano, E.; Serini, S.; Cittadini, A. Experimental Evidence of ω-3 Polyunsaturated Fatty Acid Modulation of Inflammatory Cytokines and Bioactive Lipid Mediators: Their Potential Role in Inflammatory, Neurodegenerative, and Neoplastic Diseases. BioMed Res. Int. 2013, 2013, 743171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, S.J. The Role of Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Health. Altern. Ther. Health Med. 2013, 19 (Suppl. 1), 26–30. [Google Scholar] [PubMed]
- Bu, J.; Dou, Y.; Tian, X.; Wang, Z.; Chen, G. The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podzolkov, V.I.; Pisarev, M.V. Role of Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Risk Management. Cardiovasc. Ther. Prev. 2020, 19, 86–94. [Google Scholar] [CrossRef]
- Demopoulos, C.A.; Pinckard, R.N.; Hanahan, D.J. Platelet-Activating Factor. Evidence for 1-0-Alkyl-2-Acetyl-Sn-Glyceryl-3-Phosphorylcholine as the Active Component (a New Class of Lipid Chemical Mediators). J. Biol. Chem. 1979, 254, 9355–9358. [Google Scholar] [CrossRef]
- Demopoulos, C.A.; Karantonis, H.C.; Antonopoulou, S. Platelet Activating Factor-A Molecular Link between Atherosclerosis Theories. Eur. J. Lipid Sci. Technol. 2003, 105, 705–716. [Google Scholar] [CrossRef]
- Badimon, L.; Suades, R.; Fuentes, E.; Palomo, I.; Padró, T. Role of Platelet-Derived Microvesicles as Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front. Pharmacol. 2016, 7, 293. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulou, S.; Fragopoulou, E.; Karantonis, H.C.; Mitsou, E.; Sitara, M.; Rementzis, J.; Mourelatos, A.; Ginis, A.; Phenekos, C. Effect of Traditional Greek Mediterranean Meals on Platelet Aggregation in Normal Subjects and in Patients with Type 2 Diabetes Mellitus. J. Med. Food 2006, 9, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Merfels, M.; Muhly-Reinholz, M.; Gokorsch, S.; Rosseau, S.; Lohmeyer, J.; Schwarzer, N.; Krüll, M.; Suttorp, N.; Grimminger, F.; et al. ω-3 Fatty Acids Suppress Monocyte Adhesion to Human Endothelial Cells: Role of Endothelial PAF Generation. Am. J. Physiol.-Heart Circ. Physiol. 2002, 283, H811–H818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ΕLOΤ ΕΝ ISO 22000: 2005; Food Safety Management Systems-Requirements for Any Organization in the Food Chain, European Standard. Hellenic Organization for Standardization: Peristeri, Greece, 2005; pp. 11–27.
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food In-formation to Consumers, OJ L 304; European Parliament, Council of the European Union: Brussels, Belgium, 2011; pp. 18–63.
- AOAC Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000.
- AOAC Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1985.
- Thanou, K.; Kapsi, A.; Petsas, A.S.; Dimou, C.; Koutelidakis, A.; Nasopoulou, C.; Skalkos, D.; Karantonis, H.C. Ultrasound-Assisted Extraction of Texas Variety Almond Oil and in Vitro Evaluation of Its Health Beneficial Bioactivities. J. Food Process. Preserv. 2021, e16144. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- AIBI. AIBI Bread Market Report 2012; AIBI: Brussels, Belguim, 2013. [Google Scholar]
- United States Department of Agriculture, E.R.S.W. Role in the U.S.D. Available online: https://www.ers.usda.gov/topics/crops/wheat/wheats-role-in-the-us-diet (accessed on 28 April 2017).
