Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Analytical Methods
3. Results
4. Discussion
4.1. Major and Rare Earth Elements Indicate Chemical Weathering of Dolomite and Limestone
4.2. 87Sr/86Sr Indication of the Weathering Process
4.2.1. Influencing Factors of 87Sr/86Sr during Soil Chemical Weathering Process
4.2.2. Significance of 87Sr/86Sr for Evaluating the Soil Chemical Weathering Process
4.3. 87Sr/86Sr Indication of Material Source of Soil Overlying Carbonate Rock
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 1979, 279, 206. [Google Scholar] [CrossRef]
- Braun, J.-J.; Pagel, M.; Herbilln, A.; Rosin, C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochim. Et Cosmochim. Acta 1993, 57, 4419–4434. [Google Scholar] [CrossRef]
- Scarciglia, F.; Le Pera, E.; Critelli, S. Weathering and pedogenesis in the Sila Grande Massif (Calabria, South Italy): From field scale to micromorphology. Catena 2005, 61, 1–29. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Séquaris, J.-M.; Klumpp, E.; Vereecken, H. Colloidal properties and potential release of water-dispersible colloids in an agricultural soil depth profile. Geoderma 2013, 193–194, 94–101. [Google Scholar] [CrossRef]
- Wei, X.; Ji, H.; Wang, S.; Chu, H.; Song, C. The formation of representative lateritic weathering covers in south-central Guangxi (southern China). Catena 2014, 118, 55–72. [Google Scholar] [CrossRef]
- da Silva, Y.J.A.B.; do Nascimento, C.W.A.; Biondi, C.M.; van Straaten, P.; de Souza Júnior, V.S.; da Silva, Y.J.A.B.; dos Santos, C.A.; do Carmo Trezena de Araújo, J. Influence of metaluminous granite mineralogy on the rare earth element geochemistry of rocks and soils along a climosequence in Brazil. Geoderma 2017, 306, 28–39. [Google Scholar] [CrossRef]
- Teng, F.-Z.; Hu, Y.; Ma, J.-L.; Wei, G.-J.; Rudnick, R.L. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochim. Et Cosmochim. Acta 2020, 278, 261–271. [Google Scholar] [CrossRef]
- Mihajlovic, J.; Stärk, H.-J.; Rinklebe, J. Geochemical fractions of rare earth elements in two floodplain soil profiles at the Wupper River, Germany. Geoderma 2014, 228–229, 160–172. [Google Scholar] [CrossRef]
- Bickle, M.J.; Chapman, H.J.; Tipper, E.; Galy, A.; De La Rocha, C.L.; Ahmad, T. Chemical weathering outputs from the flood plain of the Ganga. Geochim. Et Cosmochim. Acta 2018, 225, 146–175. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Tikhomirov, D.; Christl, M.; Sadough, H.; Egli, M. Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology 2020, 363, 107235. [Google Scholar] [CrossRef]
- Song, C.; Ji, H.; Beckford, H.O.; Chang, C.; Wang, S. Assessment of chemical weathering and physical erosion along a hillslope, southwest China. Catena 2019, 182, 104133. [Google Scholar] [CrossRef]