- Simopoulos, A.P. Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids: Evolutionary Aspects. World Rev. Nutr. Diet. 2003, 92, 1–22. [Google Scholar]
- Thibault, R.; Seguin, P.; Tamion, F.; Pichard, C.; Singer, P. Nutrition of the COVID-19 Patient in the Intensive Care Unit (ICU): A Practical Guidance. Crit. Care 2020, 24, 447. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Lastra-González, P.; Gómez-Hoyos, E.; Ortolá-Buigues, A.; Jiménez-Sahagún, R.; Cuadrado-Clemente, L.; Benito-Sendín-Plaar, K.; Cuenca-Becerril, S.; Portugal-Rodríguez, E.; De Luis Román, D.A. Evolution of Nutrition Support in Patients with COVID-19 Disease Admitted in the Intensive Care Unit|Evolución Del Soporte Nutricional En El Paciente Con Enfermedad COVID-19 Ingresado En La Unidad de Cuidados Intensivos. Endocrinol. Diabetes Y Nutr. 2022; in press. [Google Scholar] [CrossRef]
- Chang, J.P.-C.; Pariante, C.M.; Su, K.-P. Omega-3 Fatty Acids in the Psychological and Physiological Resilience against COVID-19. Prostaglandins Leukot. Essent. Fat. Acids 2020, 161, 102177. [Google Scholar] [CrossRef]
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2018, 19, 92. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Polito, R.; Monda, V.; Cipolloni, L.; Di Nunno, N.; Di Mizio, G.; Murabito, P.; Carotenuto, M.; Messina, A.; Pisanelli, D.; et al. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work. Int. J. Mol. Sci. 2020, 21, 3104. [Google Scholar] [CrossRef]
- Ren, G.-Y.; Chen, C.-Y.; Chen, G.-C.; Chen, W.-G.; Pan, A.; Pan, C.-W.; Zhang, Y.-H.; Qin, L.-Q.; Chen, L.-H. Effect of Flaxseed Intervention on Inflammatory Marker C-Reactive Protein: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Sha, L.; Li, K.; Wang, Z.; Wang, T.; Li, Y.; Liu, P.; Dong, X.; Dong, Y.; Zhang, X.; et al. Dietary Flaxseed Oil Rich in Omega-3 Suppresses Severity of Type 2 Diabetes Mellitus via Anti-Inflammation and Modulating Gut Microbiota in Rats. Lipids Health Dis. 2020, 19, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zarepoor, L.; Lu, J.T.; Power, K.A. Functional Foods and Gut Health. In Nutraceuticals and Functional Foods: Natural Remedy; Brar, S.K., Kaur, S., Dhillon, G.S., Eds.; Nova Science, Inc.: New York, NY, USA, 2014; ISBN 9781629487939. [Google Scholar]
Constituents | Whole-Meal Sliced Bread 1 | Chocolate Cookies 1 | Breadsticks 1 |
---|---|---|---|
Hard wheat flour (g) | 20.00 | ||
Gluten (g) | 2.50 | ||
Yeast (g) | 0.85 | 1.00 | |
White wheat flour (g) | 35.00 | 45.00 | 40.00 |
Flaxseed (g) | 16.00 | 8.00 | 12.00 |
Sugar (g) | 0.03 | 9.00 | 5.00 |
Salt (g) | 0.05 | 0.01 | 1.00 |
Margarine (g) | 3.00 | 9.00 | 7.00 |
Water (g) | 22.60 | 1.00 | 34.00 |
Cacao (g) | 5.00 | ||
Chocolate drops (g) | 5.00 | ||
Egg (g) | 10.00 | ||
Milk (g) | 5.00 | ||
Honey (g) | 3.00 |
Constituents | Whole-meal Sliced Bread 1 | Chocolate Cookies 1 | Breadsticks 1 |
---|---|---|---|
Fat (g/100 g) | 10.0 ± 0.83 | 17.52 ± 1.39 | 15.33 ± 0.78 |
Humidity (g/100 g) | 29.80 ± 1.12 | 10.29 ± 0.49 | 8.41 ± 0.39 |
Proteins (g/100 g) | 12.30 ± 0.59 | 10.03 ± 0.42 | 6.77 ± 0.33 |
Carbohydrates (g/100 g) | 39.40 ± 1.69 | 50.90 ± 0.15 | 57.98 ± 1.38 |
Ash (g/100 g) | 3.80 ± 0.13 | 4.20 ± 0.10 | 4.62 ± 0.11 |
Fibers (g/100 g) | 5.40 ± 0.21 | 7.03 ± 0.30 | 7.08 ± 0.12 |
Energy Kcal/100 g | 294.74 ± 2.36 | 401.50 ± 2.09 | 396.97 ± 2.63 |
Constituents | Whole-meal Sliced Bread 1 | Chocolate Cookies 1 | Breadsticks 1 | |||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
Total fat (g/100 g) | 10.90 ± 0.99 | 10.01 ± 0.83 | 18.12 ± 1.34 | 17.74 ± 1.39 | 15.99 ± 0.96 | 15.33 ± 0.78 |
Fatty acids (g/100 g fat) | ||||||
Myristic acid C14:0 | 0.50 ± 0.09 | 0.60 ± 0.11 | 1.00 ± 0.08 | 0.90 ± 0.07 | 0.20 ± 0.01 | 0.20 ± 0.01 |
Palmitic acid C16:0 | 18.90 ± 2.91 | 22.70 ± 2.99 | 25.30 ± 0.95 | 25.00 ± 1.11 | 8.30 ± 0.40 | 7.90 ± 0.03 |
Stearic acid C18:0 | 7.80 ± 0.30 | 9.20 ± 0.41 | 6.90 ± 0.31 | 6.80 ± 0.31 | 2.90 ± 0.19 | 2.90 ± 0.15 |
Oleic acid C18:1n9c | 24.30 ± 1.51 | 25.40 ± 1.67 | 33.00 ± 2.11 | 31.10 ± 2.43 | 25.30 ± 1.21 | 24.40 ± 1.69 |
Vaccenic acid C18:1n7c | 0.70 ± 0.03 | 0.70 ± 0.04 | 0.90 ± 0.051 | 0.90 ± 0.05 | 0.80 ± 0.07 | 0.76 ± 0.06 |
Linoleic acid C18:2n6c | 24.60 ± 1.98 | 23.10 ± 0192 | 22.50 ± 1.01 | 22.70 ± 0.99 | 41.70 ± 2.56 | 38.10 ± 2.68 |
α-Linolenic acid C18:3n3c | 20.40 ± 1.49 | 19.60 ± 1.79 | 9.10 ± 0.72 | 9.50 ± 0.61 | 18.30 ± 1.08 | 19.00 ± 1.23 |
Attribute | Product | Day 0 | Day 4 | Day 7 | Day 18 | Day 24 |
---|---|---|---|---|---|---|
Appearance 1 | Whole-meal sliced bread | 7.7 ± 0.3 | 8.1 ± 0.3 | 7.8 ± 0.3 | Na 2 | NA |
Chocolate Cookies | 7.1 ± 0.4 | 7.8 ± 0.3 | 7.0 ± 0.3 | 6.5 ± 0.3 | 5.3 ± 0.2 | |
Breadsticks | 6.9 ± 0.3 | 6.9 ± 0.3 | 6.8 ± 0.3 | 6.6 ± 0.2 | 5.8 ± 0.2 | |
Odor 1 | Whole-meal sliced bread | 7.3 ± 0.4 | 8.0 ± 0.3 | 7.7 ± 0.3 | NA | NA |
Chocolate Cookies | 8.1 ± 0.3 | 8.0 ± 0.3 | 7.5 ± 0.3 | 6.8 ± 0.2 | 6.0 ± 0.3 | |
Breadsticks | 7.1 ± 0.4 | 7.3 ± 0.4 | 6.8 ± 0.3 | 6.1 ± 0.3 | 5.4 ± 0.3 | |
Texture 1 | Whole-meal sliced bread | 7.3 ± 0.3 | 7.3 ± 0.4 | 7.4 ± 0.4 | NA | NA |
Chocolate Cookies | 7.4 ± 0.3 | 7.9 ± 0.4 | 6.5 ± 0.3 | 6.0 ± 0.2 | 5.1 ± 0.2 | |
Breadsticks | 6.0 ± 0.3 | 7.4 ± 0.4 | 7.3 ± 0.4 | 6.6 ± 0.3 | 5.3 ± 0.2 | |
Taste 1 | Whole-meal sliced bread | 7.1 ± 0.3 | 6.9 ± 0.3 | 7.1 ± 0.4 | NA | NA |
Chocolate Cookies | 8.0 ± 0.4 | 7.9 ± 0.4 | 7.5 ± 0.4 | 6.8 ± 0.3 | 5.4 ± 0.3 | |