- Chang, C.; Song, C.; Beckford, H.O.; Wang, S.; Ji, H. Behaviors of REEs during pedogenetic processes in the karst areas of Southwest China. J. Asian Earth Sci. 2019, 185, 104023. [Google Scholar] [CrossRef]
- Ji, H.; Chang, C.; Beckford, H.O.; Song, C.; Blake, R.E. New perspectives on lateritic weathering process over karst area—Geochemistry and Si-Li isotopic evidence. Catena 2021, 198, 105022. [Google Scholar] [CrossRef]
- Meunier, A.; Caner, L.; Hubert, F.; El Albani, A.; Prêt, D. The weathering intensity scale (WIS): An alternative approach of the Chemical Index of Alteration (CIA). Am. J. Sci. 2013, 313, 113–143. [Google Scholar] [CrossRef]
- Braun, J.J.; Riotte, J.; Battacharya, S.; Violette, A.; Oliva, P.; Prunier, J.; Maréchal, J.C.; Ruiz, L.; Audry, S.; Subramanian, S. REY-Th-U Dynamics in the Critical Zone: Combined Influence of Reactive Bedrock Accessory Minerals, Authigenic Phases, and Hydrological Sorting (Mule Hole Watershed, South India). Geochem. Geophys. Geosystems 2018, 19, 1611–1635. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, S.; Bai, X.; Luo, G.; Wu, L.; Chen, F.; Wang, J.; Li, Q.; Li, C.; Yang, Y.; et al. Spatiotemporal dynamics of soil moisture in the karst areas of China based on reanalysis and observations data. J. Hydrol. 2020, 585, 124744. [Google Scholar] [CrossRef]
- Ji, H.; Wang, S.; Ouyang, Z.; Zhang, S.; Sun, C.; Liu, X.; Zhou, D. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau. Chem. Geol. 2004, 203, 29–50. [Google Scholar] [CrossRef]
- Braun, J.J.; Riotte, J.; Battacharya, S.; Violette, A.; Prunier, J.; Bouvier, V.; Candaudap, F.; Maréchal, J.C.; Ruiz, L.; Panda, S.R.; et al. REY-Th-U Solute Dynamics in the Critical Zone: Combined Influence of Chemical Weathering, Atmospheric Deposit Leaching, and Vegetation Cycling (Mule Hole Watershed, South India). Geochem. Geophys. Geosystems 2017, 18, 4409–4425. [Google Scholar] [CrossRef]
- Bain, D.C.; Bacon, J.R. Strontium isotopes as indicators of mineral weathering in catchments—ScienceDirect. Catena 1994, 22, 201–214. [Google Scholar] [CrossRef]
- Hogan, J.F.; Blum, J.D.; Siegel, D.I.; Glaser, P.H. 87Sr/86Sr as a tracer of groundwater discharge and precipitation recharge in the Glacial Lake Agassiz Peatlands, northern Minnesota. Water Resour. Res. 2000, 36, 3701–3710. [Google Scholar] [CrossRef]
- Pett-Ridge, J.C.; Derry, L.A.; Kurtz, A.C. Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, Luquillo Mountains, Puerto Rico. Geochim. Et Cosmochim. Acta 2009, 73, 25–43. [Google Scholar] [CrossRef]
- Santoni, S.; Huneau, F.; Garel, E.; Aquilina, L.; Vergnaud-Ayraud, V.; Labasque, T.; Celle-Jeanton, H. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Sci. Total Environ. 2016, 573, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Land, M.; Ingri, J.; Andersson, P.S.; Öhlander, B. Ba/Sr, Ca/Sr and 87 Sr/86Sr ratios in soil water and groundwater : Implications for relative contributions to stream water discharge. Appl. Geochem. 2000, 15, 311–325. [Google Scholar] [CrossRef]
- Klaus, J.; Hansen, B.; Buapeng, S. 87Sr/86Sr ratio: A natural tracer to monitor groundwater flow paths during artificial recharge in the Bangkok area, Thailand. Hydrogeol. J. 2007, 15, 745–758. [Google Scholar] [CrossRef]
- Charlier, B.L.A.; Nowell, G.M.; Parkinson, I.J.; Kelley, S.P.; Pearson, D.G.; Burton, K.W. High temperature strontium stable isotope behaviour in the early solar system and planetary bodies. Earth Planet. Sci. Lett. 2012, 329-330, 31–40. [Google Scholar] [CrossRef]
- Hartman, G.; Richards, M. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean. Geochim. Et Cosmochim. Acta 2014, 126, 250–264. [Google Scholar] [CrossRef]
- Pett-Ridge, J.C.; Derry, L.A.; Barrows, J.K. Ca/Sr and 87Sr/86Sr ratios as tracers of Ca and Sr cycling in the Rio Icacos watershed, Luquillo Mountains, Puerto Rico. Chem. Geol. 2009, 267, 32–45. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Wu, F.-Y.; Yang, J.-H.; Chew, D.M.; Xie, L.-W.; Chu, Z.-Y.; Zhang, Y.-B.; Huang, C. Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chem. Geol. 2014, 385, 35–55. [Google Scholar] [CrossRef]
- Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.F.; Perrone, T.; Morvan, G. Elucidating the formation of terra fuscas using Sr–Nd–Pb isotopes and rare earth elements. Appl. Geochem. 2015, 54, 85–99. [Google Scholar] [CrossRef]
- Salifu, M.; Aiglsperger, T.; Hällström, L.; Martinsson, O.; Billström, K.; Ingri, J.; Dold, B.; Alakangas, L. Strontium (87Sr/86Sr) isotopes: A tracer for geochemical processes in mineralogically-complex mine wastes. Appl. Geochem. 2018, 99, 42–54. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Z. The first large-scale bioavailable Sr isotope map of China and its implication for provenance studies. Earth-Sci. Rev. 2020, 210, 103353. [Google Scholar] [CrossRef]
- Krabbenhöft, A.; Eisenhauer, A.; Böhm, F.; Vollstaedt, H.; Fietzke, J.; Liebetrau, V.; Augustin, N.; Peucker-Ehrenbrink, B.; Müller, M.N.; Horn, C.; et al. Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr∗, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim. Et Cosmochim. Acta 2010, 74, 4097–4109. [Google Scholar] [CrossRef]
- Liu, W.-J.; Liu, C.-Q.; Zhao, Z.-Q.; Xu, Z.-F.; Liang, C.-S.; Li, L.-b.; Feng, J.-Y. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: Implications for chemical weathering and parent materials. J. Asian Earth Sci. 2013, 67–68, 138–152. [Google Scholar] [CrossRef]