Breadsticks | 6.6 ± 0.3 | 7.6 ± 0.3 | 7.2 ± 0.3 | 5.9 ± 0.2 | 5.2 ± 0.2 | |
After taste 1 | Whole-meal sliced bread | 7.2 ± 0.2 | 7.2 ± 0.2 | 7.3 ± 0.3 | NA | NA |
Chocolate Cookies | 7.9 ± 0.2 | 7.8 ± 0.2 | 7.2 ± 0.3 | 6.6 ± 0.3 | 5.2 ± 0.1 | |
Breadsticks | 6.2 ± 0.3 | 7.7 ± 0.2 | 7.0 ± 0.3 | 5.8 ± 0.3 | 5.0 ± 0.3 | |
Overall acceptability 1 | Whole-meal sliced bread | 7.3 ± 0.4 | 7.3 ± 0.3 | 7.3 ± 0.3 | NA | NA |
Chocolate Cookies | 7.9 ± 0.3 | 7.9 ± 0.3 | 7.2 ± 0.3 | 6.5 ± 0.2 | 5.2 ± 0.3 | |
Breadsticks | 6.4 ± 0.3 | 7.3 ± 0.3 | 7.1 ± 0.4 | 5.9 ± 0.3 | 5.1 ± 0.3 | |
α-Linolenic acid C18:3n3c (g/100 g product) 3 | Whole-meal sliced bread | 1.3 ± 0.2 | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.59 ± 0.1 | NA |
Chocolate Cookies | 1.3 ± 0.2 | 0.9 ± 0.1 | 1.1 ± 0.1 | 0.9 ± 0.1 | 1.2 ± 0.1 | |
Breadsticks | 2.9 ± 0.1 | 6.9 ± 0.2 | 7.2 ± 0.3 | 6.8 ± 0.4 | 6.2 ± 0.3 |
Food Product | 1 IA50 | |
---|---|---|
Conventional | Enriched | |
Flour | 7.60 ± 0.08 | 1.61 ± 0.07 2 |
Whole-meal sliced bread | 86.13 ± 1.01 | 18.73 ± 0.40 2 |
Chocolate cookies | 55.72 ± 0.63 | 49.72 ± 0.60 2 |
Breadsticks | 73.92 ± 0.83 | 46.72 ± 0.73 2 |
Whole-Meal Sliced Bread | Chocolate Cookies | Breadsticks | TOTAL | ||
---|---|---|---|---|---|
1st year 1 | Quantity(Kg) | 6600 | 2500 | 3000 | 12,100 |
Sales (€) | 10,000 | 12,000 | 15,000 | 37,000 | |
2nd year 1 | Quantity(Kg) | 13,300 | 53,000 | 6000 | 24,600 |
Sales (€) | 20,000 | 25,000 | 30,000 | 75,000 | |
3rd year 2 | Quantity(Kg) | 33,300 | 11,700 | 12,000 | 57,000 |
Sales (€) | 50,000 | 55,000 | 60,000 | 165,000 | |
4th year 2 | Quantity(Kg) | 46,000 | 17,000 | 18,000 | 81,000 |
Sales (€) | 70,000 | 80,000 | 90,000 | 240,000 | |
5th year 3 | Quantity(Kg) | 56,000 | 20,000 | 22,000 | 98,000 |
Sales (€) | 84,000 | 96,000 | 108,000 | 288,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karantonis, H.C.; Nasopoulou, C.; Skalkos, D. Functional Bakery Snacks for the Post-COVID-19 Market, Fortified with Omega-3 Fatty Acids. Sustainability 2022, 14, 4816. https://doi.org/10.3390/su14084816
Karantonis HC, Nasopoulou C, Skalkos D. Functional Bakery Snacks for the Post-COVID-19 Market, Fortified with Omega-3 Fatty Acids. Sustainability. 2022; 14(8):4816. https://doi.org/10.3390/su14084816
Chicago/Turabian StyleKarantonis, Haralabos C., Constantina Nasopoulou, and Dimitris Skalkos. 2022. "Functional Bakery Snacks for the Post-COVID-19 Market, Fortified with Omega-3 Fatty Acids" Sustainability 14, no. 8: 4816. https://doi.org/10.3390/su14084816
APA StyleKarantonis, H. C., Nasopoulou, C., & Skalkos, D. (2022). Functional Bakery Snacks for the Post-COVID-19 Market, Fortified with Omega-3 Fatty Acids. Sustainability, 14(8), 4816. https://doi.org/10.3390/su14084816