- Wei, X.; Wang, S.; Ji, H.; Shi, Z. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions. PLoS ONE 2018, 13, e0191780. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Wang, S.-j. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- GB/T 14506.28-2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. National Standardization Technical Committee of Land and Resources: Beijing, China, 2011.
- GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements. National Standardization Technical Committee of Land and Resources: Beijing, China, 2011.
- Nesbitt, H.W.; Markovics, G. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Et Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Han, Z.; Yang, S.; Wang, Y.; Yang, D. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang, Jiangsu Province. J. Geogr. Sci. 2008, 18, 341–352. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol. 1995, 119, 213–223. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Processes Control. Compos. Clastic Sediments 1993, 284, 21. [Google Scholar]
- McLennan, S.; Hemming, S.; Taylor, S.; Eriksson, K. Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America. Geochim. Et Cosmochim. Acta 1995, 59, 1153–1177. [Google Scholar] [CrossRef]
- Chung, C.-H.; You, C.-F.; Chu, H.-Y. Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. J. Mar. Syst. 2009, 76, 433–443. [Google Scholar] [CrossRef]
- Raiber, M.; Webb, J.A.; Bennetts, D.A. Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt plains of southeastern Australia. J. Hydrol. 2009, 367, 188–199. [Google Scholar] [CrossRef]
- Hindshaw, R.S.; Rickli, J.; Leuthold, J.; Wadham, J.; Bourdon, B. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios. Geochim. Et Cosmochim. Acta 2014, 15, 50–71. [Google Scholar] [CrossRef]
- Wiederhold, J.G. Metal stable isotope signatures as tracers in environmental geochemistry. Environ. Sci. Technol. 2015, 49, 2606–2624. [Google Scholar] [CrossRef]
- Jones, C.E.; Jenkyns, H.C.; Coe, A.L.; Stephen, H.P. Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochim. Et Cosmochim. Acta 1994, 58, 3061–3074. [Google Scholar] [CrossRef]
- Jiang, Y.; Ji, H. Sr fluxes and 87Sr/86Sr characterization of river waters from a karstic versus granitic watershed in the Yangtze River. J. Geochem. Explor. 2011, 110, 202–215. [Google Scholar] [CrossRef]
- Négrel, P.; Petelet-Giraud, E.; Guerrot, C.; Millot, R. Ca and Sr isotope constraints on chemical weathering processes: A view through the Ebro river basin, Spain. Chem. Geol. 2021, 578, 120324. [Google Scholar] [CrossRef]
- Dubinin, A.V.; Uspenskaya, T.Y.; Rimskaya-Korsakova, M.N.; Demidova, T.P. Rare elements and Nd and Sr isotopic composition in micronodules from the Brazil Basin, Atlantic Ocean. Lithol. Miner. Resour. 2017, 52, 81–101. [Google Scholar] [CrossRef]
- Williamson, T.; Henderson, R.A.; Price, G.D.; Collerson, K.D. Strontium–isotope stratigraphy of the Lower Cretaceous of Australia. Cretac. Res. 2012, 36, 24–36. [Google Scholar] [CrossRef]
- Erel, Y.; Blum, J.D.; Roueff, E.; Ganor, J. Lead and strontium isotopes as monitors of experimental granitoid mineral dissolution. Geochim. Et Cosmochim. Acta 2004, 68, 4649–4663. [Google Scholar] [CrossRef]
- Chabaux, F.; Riotte, J.; Schmitt, A.-D.; Carignan, J.; Herckes, P.; Pierret, M.-C.; Wortham, H. Variations of U and Sr isotope ratios in Alsace and Luxembourg rain waters: Origin and hydrogeochemical implications. Comptes Rendus Geosci. 2005, 337, 1447–1456. [Google Scholar] [CrossRef]
- Drouet, T.; Herbauts, J.; Gruber, W.; Demaiffe, D. Strontium isotope composition as a tracer of calcium sources in two forest ecosystems in Belgium. Geoderma 2005, 126, 203–223. [Google Scholar] [CrossRef]
- Whipkey, C.E.; Capo, R.C.; Chadwick, O.A.; Stewart, B.W. The importance of sea spray to the cation budget of a coastal Hawaiian soil: A strontium isotope approach. Chem. Geol. 2000, 168, 37–48. [Google Scholar] [CrossRef]
- Blum, J.D.; Erel, Y. RbSr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. Et Cosmochim. Acta 1997, 61, 3193–3204. [Google Scholar] [CrossRef]
- Steinmann, M.; Stille, P. Rare earth element behavior and Pb, Sr, Nd isotope systematics in a heavy metal contaminated soil. Appl. Geochem. 1997, 12, 607–623. [Google Scholar] [CrossRef]
PB-1 | PB-2 | PB-3 | PB-4 | PB-5 | PB-6 | PB-7 | PB-8 | PB-9 | PB-10 | PB-11 | PB-12 | PB-13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 5.60 | 4.46 | 3.74 | 4.28 | 4.16 | 4.07 | 4.07 | 4.06 | 3.90 | ||||
SiO2/% | 34.05 | 30.62 | 31.06 | 31.45 | 32.07 | 32.42 | 31.95 | 33.14 | 35.67 | 1.95 | 1.60 | 1.01 | 0.36 |
Al2O3/% | 26.94 | 29.51 | 30.16 | 30.85 | 29.67 | 29.51 | 30.56 | 29.80 | 28.25 | 1.10 | 0.58 | 0.38 | 0.18 |
Fe2O3/% | 15.49 | 16.96 | 17.01 | 16.71 | 17.01 | 16.39 | 16.32 | 16.11 | 14.82 | 0.24 | 0.16 | 0.15 | 0.18 |
MgO/% | 0.94 | 0.80 | 0.84 | 0.81 | 0.89 | 0.91 | 0.91 | 0.97 | 1.19 | 18.46 | 19.95 | 20.38 | 20.51 |
CaO/% | 0.73 | 0.15 | 0.19 | 0.09 | 0.07 | 0.08 | 0.08 | 0.09 | 0.10 | 31.08 | 30.47 | 30.58 | 31.19 |
Na2O/% | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 | 0.14 | 0.10 | 0.14 | 0.12 | 0.10 |
K2O/% | 1.30 | 1.33 | 1.35 | 1.29 | 1.47 | 1.52 | 1.46 | 1.67 | 2.58 | 0.18 | 0.13 | 0.10 | 0.06 |
MnO/% | 0.07 | 0.04 | 0.04 | 0.04 | 0.08 | 0.07 | 0.12 | 0.19 | 0.39 | 0.01 | 0.01 | 0.01 | 0.01 |
TiO2/% | 1.31 | 1.20 | 1.18 | 1.15 | 1.25 | 1.22 | 1.16 | 1.22 | 1.41 | 0.05 | 0.03 | 0.03 | 0.02 |
P2O5/% | 0.19 | 0.13 | 0.13 | 0.13 | 0.14 | 0.15 | 0.18 | 0.17 | 0.18 | 0.02 | 0.01 | 0.01 | 0.01 |
CIA | 93.84 | 94.25 | 94.30 | 94.61 | 93.73 | 93.63 | 94.02 | 93.21 | 89.67 | 67.74 | 49.10 | 43.03 | 31.36 |
Th/μg/g | 29.70 | 37.60 | 35.40 | 31.60 | 32.00 | 33.20 | 37.60 | 33.90 | 36.40 | 0.63 | 0.54 | 0.37 | 0.31 |
Nb/μg/g | 51.90 | 70.60 | 73.10 | 55.10 | 79.60 | 71.40 | 99.20 | 97.80 | 235.00 | 16.60 | 6.65 | 6.15 | 2.87 |
Rb/μg/g | 73.00 | 72.30 | 72.80 | 76.50 | 76.30 | 76.80 | 77.00 | 90.40 | 107.00 | 3.68 | 2.67 | 2.04 | 1.32 |
Sr/μg/g | 57.10 | 47.00 | 47.90 | 49.30 | 46.80 | 45.10 | 42.30 | 46.20 | 48.40 | 69.00 | 69.10 | 64.30 | 66.80 |
87Sr/86Sr | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.73 | 0.71 | 0.71 | 0.71 | 0.71 |
CY-1 | CY-2 | CY-3 | CY-4 | CY-5 | CY-6 | CZ-1 | CZ-2 | CZ-3 | CZ-4 | CZ-5 | CZ-6 | CZ-7 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 5.82 | 5.69 | 5.89 | 7.23 | 7.42 | 6.38 | 6.62 | 6.93 | 6.93 | 6.62 | 6.14 | ||
SiO2/% | 51.96 | 51.44 | 51.76 | 50.84 | 37.99 | 6.77 | 56.31 | 56.61 | 54.78 | 55.08 | 57.17 | 57.44 | 5.92 |
Al2O3/% | 17.88 | 19.02 | 19.50 | 18.82 | 12.48 | 1.83 | 14.66 | 16.56 | 18.43 | 19.40 | 18.73 | 17.72 | 1.48 |
Fe2O3/% | 7.73 | 8.19 | 7.53 | 7.32 | 4.62 | 0.89 | 6.89 | 8.19 | 8.67 | 7.79 | 6.94 | 8.47 | 0.62 |
MgO/% | 2.67 | 3.07 | 3.52 | 3.50 | 2.61 | 1.03 | 1.32 | 1.29 | 1.46 | 1.42 | 1.32 | 1.24 | 0.77 |
CaO/% | 0.65 | 0.60 | 0.70 | 2.31 | 17.04 | 47.89 | 0.97 | 0.74 | 0.77 | 0.78 | 0.66 | 0.60 | 48.93 |
Na2O/% | 0.14 | 0.14 | 0.16 | 0.15 | 0.13 | 0.05 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.08 |
K2O/% | 4.55 | 4.88 | 5.34 | 5.19 | 4.31 | 0.84 | 3.53 | 2.93 | 3.04 | 2.85 | 2.91 | 2.97 | 0.86 |
MnO/% | 0.07 | 0.08 | 0.09 | 0.09 | 0.05 | 0.02 | 0.18 | 0.17 | 0.19 | 0.18 | 0.19 | 0.23 | 0.01 |
TiO2/% | 0.96 | 0.85 | 0.72 | 0.73 | 0.42 | 0.06 | 1.32 | 1.42 | 1.38 | 1.40 | 1.40 | 1.43 | 0.09 |
P2O5/% | 0.05 | 0.05 | 0.05 | 0.07 | 0.09 | 0.04 | 0.08 | 0.06 | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 |
CIA | 76.85 | 76.81 | 75.56 | 75.49 | 71.02 | 62.74 | 77.80 | 82.28 | 83.34 | 84.79 | 84.09 | 83.08 | 55.69 |
Th/μg/g | 18.00 | 18.40 | 18.40 | 17.90 | 10.20 | 1.46 | 15.40 | 20.40 | 19.90 | 21.80 | 21.50 | 20.60 | 1.15 |
Nb/μg/g | 23.90 | 28.80 | 43.70 | 37.90 | 20.60 | 8.96 | 35.40 | 46.30 | 47.90 | 55.90 | 56.40 | 54.50 | 3.87 |
Rb/μg/g | 159 | 167 | 183 | 178 | 137 | 19.00 | 119 | 127 | 140 | 155 | 145 | 140 | 14.00 |
Sr/μg/g | 100 | 83.50 | 85.40 | 89.10 | 237 | 597 | 101 | 97.90 | 102 | 105 | 96.40 | 94.10 | 736 |
87Sr/86Sr | 0.72 | 0.73 | 0.73 | 0.73 | 0.71 | 0.71 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.71 |
PB-1 | PB-2 | PB-3 | PB-4 | PB-5 | PB-6 | PB-7 | PB-8 | PB-9 | PB-10 | PB-11 | PB-12 | PB-13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 67.20 | 89.00 | 84.80 | 59.60 | 83.70 | 84.60 | 103.00 | 100.00 | 192.00 | 7.37 | 4.35 | 4.41 | 2.27 |
Ce | 201.00 | 284.00 | 289.00 | 188.00 | 282.00 | 242.00 | 256.00 | 265.00 | 379.00 | 4.18 | 3.15 | 2.35 | 1.67 |
Pr | 14.50 | 20.00 | 19.70 | 15.60 | 20.30 | 19.70 | 26.50 | 25.60 | 60.00 | 3.17 | 1.27 | 1.23 | 0.55 |
Nd | 51.90 | 70.60 | 73.10 | 55.10 | 79.60 | 71.40 | 99.20 | 97.80 | 235.00 | 16.60 | 6.65 | 6.15 | 2.87 |
Sm | 10.30 | 13.50 | 13.50 | 11.00 | 17.70 | 16.40 | 22.00 | 21.30 | 56.00 | 6.90 | 2.24 | 1.82 | 0.57 |
Eu | 1.88 | 2.50 | 2.32 | 1.90 | 3.21 | 2.85 | 3.57 | 3.57 | 8.83 | 1.33 | 0.60 | 0.44 | 0.16 |
Gd | 7.26 | 9.60 | 9.59 | 7.77 | 12.10 | 10.40 | 11.60 | 11.60 | 23.20 | 3.54 | 2.10 | 1.62 | 1.10 |
Tb | 1.15 | 1.52 | 1.53 | 1.21 | 2.02 | 1.70 | 1.81 | 1.87 | 3.90 | 0.59 | 0.36 | 0.29 | 0.19 |
Dy | 5.52 | 7.46 | 6.95 | 5.86 | 8.83 | 7.17 | 8.21 | 8.40 | 15.10 | 2.00 | 1.18 | 1.06 | 0.98 |
Ho | 1.01 | 1.20 | 1.24 | 1.03 | 1.39 | 1.19 | 1.32 | 1.34 | 2.06 | 0.24 | 0.15 | 0.13 | 0.16 |
Er | 3.01 | 3.71 | 3.68 | 3.12 | 4.19 | 3.77 | 4.10 | 4.11 | 6.46 | 0.56 | 0.37 | 0.34 | 0.41 |
Tm | 0.55 | 0.66 | 0.69 | 0.52 | 0.83 | 0.75 | 0.78 | 0.78 | 1.35 | 0.10 | 0.07 | 0.05 | 0.05 |
Yb | 3.59 | 4.58 | 4.43 | 3.72 | 5.38 | 4.70 | 5.54 | 5.47 | 10.20 | 0.67 | 0.36 | 0.32 | 0.27 |
Lu | 0.50 | 0.66 | 0.69 | 0.54 | 0.86 | 0.76 | 0.83 | 0.76 | 1.55 | 0.09 | 0.04 | 0.04 | 0.04 |
∑REE | 369.38 | 508.99 | 511.21 | 354.96 | 522.11 | 467.38 | 544.46 | 547.61 | 994.65 | 47.34 | 22.88 | 20.25 | 11.29 |
L/H 1 | 15.70 | 16.70 | 17.16 | 14.26 | 14.01 | 14.72 | 15.29 | 15.29 | 14.95 | 5.14 | 3.98 | 4.30 | 2.55 |
δCe 2 | 1.55 | 1.62 | 1.70 | 1.48 | 1.65 | 1.43 | 1.18 | 1.26 | 0.85 | 0.21 | 0.32 | 0.24 | 0.36 |
δEu | 0.66 | 0.67 | 0.62 | 0.63 | 0.67 | 0.67 | 0.68 | 0.69 | 0.75 | 0.82 | 0.84 | 0.77 | 0.61 |
LaN/YbN 3 | 12.62 | 13.10 | 12.91 | 10.80 | 10.49 | 12.14 | 12.53 | 12.33 | 12.69 | 7.45 | 8.26 | 9.38 | 5.65 |
LaN/SmN | 4.10 | 4.15 | 3.95 | 3.41 | 2.97 | 3.24 | 2.95 | 2.95 | 2.16 | 0.67 | 1.22 | 1.52 | 2.51 |
GdN/YbN | 1.63 | 1.69 | 1.75 | 1.69 | 1.81 | 1.79 | 1.69 | 1.71 | 1.84 | 4.28 | 4.77 | 4.12 | 3.28 |
CY-1 | CY-2 | CY-3 | CY-4 | CY-5 | CY-6 | CZ-1 | CZ-2 | CZ-3 | CZ-4 | CZ-5 | CZ-6 | CZ-7 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 36.60 | 35.40 | 48.10 | 42.30 | 24.40 | 8.79 | 44.30 | 50.60 | 54.10 | 62.40 | 64.20 | 58.60 | 4.44 |
Ce | 85.70 | 87.50 | 79.80 | 78.70 | 44.60 | 17.20 | 106.00 | 137.00 | 125.00 | 136.00 | 143.00 | 138.00 | 8.71 |
Pr | 6.91 | 7.54 | 11.50 | 9.58 | 5.30 | 2.27 | 9.57 | 12.00 | 12.70 | 14.80 | 15.10 | 13.90 | 0.97 |
Nd | 23.90 | 28.80 | 43.70 | 37.90 | 20.60 | 8.96 | 35.40 | 46.30 | 47.90 | 55.90 | 56.40 | 54.50 | 3.87 |
Sm | 4.20 | 5.63 | 8.24 | 7.00 | 3.66 | 1.58 | 6.29 | 8.71 | 8.48 | 10.20 | 10.40 | 9.72 | 0.65 |
Eu | 0.85 | 1.22 | 1.71 | 1.50 | 0.81 | 0.33 | 1.23 | 1.69 | 1.80 | 2.01 | 1.97 | 1.86 | 0.15 |
Gd | 3.77 | 4.81 | 7.46 | 6.18 | 3.29 | 1.45 | 5.54 | 7.50 | 7.30 | 8.37 | 8.79 | 7.98 | 0.59 |
Tb | 0.68 | 0.93 | 1.29 | 1.11 | 0.61 | 0.22 | 0.94 | 1.29 | 1.29 | 1.42 | 1.42 | 1.31 | 0.10 |
Dy | 4.08 | 5.38 | 6.99 | 5.88 | 3.19 | 1.08 | 5.11 | 6.94 | 6.80 | 7.57 | 7.71 | 7.03 | 0.56 |
Ho | 0.78 | 1.00 | 1.28 | 1.14 | 0.60 | 0.21 | 0.94 | 1.27 | 1.25 | 1.40 | 1.45 | 1.31 | 0.11 |
Er | 2.38 | 3.04 | 3.66 | 3.23 | 1.70 | 0.54 | 2.75 | 3.93 | 3.61 | 3.97 | 3.90 | 3.76 | 0.27 |
Tm | 0.41 | 0.53 | 0.60 | 0.56 | 0.29 | 0.08 | 0.46 | 0.66 | 0.61 | 0.69 | 0.64 | 0.60 | 0.05 |
Yb | 2.67 | 3.19 | 3.73 | 3.39 | 1.86 | 0.48 | 2.72 | 3.85 | 3.64 | 3.98 | 4.06 | 3.92 | 0.25 |
Lu | 0.41 | 0.49 | 0.53 | 0.49 | 0.27 | 0.07 | 0.40 | 0.55 | 0.53 | 0.57 | 0.62 | 0.56 | 0.03 |
∑REE | 173.34 | 185.46 | 218.59 | 198.96 | 111.18 | 43.27 | 221.65 | 282.29 | 275.01 | 309.28 | 319.66 | 303.05 | 20.76 |
L/H 1 | 10.70 | 8.80 | 7.72 | 8.24 | 8.62 | 9.62 | 10.98 | 10.07 | 10.20 | 10.27 | 10.41 | 10.67 | 9.72 |
δCe 2 | 1.30 | 1.29 | 0.82 | 0.94 | 0.94 | 0.93 | 1.24 | 1.34 | 1.15 | 1.08 | 1.11 | 1.16 | 1.01 |
δEu | 0.65 | 0.72 | 0.67 | 0.70 | 0.72 | 0.67 | 0.64 | 0.64 | 0.70 | 0.67 | 0.63 | 0.65 | 0.76 |
LaN/YbN 3 | 9.24 | 7.48 | 8.69 | 8.41 | 8.84 | 12.29 | 10.98 | 8.86 | 10.02 | 10.57 | 10.66 | 10.08 | 12.02 |
LaN/SmN | 5.48 | 3.96 | 3.67 | 3.80 | 4.19 | 3.50 | 4.43 | 3.65 | 4.01 | 3.85 | 3.88 | 3.79 | 4.30 |
GdN/YbN | 1.14 | 1.22 | 1.61 | 1.47 | 1.43 | 2.43 | 1.64 | 1.57 | 1.62 | 1.70 | 1.75 | 1.64 | 1.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Beckford, H.O.; Ji, H. Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China. Sustainability 2022, 14, 4822. https://doi.org/10.3390/su14084822
Chang C, Beckford HO, Ji H. Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China. Sustainability. 2022; 14(8):4822. https://doi.org/10.3390/su14084822
Chicago/Turabian StyleChang, Cheng, Howard Omar Beckford, and Hongbing Ji. 2022. "Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China" Sustainability 14, no. 8: 4822. https://doi.org/10.3390/su14084822
APA StyleChang, C., Beckford, H. O., & Ji, H. (2022). Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China. Sustainability, 14(8), 4822. https://doi.org/10.3390/su14084822